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VARIATIONS ON BROWDER’S THEOREM

H. ZARIOUH and H. ZGUITTI

Abstract. In this note we introduce and study the new spectral properties (Bb), (Bab) and (Baw)

as continuation of [7, 8, 12] which are variants of the classical Browder’s theorem.

1. Introduction and terminology

This paper is a continuation of previous papers of the first author and Berkani [7, 8] and the paper
[12], where the generalization of Weyl’s theorem and Browder’s theorem is studied. The purpose
of this paper is to introduce and study the new properties (Bb), (Bab) and (Baw) (see later for
definitions) in connection with known Weyl type theorems and properties ([3, 5, 7, 8, 12, 13]),
which play roles analogous to Browder’s theorem and Weyl’s theorem, respectively.

To introduce all these concepts, we begin with some preliminary definitions and results. Let
L(X) denote the Banach algebra of all bounded linear operators acting on a complex infinite-
dimensional Banach space X. For T ∈ L(X), let T ∗, N(T ), R(T ), σ(T ) and σa(T ) denote the dual,
the null space, the range, the spectrum and the approximate point spectrum of T , respectively
If R(T ) is closed and α(T ) := dimN(T ) < ∞ (resp. β(T ) := codimR(T ) < ∞), then T is
called an upper (resp. a lower) semi-Fredholm operator. If T is either an upper or a lower semi-
Fredholm operator, then T is called a semi-Fredholm operator, and the index of T is defined by
ind(T ) = α(T )− β(T ). If both α(T ) and β(T ) are finite, then T is called a Fredholm operator. If
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T is Fredholm operator of index zero, then T is said to be a Weyl operator. The Weyl spectrum
of T is defined by σW (T ) = {λ ∈ C : T − λI is not Weyl} and the Weyl essential approximate
point spectrum is defined by σSF−+

(T ) = {λ ∈ C : T −λI is not an upper semi-Fredholm with
ind(T−λI) ≤ 0}.

Following [10], we say that Weyl’s theorem holds for T ∈ L(X) if σ(T )\σW (T ) = E0(T ), where
E0(T ) = {λ ∈ isoσ(T ) : 0 < α(T − λI) <∞}. Here and elsewhere in this paper, for A ⊂ C, isoA
is the set of all isolated points of A. According to Rakočević [17], an operator T ∈ L(X) is said
to satisfy a-Weyl’s theorem if σa(T ) \ σSF−+ (T ) = E0

a(T ), where E0
a(T ) = {λ ∈ isoσa(T ) : 0 <

α(T − λI) < ∞}. It is known [17] that an operator satisfying a-Weyl’s theorem satisfies Weyl’s
theorem, but the converse does not hold in general.

For T ∈ L(X) and a nonnegative integer n, define T[n] to be the restriction of T to R(Tn)
viewed as a map from R(Tn) into R(Tn) (in particular, T[0] = T ). If for some integer n, the
range space R(Tn) is closed and T[n] is an upper (resp. a lower) semi-Fredholm operator, then
T is called an upper (resp. a lower) semi-B-Fredholm operator. In this case the index of T is
defined as the index of the semi-Fredholm operator T[n], see [6]. Moreover, if T[n] is a Fredholm
operator, then T is called a B-Fredholm operator, see [4]. A semi-B-Fredholm operator is an
upper or a lower semi-B-Fredholm operator. An operator T is said to be a B-Weyl operator if
it is a B-Fredholm operator of index zero. The B-Weyl spectrum σBW (T ) of T is defined by
σBW (T ) = {λ ∈ C : T − λI is not a B-Weyl operator}.

Following [5], an operator T ∈ L(X) is said to satisfy generalized Weyl’s theorem if σ(T ) \
σBW (T ) = E(T ), where E(T ) = {λ ∈ isoσ(T ) : α(T − λI) > 0} is the set of all isolated
eigenvalues of T . It is proven in [5, Theorem 3.9] that an operator satisfying generalized Weyl’s
theorem satisfies also Weyl’s theorem, but the converse does not hold in general.

Recall that the ascent a(T ) of an operator T is defined by a(T ) = inf{n ∈ N : N(Tn) =
N(Tn+1)} and the descent δ(T ) of T is defined by δ(T ) = inf{n ∈ N : R(Tn) = R(Tn+1)} with
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inf ∅ =∞. Let Πa(T ) denote the set of all left poles of T defined by Πa(T ) = {λ ∈ C : a(T −λI) <
∞ and R((T −λI)a(T−λI)+1) is closed}; and let Π0

a(T ) denote the set of all left poles of T of finite
rank, that is Π0

a(T ) = {λ ∈ Πa(T ) : α(T − λI) <∞}. According to [11], we say that a-Browder’s
theorem holds for T ∈ L(X) if σa(T ) \ σSF−+ (T ) = Π0

a(T ).

Let Π(T ) be the set of all poles of the resolvent of T and let Π0(T ) be the set of all poles of the
resolvent of T of finite rank, that is Π0(T ) = {λ ∈ Π(T ) : α(T − λI) < ∞}. According to [14], a
complex number λ is a pole of the resolvent of T if and only if 0 < max (a(T − λI), δ(T − λI)) <
∞. Moreover, if this is true, then a(T − λI) = δ(T − λI). Also according to [14], the space
R((T − λI)a(T−λI)+1) is closed for each λ ∈ Π(T ). Hence we have always Π(T ) ⊂ Πa(T ) and
Π0(T )⊂Π0

a(T ). We say that Browder’s theorem holds for T ∈ L(X) if σ(T ) \ σW (T ) = Π0(T ),
and generalized Browder’s theorem holds for T ∈ L(X) if σ(T ) \ σBW (T ) = Π(T ). It is proven in
[1, Theorem 2.1] that generalized Browder’s theorem is equivalent to Browder’s theorem.

An approximate point spectrum variant of Weyl’s theorem was introduced by Rakočević [16],
property (w). Recall that T ∈ L(X) possesses property (w) if σa(T ) \ σSF−+ (T ) = E0(T ). It is
proven in [16, Corollary 2.3] that property (w) implies Weyl’s theorem, but not conversely.

Following [12], an operator T ∈ L(X) is said to possess property (Bw) if σ(T )\σBW (T ) = E0(T ).
It is shown [12, Theorem 2.4] that an operator possessing property (Bw) satisfies generalized
Browder’s theorem. According to [8], an operator T ∈ L(X) is said to possess property (gaw) if
σ(T ) \ σBW (T ) = Ea(T ), where Ea(T ) = {λ ∈ isoσa(T ) : α(T − λI) > 0} and is said to possess
property (gab) if σ(T ) \ σBW (T ) = Πa(T ). It is proven in [8, Theorem 3.5] that property (gaw)
implies property (gab) but not conversely. The two last properties are extensions to the context of
B-Fredholm theory, of properties (aw) and (ab), respectively, see [8]. Recall [8] that an operator
T ∈ L(X) is said to possess property (aw) if σ(T ) \σW (T ) = E0

a(T ) and is said to possess property
(ab) if σ(T ) \ σW (T ) = Π0

a(T ).
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An operator T ∈ L(X) is said to have the single valued extension property at λ0 ∈ C (abbreviated
SVEP at λ0) if for every open neighborhood U of λ0, the only analytic function f : U −→ X which
satisfies the equation (T −λI)f(λ) = 0 for all λ ∈ U , is the function f ≡ 0. An operator T ∈ L(X)
is said to have the SVEP if T has this property at every λ ∈ C (see [15]). Trivially, every operator
T has the SVEP at λ ∈ isoσ(T ).

2. Property (Bb)

In this section we investigate a new variant of Browder’s theorem. We introduce the property (Bb)
which is intermediate between property (Bw) and Browder’s theorem. We also give characteriza-
tions of operators possessing property (Bb). Before that we start by some remarks about property
(Bw).

Remark 2.1.
1. The property (Bw) is not intermediate between Weyl’s theorem and generalized Weyl’s theorem
(resp. a-Weyl’s theorem). Indeed, the operator U defined below as in Example 2.5 satisfies a-Weyl’s
theorem and as E(U) = {0, 1}, then U satisfies also generalized Weyl’s theorem, but it does not
possess property (Bw). Now let T = 0⊕ S be defined on the Banach space `2(N)⊕ `2(N), where
S is defined on `2(N) by S(x1, x2, x3, . . .) = (0, 1

2x1,
1
3x2, . . .). Then σ(T ) = σBW (T ) = {0} and

E(T ) = {0}. So σ(T ) \ σBW (T ) 6= E(T ), i.e. T does not satisfy generalized Weyl’s theorem. But
since E0(T ) = ∅, then σ(T ) \ σBW (T ) = E0(T ), i.e. T possesses property (Bw). On the other
hand, the operator T = R⊕S where R is the unilateral right shift operator defined on `2(N) and S
is defined on `2(N) by S(x1, x2, x3, x4, . . .) = (1

2x2,
1
3x3,

1
4x4, . . .). Then σ(T ) = σBW (T ) = D(0, 1)

which is the closed unit disc in C, σa(T ) = C(0, 1) ∪ {0} where C(0, 1) is the unit circle of C
and E0(T ) = Π0

a(T ) = ∅. This implies that σ(T ) \ σBW (T ) = E0(T ), i.e. T possesses property
(Bw), but it does not satisfy a-Weyl’s theorem because σa(T ) = σSF−+

(T ) = C(0, 1) ∪ {0} and
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E0
a(T ) = {0}, so that σa(T ) \ σSF−+ (T ) 6= E0

a(T ).
2. The property (Bw) is not transmitted from an operator to its dual. To see this, if we consider
the operator S defined as in part 1), then S possesses property (Bw) since σ(S) = σBW (S) = {0}
and E0(S) = ∅. But its adjoint which is defined on `2(N) by S∗(x1, x2, x3, . . .) = ( 1

2x2,
1
3x3, . . .)

does not possess this property, since σ(S∗) = σBW (S∗) = {0} and E0(S∗) = {0}.

It is signaled in [12] (precisely after Definition 2.11) that if T ∈ L(X) is an operator possessing
property (Bw) and satisfying the condition isoσ(T ) = ∅, then T satisfies Weyl’s theorem. But the
following theorem gives a stronger version of this remark.

Theorem 2.2. Let T ∈ L(X). T possesses property (Bw) if and only if T satisfies Weyl’s
theorem and σBW (T ) = σW (T ).

Proof. Suppose that T possesses property (Bw), that is σ(T ) \ σBW (T ) = E0(T ). Let λ ∈
σ(T ) \ σW (T ), as σ(T ) \ σW (T ) ⊂ σ(T ) \ σBW (T ) then λ ∈ σ(T ) \ σBW (T ). Thus λ ∈ E0(T ) and
σ(T ) \σW (T ) ⊂ E0(T ). Now let us consider λ ∈ E0(T ). As σ(T ) \σBW (T ) = E0(T ), then T −λI
is a B-Weyl operator. Since α(T − λI) <∞, by virtue of [7, Lemma 2.2], we deduce that T − λI
is a Weyl operator. It follows that λ ∈ σ(T ) \ σW (T ), and hence σ(T ) \ σW (T ) = E0(T ), i.e. T
satisfies Weyl’s theorem. Then we have σBW (T ) = σ(T ) \ E0(T ) and σW (T ) = σ(T ) \ E0(T ). So
σBW (T ) = σW (T ).

Conversely, the condition σBW (T ) = σW (T ) entails that σ(T )\σBW (T ) = σ(T )\σW (T ). Weyl’s
theorem for T implies that σ(T ) \ σBW (T ) = E0(T ) and T possesses property (Bw). �

Definition 2.3. A bounded linear operator T ∈ L(X) is said to possess property (Bb) if
σ(T ) \ σBW (T ) = Π0(T ).

The property (Bb) is not intermediate between Browder’s theorem and a-Browder’s theorem.
Indeed, let R and L denote the unilateral right shift operator and the unilateral left shift operator,
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respectively on the Hilbert space `2(N) and we consider the operator T defined by T = L⊕R⊕R.
Then α(T ) = 1, β(T ) = 2 and so 0 6∈ σSF−+

(T ). Since a(T ) = ∞, then T does not have the
SVEP at 0. Hence T does not satisfy a-Browder’s theorem. Since σ(T ) = σBW (T ) = D(0, 1) and
Π0(T ) = ∅, then T possesses property (Bb). On the other hand, it is easily seen that the operator
T defined by T (x1, x2, x3, . . .) = (0, 1

2x1, 0, 0, . . .) satisfies a-Browder’s theorem. But it does not
possess property (Bb), since σ(T ) = {0} and σBW (T ) = Π0(T ) = ∅.

However, we have the following characterizations of operators possessing property (Bb).

Theorem 2.4. Let T ∈ L(X). Then the following assertions are equivalent:
(i) T possesses property (Bb).

(ii) T satisfies Browder’s theorem and Π(T ) = Π0(T ).
(iii) T satisfies Browder’s theorem and σBW (T ) = σW (T )

Proof. (i)=⇒(ii) Assume that T possesses property (Bb), that is σ(T ) \ σBW (T ) = Π0(T ) and
let λ 6∈ σBW (T ) be arbitrary. If λ ∈ σ(T ), then λ ∈ σ(T ) \ σBW (T ) = Π0(T ). Consequently,
λ ∈ isoσ(T ) which implies that T has the SVEP at λ. If λ 6∈ σ(T ), then obviously T has the SVEP
at λ. In the two cases, we have T has the SVEP at λ, and this is equivalent [2, Proposition 2.2]
to the saying that T satisfies generalized Browder’s theorem and then Browder’s theorem. Thus
Π(T ) = Π0(T ).

(ii)=⇒ (iii) Assume that T satisfies Browder’s theorem and Π(T ) = Π0(T ). Since Browder’s
theorem is equivalent to generalized Browder’s theorem, then σBW (T ) = σ(T ) \ Π(T ) = σ(T ) \
Π0(T ) = σW (T ).

(iii)=⇒(i) Obvious. �

The following example shows that in general Weyl’s theorem or Browder’s theorem do not imply
property (Bw) or property (Bb), respectively.

Example 2.5. Let U ∈L(`2(N)) be defined by U(x1, x2, x3, . . .)=(0, x2, x3, . . .), ∀(x) = (xi) ∈
`2(N). Then σa(U) = σ(U) = {0, 1}, σSF−+ (U) = σW (U) = {1} and E0

a(U) = E0(U) = {0}. Thus
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σa(U) \ σSF−+ (U) = E0
a(U) and σ(U) \ σW (U) = E0(U), i.e. U satisfies a-Weyl’s theorem and

Weyl’s theorem. On the other hand, Π(U) = {0, 1} and Π0(U) = Π0
a(U) = {0}, and consequently

σa(U)\σSF−+ (U) = Π0
a(U) and σ(U)\σW (U) = Π0(U), so that U satisfies a-Browder’s theorem and

Browder’s theorem. Moreover, σBW (U) = ∅. Hence σ(U)\σBW (U) 6= E0(U) and σ(U)\σBW (U) 6=
Π0(U), i.e. U does not possess either property (Bw) no property (Bb). Here Π(U) 6= Π0(U).

From Theorem 2.2 and Theorem 2.4 we deduce that property (Bw) implies property (Bb). But
the converse is not true in general as shown by the following example.

Example 2.6. Let T ∈ L(`2(N)) be defined by T (x1, x2, x3, . . .) = (1
2x2,

1
3x3, 1

4x4, . . .). Then T
possesses (Bb) because σ(T ) = σBW (T ) = {0} and Π0(T ) = ∅, while T does not possess property
(Bw) because E0(T ) = {0}. Note that Π(T ) = ∅.

Moreover, we give conditions for the equivalence of property (Bw) and property (Bb) in the
next theorem.

Theorem 2.7. Let T ∈ L(X). Then the following assertions are equivalent:
(i) T possesses property (Bw).

(ii) T possesses property (Bb) and E0(T ) = Π0(T ).
(iii) T possesses property (Bb) and E0(T ) = Π(T ).

In particular, if T is polaroid (i.e. isoσ(T ) = Π(T )), then the properties (Bw) and (Bb) are
equivalent.

Proof. (i) =⇒ (ii) Assume that T possesses property (Bw). Then from Theorem 2.2, T satisfies
Weyl’s theorem, which implies from [3, Corollary 5] that E0(T ) = Π0(T ). Thus σ(T ) \ σBW (T ) =
Π0(T ), i.e. T possesses property (Bb) and E0(T ) = Π0(T ).

(ii) =⇒ (iii) Follows directly from Theorem 2.4.
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(iii) =⇒ (i) Assume that T possesses property (Bb) and E0(T ) = Π(T ). Again by Theorem 2.4,
σ(T ) \ σBW (T ) = Π(T ) and as E0(T ) = Π(T ), then σ(T ) \ σBW (T ) = E0(T ) and T possesses
property (Bw).

In the special case when T is polaroid, the condition E0(T ) = Π0(T ) is always satisfied. There-
fore the two properties (Bw) and (Bb) are equivalent. �

3. Properties (Baw) and (Bab)

In this section we investigate a new variant of property (aw) (resp. property (ab)). We introduce
the property (Baw) which is intermediate between property (Bw) and property (aw). We also
introduce the property (Bab) which is intermediate between property (Bb) and property (ab).
Furthermore, we shows that property (Bab) is a week version of property (Baw).

Definition 3.1. A bounded linear operator T ∈ L(X) is said to possess property (Baw) if
σ(T ) \ σBW (T ) = E0

a(T ), and is said to possess property (Bab) if σ(T ) \ σBW (T ) = Π0
a(T ).

Theorem 3.2. Let T ∈ L(X). Then T possesses property (Baw) if and only if T possesses
property (Bab) and E0

a(T ) = Π0
a(T ). In particular, if T is a-polaroid (i.e. isoσa(T ) = Πa(T )),

then the properties (Baw) and (Bab) are equivalent.

Proof. Suppose that T possesses property (Baw), that is σ(T ) \ σBW (T ) = E0
a(T ). If λ ∈

σ(T ) \ σBW (T ), then λ ∈ E0
a(T ) and so λ ∈ isoσa(T ). As λ 6∈ σBW (T ), in particular, T − λI is an

upper semi-B-Fredholm operator, then from [5, Theorem 2.8], we have λ ∈ Πa(T ). Since α(T −λI)
is finite, λ ∈ Π0

a(T ). Therefore σ(T ) \ σBW (T ) ⊂ Π0
a(T ). Now if λ ∈ Π0

a(T ), as Π0
a(T ) ⊂ E0

a(T ) is
always true, then λ ∈ E0

a(T ) = σ(T ) \ σBW (T ). Hence σ(T ) \ σBW (T ) = Π0
a(T ), i.e. T possesses

property (Bab) and E0
a(T ) = Π0

a(T ). The converse is trivial.
Moreover, if T is an a-polaroid, then E0

a(T ) = Π0
a(T ), and hence, in this case the two properties

(Baw) and (Bab) are equivalent. �
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In the next theorem, we give a characterization of operators possessing property (Baw).

Theorem 3.3. Let T ∈ L(X). T possesses property (Baw) if and only if T possesses property
(aw) and σBW (T ) = σW (T ).

Proof. Suppose that T possesses property (Baw) and let λ ∈ σ(T ) \ σW (T ). Then λ ∈ σ(T ) \
σBW (T ) = E0

a(T ). Therefore σ(T )\σW (T ) ⊂ E0
a(T ). Now if λ ∈ E0

a(T ), then λ ∈ σ(T )\σBW (T ).
This implies that λ 6∈ σBW (T ), and since α(T−λI) is finite, then as it had been already mentioned,
we have λ 6∈ σW (T ), so that λ ∈ σ(T ) \ σW (T ). Hence σ(T ) \ σW (T ) = E0

a(T ) and T possesses
property (aw). Then we have σBW (T ) = σ(T ) \E0

a(T ) and σW (T ) = σ(T ) \E0
a(T ). So σBW (T ) =

σW (T ).
Conversely, suppose that T possesses property (aw) and σBW (T ) = σW (T ). Then σ(T ) \

σW (T ) = E0
a(T ) and σBW (T ) = σW (T ). Thus σ(T ) \ σBW (T ) = E0

a(T ) and T possesses property
(Baw). �

Remark 3.4.
1. From Theorem 3.3, if T ∈ L(X) possesses property (Baw), then T possesses property (aw).
However, the converse is not true in general: for example, the operator U defined as in Example 2.5
possesses property (aw) because σ(U) \ σW (U) = E0

a(U) = {0}, but it does not possess property
(Baw) because σ(U) \ σBW (U) = {0, 1}.
2. Generally, the two properties (gaw) and (Baw) are independent. For this, it is easily seen that
the operator T =0⊕S defined as in Remark 2.1 possesses property (Baw), but it does not possess
property (gaw) and the operator defined as in Example 2.5 possesses property (gaw), but it does
not possess property (Baw).
3. The property (Baw) as well as property (Bw), do not pass from an operator to its dual. Indeed,
the operator S defined as in part 2) of Remark 2.1 possesses property (Baw) since E0

a(S) = ∅.
But its adjoint S∗ does not possess this property since E0

a(S∗) = {0}. Similarly, property (Bab)
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is not transmitted from an operator to its dual. To see this, we consider the operator T defined
by T (x1, x2, x3, . . .) = (εx1, 0, x2, x3, . . .) for fixed 0 < ε < 1 on the Hilbert space `2(N). Then
σ(T ) = σ(T ∗) = D(0, 1), σBW (T ) = σBW (T ∗) = D(0, 1) and Π0

a(T ) = ∅. This implies that T
possesses property (Bab), but since Π0

a(T ∗) = {ε}, then T ∗ does not possess property (Bab).

Corollary 3.5. Let T ∈ L(X). T possesses property (Baw) if and only if T possesses property
(Bw) and E0(T ) = E0

a(T ).

Proof. Suppose that T possesses property (Baw), then by Theorem 3.3, T possesses property
(aw) which implies by virtue of [9, Theorem 2.5] that E0(T ) = E0

a(T ). Since σ(T ) \ σBW (T ) =
E0
a(T ), then σ(T ) \σBW (T ) = E0(T ) and T possesses property (Bw). Conversely, suppose that T

possesses property (Bw) and E0(T ) = E0
a(T ). Then σ(T ) \ σBW (T ) = E0(T ) = E0

a(T ) and hence
T possesses property (Baw). �

From Theorem 3.2 and Corollary 3.5, we have if T ∈ L(X) possesses property (Baw), then T
possesses property (Bab) and property (Bw). But the converses do not hold in general as shown
by the following example. Let T = R ⊕ S be defined as in Remark 2.1. Then σ(T ) = σBW (T ) =
D(0, 1), σa(T ) = C(0, 1) ∪ {0} and E0(T )=Π0

a(T )=∅. This implies that σ(T ) \ σBW (T )=E0(T )
and σ(T ) \σBW (T ) = Π0

a(T ), i.e. T possesses property (Bw) and property (Bab). But it does not
possess property (Baw) because E0

a(T ) = {0}, so that σ(T ) \ σBW (T ) 6= E0
a(T ).

Now we give characterizations of operators possessing property (Bab) in the next theorem.

Theorem 3.6. Let T ∈ L(X). Then the following assertions are equivalent:
(i) T possesses property (Bab).

(ii) T possesses property (ab) and σBW (T ) = σW (T ).
(iii) T possesses property (ab) and Π(T ) = Π0

a(T ).

Proof. (i)⇐⇒ (iii) Suppose that T possesses property (Bab). If λ ∈ σ(T )\σW (T ), then λ ∈
σ(T ) \ σBW (T ) = Π0

a(T ). Thus σ(T ) \ σW (T ) ⊂ Π0
a(T ). If λ ∈ Π0

a(T ), then λ ∈ σ(T ) \ σBW (T )
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and T − λI is a B-Fredholm operator with ind(T − λI) = 0. As a(T − λI) <∞, then a(T − λI) =
δ(T −λI) <∞ and λ ∈ Π0(T ). Thereforeα(T −λI)=β(T−λI)<∞. Consequently, λ 6∈σW (T ) and
σ(T ) \ σW (T ) ⊃ Π0

a(T ). Hence σ(T ) \ σW (T ) = Π0
a(T ) and T possesses property (ab). Moreover,

we have that σ(T ) \ σW (T ) = Π0(T ), i.e. T satisfies Browder’s theorem and then generalized
Browder’s theorem. Thus Π(T ) = Π0

a(T ). Conversely, suppose that T possesses property (ab)
and Π(T ) = Π0

a(T ). Then from [8, Theorem 2.4], T satisfies generalized Browder’s theorem
σ(T ) \ σBW (T ) = Π(T ), and as Π(T ) = Π0

a(T ), then σ(T ) \ σBW (T ) = Π0
a(T ) and T possesses

property (Bab).
(i) ⇐⇒ (ii) Suppose that T possesses property (Bab), then T possesses property (ab). Thus

σBW (T ) = σ(T ) \Π0
a(T ) and σW (T ) = σ(T ) \Π0

a(T ). So σBW (T ) = σW (T ). Conversely, suppose
that T possesses property (ab) and σBW (T ) = σW (T ). Then σ(T )\σW (T ) = Π0

a(T ) and σBW (T ) =
σW (T ). Thus σ(T ) \ σBW (T ) = Π0

a(T ) and T possesses property (Bab). �

Remark 3.7.
1. From Theorem 3.6, if T ∈ L(X) possesses property (Bab), then T possesses property (ab).
But the converse is not true in general as shown by the following example. Let T the operator
defined by T (x1, x2, x3, . . .) = (0, 1

2x1, 0, 0, . . .) on the Hilbert space `2(N). Then σ(T ) = {0},
Π0
a(T ) = ∅, σW (T ) = {0}. So T possesses property (ab). But it does not possess property (Bab),

since σBW (T ) = ∅. Note that Π(T ) = Πa(T ) = {0}.
2. The property (Bab) is not intermediate between property (gab) and property (ab). Indeed, the
operator defined as in the first part of this remark possesses property (gab), but it does not possess
property (Bab). On the other hand, if we consider the operator T = 0⊕R defined on the Banach
space `2(N)⊕`2(N), where R is the unilateral right shift operator, then T possesses property (Bab)
because σ(T ) = σBW (T ) = D(0, 1) and Π0

a(T ) = ∅, but it does not possess property (gab) because
Πa(T ) = {0}.

Corollary 3.8. Let T ∈ L(X). Then the following assertions are equivalent:
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(i) T possesses property (Bab).
(ii) T possesses property (Bb) and Π0(T ) = Π0

a(T ).
(iii) T possesses property (Bb) and Π(T ) = Π0

a(T ).

Proof. (i) ⇐⇒ (ii) Suppose that T possesses property (Bab), that is σ(T ) \ σBW (T ) = Π0
a(T ).

From Theorem 3.6, we deduce that T satisfies Browder’s theorem and σBW (T ) = σW (T ). Hence
σ(T ) \ σBW (T ) = Π0(T ), i.e. T possesses property (Bb) and Π0(T ) = Π0

a(T ). Conversely, suppose
that T possesses property (Bb) and Π0(T ) = Π0

a(T ). Then σ(T ) \ σBW (T ) = Π0(T ) and Π0(T ) =
Π0
a(T ). So σ(T ) \ σBW (T ) = Π0

a(T ) and T possesses property (Bab).
(ii) ⇐⇒ (iii) Follows directly from Theorem 2.4. �

From Corollary 3.8, if T ∈ L(X) possesses property (Bab), then T possesses property (Bb).
However, the converse is not true in general as shown in the following example.

Example 3.9. Let T be defined on the Banach space `2(N) ⊕ `2(N) by
T = R⊕U , where R is the unilateral right shift operator on `2(N) and U is defined as in Example
2.5. Then σ(T ) = σBW (T ) = D(0, 1), Π0

a(T ) = {0} and Π(T ) = Π0(T ) = ∅. This shows that T
possesses property (Bb), but it does not possess property (Bab).

4. Summary of results

In this last part we give a summary of the results obtained in this paper. We use the abbreviations
(Bw), (Baw), (gaw), (aw), (w), W , gW and aW to signify that an operator T ∈ L(X) obeys
property (Bw), property (Baw), property (gaw), property (aw), property (w), Weyl’s theorem,
generalized Weyl’s theorem and a-Weyl’s theorem, respectively. Similarly, the abbreviations (Bb),
(Bab), (gab), (ab), aB, B and gB have analogous meaning with respect to the properties introduced
in this paper or to the properties introduced in [8] or to Browder’s theorems.

The following table summarizes the meaning of various theorems and properties.
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(Bw) σ(T ) \ σBW (T ) = E0(T ) (Bb) σ(T ) \ σBW (T ) = Π0(T )

(Baw) σ(T ) \ σBW (T ) = E0
a(T ) (Bab) σ(T ) \ σBW (T ) = Π0

a(T )

(gaw) σ(T ) \ σBW (T ) = Ea(T ) (gab) σ(T ) \ σBW (T ) = Πa(T )

(aw) σ(T ) \ σW (T ) = E0
a(T ) (ab) σ(T ) \ σW (T ) = Π0

a(T )

(w) σa(T ) \ σSF−+ (T ) = E0(T ) aB σa(T ) \ σSF−+ (T ) = Π0
a(T )

W σ(T ) \ σW (T ) = E0(T ) B σ(T ) \ σW (T ) = Π0(T )

gW σ(T ) \ σBW (T ) = E(T ) gB σ(T ) \ σBW (T ) = Π(T )

aW σa(T ) \ σSF−+ (T ) = E0
a(T )

In the following diagram arrows signify implications between Weyl’s theorems, Browder’s the-
orems, property (w), property (Bw), property (Bb), property (Baw) and property (Bab). The
numbers near the arrows are references to the results in the present paper (numbers without
brackets) or to the bibliography therein (the numbers in square brackets).

(w) (gaw)
[9]−−−−→ gW gWy[16]

y[8]

y[5]

aW
[17]−−−−→ W

[9]←−−−− (aw) 3.3←−−−− (Baw) 3.5−−−−→ (Bw) 2.2−−−−→ Wy[5]

y[3]

y[8]

y3.2

y2.7

y[3]

aB −−−−→
[11]

B ←−−−−
[8]

(ab) ←−−−−
3.6

(Bab) −−−−→
3.8

(Bb) −−−−→
2.4

Bx[8] m [1]

(gab) ←−−−−
[8]

(gaw) gB
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