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DIRICHLET CHARACTER DIFFERENCE GRAPHS

M. BUDDEN, N. CALKINS, W. N. HACK, J. LAMBERT and K. THOMPSON

Abstract. We define Dirichlet character difference graphs and describe their basic
properties, including the enumeration of triangles. In the case where the modulus is

an odd prime, we exploit the spectral properties of such graphs in order to provide

meaningful upper bounds for their diameter.

1. Introduction

Upon one’s first encounter with abstract algebra, a theorem which resonates
throughout the theory is Cayley’s theorem, which states that every finite group
is isomorphic to a subgroup of some symmetric group. The significance of such
a result comes from giving all finite groups a common ground by allowing one to
focus on groups of permutations. It comes as no surprise that algebraic graph
theorists chose the name Cayley graphs to describe graphs which depict groups.
More formally, if G is a group and S is a subset of G closed under taking inverses
and not containing the identity, then the Cayley graph, Cay(G,S), is defined to
be the graph with vertex set G and an edge occurring between the vertices g and
h if hg−1 ∈ S [9]. Some of the first examples of Cayley graphs that are usually
encountered include the class of circulant graphs. A circulant graph, denoted by
Circ(m,S), uses Z/mZ as the group for a Cayley graph and the generating set S
is chosen amongst the integers in the set {1, 2, · · · bm2 c} [2].

Alongside the creation of circulant graphs, graph theorists have conceived of
generating sets which attract interest and intrigue across multiple disciplines of
mathematics. One such generating set is the set of quadratic residues in Z/pZ
where p is an odd prime with p ≡ 1 (mod 4). Such graphs involving quadratic
residues were first created under a more general setting in 1962 by Sachs [17] and
later developed independently in 1963 by Erdős and Rényi [8]. Although these cre-
ations came from different schools of thought, the name Paley graphs (named after
the mathematician Raymond Paley for his work on Hadamard matrices involving
quadratic residues [16]) has been agreed upon across all branches of mathematics.

The general setting for the aforementioned Paley graphs actually takes place
with the vertices occurring in the field Fq, where q is a prime power congruent to 1
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mod 4, and an edge ab exists in the graph if and only if a−b is a quadratic residue.
The self-complementary properties possessed by these Paley graphs play an instru-
mental role in Ramsey theory. While Greenwood and Gleason [11] found exact
values for the Ramsey numbers R(3, 3), R(3, 4), R(3, 5), R(4, 4), and R(3, 3, 3), it
was the Paley graphs corresponding to F5 and F17 that provided the lower bounds
for the Ramsey numbers R(3, 3) and R(4, 4), respectively.

Although Paley graphs have caught the eyes of many mathematicians, it was not
until 2009 when another generalization came into place, known as the generalized
Paley graph [13]. Although the vertices of a generalized Paley graph coincide
with those of the Paley graph, the generalized Paley graph takes its generating set
forming edges in the graph to come from a subgroup S of the multiplicative group
F×q where |S| = k and q−1

k is even. Like its predecessor, these generalized Paley
graphs also played a vital role in determining lower bounds for Ramsey numbers.
In fact, Su, Li, Luo, and Li [18] used the subgroup of cubic residues in F×p for
prime numbers p of the form 6m+ 1 to produce 16 new lower bounds for Ramsey
numbers.

In the spirit of these generalized Paley graphs and the aforementioned circulant
graphs, we shall construct Dirichlet character difference graphs, which will arise
from characters on (Z/mZ)×. In order to provide a deeper understanding of
such graphs, we begin by providing some background information on Dirichlet
characters.

Suppose that m is a positive integer with χ : (Z/mZ)× −→ C× a character
(group homomorphism). We naturally identify Z/mZ with the set of least residues
{0, 1, . . . ,m−1}. A character extended to all of Z by means of reducing modulo m
and requiring χ(a) = 0 whenever gcd(a,m) > 1 is called a Dirichlet character. At
times, it will be beneficial to view χ as a function on Z, but for a majority of this
article we shall consider it as just a character of (Z/mZ)×. One well-known result
in the study of characters is that for any finite abelian group G, the character group
of G, denoted by Ĝ, is isomorphic to G (eg., see [14, Proposition 4.18]). Let rχ
denote the order of χ : (Z/mZ)× −→ C× as an element of ̂(Z/mZ)×. If we denote
the Euler totient function by ϕ(m) (defined as giving the order of (Z/mZ)×), then
it is understood that rχ is a divisor of ϕ(m). Denoting the kernel of χ by Ker(χ),
we see that χ is a |Ker(χ)|-to-one mapping with |Ker(χ)| = ϕ(m)

rχ
. Throughout

the remainder of this article, we shall take “character” to mean a character on
(Z/mZ)×.

With our background on Dirichlet characters complete, we wish to create the
appropriately named Dirichlet character difference graphs. For a character χ, we
define the graph Dir(m,χ) to have vertex set V (Dir(m,χ)) := Z/mZ and edge set

E(Dir(m,χ)) := {ab | a− b ∈ Ker(χ) or b− a ∈ Ker(χ)}.

As a consequence of the definition of the Dirichlet character difference graph
Dir(m,χ), we find a class of regular Hamiltonian graphs of order m. In fact,
if χ(−1) = 1, the corresponding Dirichlet character graph is |Ker(χ)|-regular,
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while χ(−1) = −1 implies Dir(m,χ) is 2|Ker(χ)|-regular. Alongside the afore-
mentioned properties of Dir(m,χ), we shall explore the additional contributions
Dirichlet characters make to circulant graphs and find an immediate application
for Dir(m,χ).

2. Enumeration of Triangles

Following the approach of Maheswari and Lavaku [15], we determine the number
of triangles T (Dir(m,χ)) contained in Dir(m,χ) in terms of the number of pairs
of consecutive elements in Ker(χ), denoted N(χ). A closed-form for N(χ) can
be achieved for some characters using known evaluations of certain Jacobi sums.
In particular, in the case where m is a prime satisfying m ≡ 1 (mod 4) and χ is
the Legendre symbol (the unique quadratic character) modulo m, a closed-form
solution can be obtained by combining Maheswari and Lavaku’s result [15] with
Aladov’s [1] evaluation of N(χ). Most recently, a closed-form solution has been
given in [6] for m a prime satisfying m ≡ 1 (mod 8), where χ is the quartic residue
symbol.

Theorem 1. If χ : (Z/mZ)× −→ C× is a character of order rχ satisfying
χ(−1) = 1, then the number of triangles contained in Dir(m,χ) is given by

T (Dir(m,χ)) =
mϕ(m)

6rχ
N(χ),

where N(χ) is the number of pairs of consecutive elements in Ker(χ). In the case
where χ(−1) = −1, we find

T (Dir(m,χ)) =
mϕ(m)

3rχ
N(χ).

Proof. Our approach mimics that of [15] and [6], but unlike [6], we omit the
explicit determination of N(χ) since the methods employed in such computations
are not easily extended to this generalized setting. We begin with the case where
χ(−1) = 1 and count the number of fundamental triangles

∆1 := {(0, 1, b) | b− 1, b ∈ Ker(χ)}.
It is clear from the definition that

|∆1| = N(χ).

For a ∈ Ker(χ), let

∆a := {(0, a, b) | b, b− a ∈ Ker(χ)}.
Applying basic properties of groups, it is easily confirmed that the map f : ∆1→∆a,
given by f((0, 1, b)) = (0, a, ab), is a bijection. Thus,

|∆1| = |∆a| = N(χ).

The total number of triangles that contain the vertex 0 may be determined by
considering the union

⋃
a∈Ker(χ)

∆a and noting that each triangle is counted twice
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since (0, a, b) and (0, b, a) represent the same triangle. Thus,∣∣∣∣∣∣
⋃

a∈Ker(χ)

∆a

∣∣∣∣∣∣ =
ϕ(m)
2rχ

N(χ).

Finally, Dir(m,χ) is regular and each triangle has three vertices, implying that

T (Dir(m,χ)) =
mϕ(m)

6rχ
N(χ)

gives the total number of triangles in Dir(m,χ).
In order to determine the value of T (Dir(m,χ)) when χ(−1) = −1 observe

that only one of a − b and b − a will be in Ker(χ) for the edge ab to exist in the
graph. In other words, whenever χ(−1) = −1 we form the edge ab if and only if
χ(a− b) = ±1. Using the fact that the product of two characters of a finite group
is also a character and that the only square roots of unity are ±1, we note that
ab is an edge if and only if a − b ∈ Ker(χ2). Since χ2(−1) = 1 and χ2 has order
rχ2 = rχ

2 , we find a striking similarity between Dir(m,χ) and Dir(m,χ2). In fact,
Dir(m,χ) is isomorphic to Dir(m,χ2) whenever χ(−1) = −1, which allows us to
deduce the following theorem by applying the proof above to χ2. �

Despite not being able to find a closed-form for N(χ) that is independent of
the choice of χ, we can describe a basic approach used to evaluate N(χ) for some
choices of character. Our approach follows the method described by Andrews in [3,
Section 10.1] in the case of the Legendre symbol and [6] in the case of the quartic
residue symbol. For any n ∈ (Z/mZ)×, (χ(n))rχ = 1, allowing us to consider the
values of χ as elements in Z[ζ], where ζ is a primitive rχ-th root of unity. The
polynomial

ψrχ(x) =
xrχ − 1
x− 1

= xrχ−1 + xrχ−2 + · · ·+ x+ 1

has all of the rχ-th roots of unity as roots, with the exception of 1. Thus, for
n ∈ (Z/mZ)×, we have

ψrχ(χ(n)) =

{
rχ if χ(n) = 1

0 if χ(n) 6= 1.

It follows that

N(χ) =
1
r2χ

∑
n−1,n∈(Z/mZ)×

ψrχ(χ(n− 1))ψrχ(χ(n))

and expanding the product ψrχ(χ(n− 1))ψrχ(χ(n)) yields r2χ sums of the form

χi(−1)
∑

n−1,n∈(Z/mZ)×

χi(1− n)χj(n).(1)

When the modulus is a prime, Z/mZ is a field and we recognize the sums (1) as
Jacobi sums (eg., see [14, Section 4.6]). The reader interested in computing the
values of Jacobi sums for specific characters may consult [4] for guidance, although
in general, this is a very difficult problem.
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3. Diameter and Eigenvalues When the Modulus is Prime

In this section, we set out to provide a meaningful upper bound for the diameter of
Dir(m,χ), denoted by diam(Dir(m,χ)), in the special case when m = p is an odd
prime number. The primary reason for this restriction is that the enumeration of
the distinct eigenvalues of Dir(m,χ) is greatly simplified in the prime case. In the
case where χ is the Legendre symbol with χ(−1) = 1, these graphs correspond to
the aforementioned Paley graphs, while whenever χ(−1) = −1, we find Dir(m,χ)
corresponds to the complete graph on m vertices. In either case, a straight-forward
computation with the character given by the Legendre symbol shows that

diam(Dir(p, χ)) =

{
2 if p ≡ 1 (mod 4)

1 if p ≡ 3 (mod 4).

To obtain an upper bound for general Dir(p, χ), we use the well-known property
that the number of distinct eigenvalues, denoted Λ(Dir(p, χ)), satisfies

diam(Dir(p, χ)) ≤ Λ(Dir(p, χ))− 1(2)

(for example, see [5, Exercise 11 in Section 6.1] or [7, Section 6.5.2 D10]).
So, we turn our attention to the eigenvalues of Dir(p, χ). They can be computed

by noting that Dir(p, χ) is a circulant graph, having circulant adjacency matrix of
the form

A =


c0 cp−1 · · · c1
c1 c0 · · · c2
...

...
. . .

...
cp−1 cp−2 · · · c0

 .

The eigenvalues of such a matrix are given by

λj := c0 + cp−1ζ
j
p + · · ·+ c1ζ

(p−1)j
p , j = 0, 1, . . . , p− 1,

with corresponding eigenvectors

vj :=
(

1, ζjp, . . . , ζ
(p−1)j
p

)T
,

where ζp is the primitive pth root of unity e2πi/p [10]. With the required ground-
work in place, we transition towards the enumeration of distinct eigenvalues in the
case χ(−1) = 1.

Lemma 2. If χ : (Z/pZ)× −→ C× is a character of order rχ that satisfies
χ(−1) = 1, then the graph Dir(p, χ) has rχ + 1 distinct eigenvalues.

Proof. The eigenvalue λ0 has multiplicity 1 and simply counts the number of
vertices that are adjacent to the vertex 0. Namely, we have

λ0 =
p− 1
rχ

.

In order the determine the other distinct eigenvalues, we identify the remaining
values of j with elements in (Z/pZ)×, since this realization enables us to use
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properties of the Galois group

Gal(Q(ζp)/Q) =
{
σj : Q(ζp) −→ Q(ζp) | σj(ζp) = ζjp, j ∈ (Z/pZ)×

}
.

Letting a1, a2, . . . , ak be the distinct elements in Ker(χ), we have that

λ1 = ζa1
p + ζa2

p + · · ·+ ζakp .

From the isomorphism
Gal(Q(ζp)/Q) ∼= (Z/pZ)×,

we see that λ1 is a primitive element for the unique subfield Krχ of Q(ζp) of degree
rχ over Q. The action of the automorphism σj is given by

σj(λ1) = λj ,

and it follows that λj is distinct for indices that are distinct coset representatives
of

(Z/pZ)×/Ker(χ) ∼= Gal(Q(ζp)/Krχ).
So, from j ∈ (Z/pZ)×, we obtain rχ distinct eigenvalues corresponding to these
distinct coset representatives. �

Lemma 3. If χ : (Z/pZ)× −→ C× is a character of order rχ that satisfies
χ(−1) = −1, then the graph Dir(p, χ) has rχ

2 + 1 distinct eigenvalues.

Proof. We simply apply the previous lemma to the character χ2 using the iden-
tity rχ = 2rχ2 to obtain the desired result. �

From Lemmas 2 and 3 and the inequality (2) mentioned at the beginning of
this section, we obtain the following upper bound for the diameter of Dir(p, χ).

Theorem 4. If χ : (Z/pZ)× −→ C× is a character of order rχ, then

diam(Dir(p, χ)) ≤

 rχ if χ(−1) = 1
rχ
2

if χ(−1) = −1.

When encountering any upper bound for the diameter on a class of graphs,
the main cause for concern is whether or not the upper bound is tight. We shall
alleviate those concerns by giving an example where the upper bound obtained
from Theorem 4 actually equals the diameter of a given Dirichlet character graph.

Example 5. We may form a character on (Z/257Z)× using the 128th power
residue symbol defined on (Z[ζ]/πZ[ζ])×, where ζ is a primitive 128th root of
unity and π is any prime above 257 in Z[ζ]. This character naturally extends to
a character of order 128 on (Z/257Z)×, which we denote by χ128. We find that
Ker(χ128) = {±1}. Applying Theorem 4 to Dir(257, χ128), we obtain the upper
bound

diam(Dir(257, χ128)) ≤ 128.
However, Dir(257, χ128) is isomorphic to the cycle C257. Since C257 has a diameter
of 128, we see that our upper bound is the diameter in this case. This helps
establish that the bound given in Theorem 4 is tight.
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4. Applications

Perhaps the most alluring application of Dirichlet character difference graphs fol-
lows in the footsteps of its predecessors, Paley graphs. In the spirit of Paley graphs,
Dirichlet character difference graphs can use the consecutive pairs of elements in
the kernel of the given character to provide us with some insight into the size of a
clique in the corresponding graph.

Although determining the clique number of Dir(m,χ) can be difficult in general,
there is a particular subgraph that can assist in the process. Define the set

B := {x ∈ Ker(χ) | x− 1 ∈ Ker(χ)}
and let 〈B〉 denote the subgraph of Dir(p, χ) induced by B. Then we have the
following relationship between the clique numbers of the two graphs.

Theorem 6. If χ : (Z/mZ)× −→ C× is a Dirichlet character, then

ω(Dir(p, χ)) = ω(〈B〉) + 2.

Proof. Let (a1, a2, . . . , aq) be a clique of order q in Dir(p, χ). By symmetry,
there must also be a clique that contains the vertex 0, which we denote by
(0, b1, b2, . . . , bq−1). As b1 is adjacent to 0, we find that b−1

1 ∈ Ker(χ), from
which it follows that (0, 1, b−1

1 b2, . . . , b
−1
1 bq−1) is a clique in Dir(p, χ). Thus,

(b−1
1 b2, . . . , b

−1
1 bq−1) is a clique of order q − 2 in 〈B〉. On the other hand, sup-

pose (c1, c2, . . . , ck) is a clique in 〈B〉. By the definition of B, it follows that
(0, 1, c1, . . . , ck) is a clique of order k+ 2 in Dir(p, χ). Hence, we obtain the state-
ment of the theorem. �

It is our hope that in simplifying the computation of the clique number of
Dir(m,χ), future work with these graphs will result in new lower bounds for Ram-
sey numbers.
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17. Sachs H., Über Selbstkomplementäre Graphen, Publicationes Math. 9 (1962), 270–288.
18. Su W., Li Q., Luo H., and Li G., Lower Bounds of Ramsey Numbers Based on Cubic

Residues, Discrete Math. 250 (2002), 197–209.

M. Budden, Department of Mathematics and Computer Science, Western Carolina University,
Cullowhee, NC 28723, U.S.A,e-mail : mrbudden@email.wcu.edu

N. Calkins, Department of Mathematics, Louisiana State University, 303 Lockett Hall, Baton

Rouge, LA 70803, U.S.A,e-mail : ncalki1@lsu.edu

W. N. Hack, Department of Mathematics, Armstrong Atlantic State University, 11935 Abercorn

St., Savannah, GA 31419, U.S.A,e-mail : wh3022@students.armstrong.edu

J. Lambert, Department of Mathematics, Armstrong Atlantic State University, 11935 Abercorn

St., Savannah, GA 31419, U.S.A,e-mail : Joshua.Lambert@armstrong.edu

K. Thompson, Department of Mathematics, Armstrong Atlantic State University, 11935 Aber-

corn St., Savannah, GA 31419, U.S.A,e-mail : sue144@hotmail.com


