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PROPERTIES OF THE INTERVAL GRAPH

OF A BOOLEAN FUNCTION

L. HAVIAROVÁ and E. TOMAN

Abstract. In the present paper we describe relations between the interval graph
of a Boolean function, its abbreviated disjunctive normal form and its minimal

disjunctive normal forms. The inteval graph of a Boolean function f has vertices

corresponding to the maximal intervals of f and any two vertices are joined with
an edge if the corresponding maximal intervals have nonempty intersection.

1. Introduction

A Boolean function can be represented by several types of graphs. Among them,
the greatest attention has been devoted to the study of the graph G(f) induced
by the vertices of the n-cube, on which the Boolean function f takes the value 1.
This geometric representation was introduced by Yablonskiy in [1]. The concept
of the interval graph of a Boolean function was defined by Sapozhenko in [3].
The interval graph is a graph associated with a Boolean function f such that the
vertices correspond to maximal intervals of f and two vertices are joined with an
edge if the intersection of the corresponding intervals is nonempty. The parameters
such as the size and the number of connected components, the radius and the
diameter of these graphs are closely related to local algorithms of construction of
a minimal disjunctive normal form of a Boolean function (briefly d.n.f.), described
by Zhuravlev; for exact definitions see [5]. Toman [6] employed a method of good
and bad vertices of a Boolean function to give an upper bound for the vertex degree
of the interval graph for almost all Boolean functions. This method was applied
by Toman, Olejar and Stanek in [9] where they gave asymtotic upper and lower
bounds for the average vertex degree in the interval graph of a Boolean function.
Toman and Daubner in [7] obtained asymptotic estimate of a vertex degree in the
interval graph of a Boolean function. In a recent paper [8], they also obtained
asymptotic estimates for the size of the neighbourhood of a constant order in the
interval graph of a Boolean function.

In the present paper, we prove that if the interval graph of a Boolean function
is a complete graph, then the abbreviated d.n.f. of this function is also a minimal
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d.n.f.. In addition, we describe a construction of a Boolean function such that the
abbreviated d.n.f. of this function is also a minimal d.n.f., and the interval graph
may be an arbitrary simple finite graph. We also study a relationship between
the number of vertices and edges in the interval graph and the dimension of a
corresponding Boolean function. We also present examples of pairs of Boolean
functions with isomorphic interval graphs where one of the functions has a mini-
mal d.n.f. identical with its abbreviated d.n.f. while the other has not. All the
necessary definitions and notations are formulated later.

2. Preliminaries and Notation

We use the standard notation from Boolean function theory. An n−ary Boolean
function is a function f : {0, 1}n → {0, 1}. The symbol Pn denotes the set of all
n−ary Boolean functions. Boolean variables and their negations are called literals.
A literal of a variable x is denoted by xα, where α ∈ {0, 1}, and we set

xα =

{
x̄ if α = 0,
x if α = 1.

A conjunction K = x
αi1
i1
∧ . . . ∧ xαir

ir
of literals of different variables is called an

elementary conjunction. The number of literals (r) in K is called rank of K. A
special case is the conjunction of rank 0, it is called empty and its value is set to 1.

A formula D = K1∨. . .∨Ks, the disjunction of distinct elementary conjunction,
is called a disjunctive normal form. The parameter s (the number of elementary
conjunctions in D) is called the length of D. A d.n.f. with s = 0 is called empty
and its value is set to 0. A d.n.f. D represents a Boolean function f if the truth
tables of f and D coincide. Let us consider the class of all d.n.f.that represent an
n-ary Boolean function f . A d.n.f. with minimal number of literals in this class is
called a minimal d.n.f. of f and the one with minimal length in this class is called
a shortest d.n.f. of f .

We also use a geometric representation of Boolean functions. The Boolean
n-cube is the graph Bn with 2n vertices α̃ = (α1, . . . , αn), where αi ∈ {0, 1}, in
which those pairs of vertices that differ in exactly one coordinate are joined with
an edge. For an n-ary Boolean function f let, Nf denote the subset {α̃; f(α̃) = 1}
and N−f denote the subset {α̃; f(α̃) = 0} of all vertices α̃. Notice that there is
a one-to-one correspondence between the sets Nf and Boolean functions f . The
subgraph of the Boolean n-cube induced by the set Nf is called the graph of f
and is denoted by G(f).

The set of vertices Ni ⊆ {0, 1}n corresponding to an elementary conjunction
Ki of rank r is called the interval of rank r. Notice that to every elementary
conjunction K = x

αi1
i1
∧ . . .∧xαir

ir
there corresponds an interval of rank r consisting

of all vertices (β1, . . . , βn) of Bn such that βij = αij for j = 1, . . . , r and values of
other vertex coordinates are arbitrary. In the present paper, we often work with
intervals coresponding to elementary conjunctions.

In the geometric model, every interval of rank r represents an (n−r)-dimensional
subcube of Bn. Therefore we call the interval of rank r also the (n−r)-dimensional
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interval. An interval N is called the maximal interval of Boolean function f if
N ⊆ Nf and there is no interval N ′ ⊆ Nf such that N ⊆ N ′. A d.n.f. which
consists of all elementary conjunctions corresponding to maximal intervals is called
the abbreviated d.n.f. and it is denoted by DA(f).

Now we can define the interval graph Γ(f) as the graph associated with a
Boolean function f as follows: its vertices correspond to maximal intervals of f
and the vertices corresponding to intervals Ni and Nj are joined with an edge in
Γ(f) if Ki ∧Kj is nonempty.

For an arbitrary Boolean function f and each of its d.n.f.s K1 ∨ . . . ∨ Ks, we
have

Nf =

s⋃
j=1

Nj .

In other words, every d.n.f. of a Boolean function f corresponds to a covering of
Nf by intervals N1, . . . , Ns such that Nj ⊆ Nf . Conversely, every covering of Nf
by intervals N1, . . . , Ns contained in Nf corresponds to some d.n.f. of f . Using
the geometric interpretation of d.n.f.s, we can express the irreducibility of d.n.f..
The d.n.f. D of a Boolean function f cannot be simplified if every interval Nj of
the covering corresponding to D contains at least one vertex belonging to just this
one interval of the covering. Such a d.n.f. is called an irredundant d.n.f..

Let rj denote the order of the interval Nj . Then the number of literals in d.n.f.
is r =

∑s
j=1 rj and the construction of a minimal d.n.f. in the geometric model can

be formulated as a problem of constructing a covering of Nf by intervals Nj ⊆ Nf
with minimal r. On the other hand, the construction of a covering corresponding
to the shortest d.n.f. requires to minimize the number of intervals in a covering
of Nf .

The set of all conjuctions Kj from K1, . . . ,Ks corresponding to intervals for
which

Nj 6⊆
s⋃

i=1
i6=j

Ni.

is called the core of d.n.f. D =
∨s
j=1Kj of a Boolean function f . It is denoted

by γ(D(f)).

3. Complete interval graph and a minimal disjunctive normal form

In this section, we study Boolean functions whose interval graph is a complete
graph. To avoid trivial cases, we omit interval graphs consisting from two or fewer
vertices, where it is obvious that the corresponding abreviated d.n.f. is also a
minimal d.n.f..

Theorem 3.1. If f is a Boolean function such that Γ(f) is complete, then the
intersection of the maximal intervals of f is nonempty.
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Proof. Let N1 and N2 be arbitrary maximal intervals of f . Assume that the
dimension of N1 is m, that is,

K1 = x
αi1
i1
∧ . . . ∧ x

αin−m

in−m

and the dimension of N2 is k, that is,

K2 = x
αj1
j1
∧ . . . ∧ x

αjn−k

jn−k
.

We have two possibilities for these intervals.

1. N1 ∩N2 = ∅. This occurs when il = js for some l and s and αil 6= αjs for
at least one fixed coordinate of the intervals N1, N2.

2. Otherwise, N1 ∩ N2 = NI for some conjunction I. It is clear that I =
K1 ∧ K2. Therefore the number of fixed coordinates of I is (n − m) +
(n−k)−r, where r is the number of positions of fixed coordinates on which
the intervals N1, N2 coincide.

Let N1∩· · ·∩Ns be maximal intervals of f . In the complete interval graph Γ(f),
any two vertices are joined with an edge, therefore, any two maximal intervals have
a common intersection. In other words, for any two maximal intervals, there do
not exist fixed coordinates in which these two intervals differ. Therefore, NI =
N1 ∩ . . . ∩Ns. Thus I = K1 ∧ . . . ∧Ks. �

Theorem 3.2. Let f be a Boolean function of n variables and let DM (f) be a
minimal d.n.f. of f . If Γ(f) is complete, then DA(f) = DM (f).

Proof. Assume that DA(f) = K1∨K2∨ . . .∨Ks. This d.n.f. corresponds to the
covering N1 ∪ . . . ∪Ns by the maximal intervals. To be sure that the abbreviated
d.n.f. is identical with a irredundant d.n.f., each Ki, 1 ≤ i ≤ s, has to be from
γ(DA(f)). By the assumption of the theorem, Γ(f) is complete. From Theorem 3.1
it follows that all maximal intervals have a common intersection I = N1∩ . . .∩Ns.

To prove the result, we now proceed by contradiction. Let us assume that the
abbreviated d.n.f. contains a conjuction Ki which does not belong to the core of
d.n.f. γ(DA(f)). Assume that the dimension of corresponding maximal interval
Ni is m. It follows that

Ni ⊆
s⋃

j=1
j 6=i

Nj .

In other words, for each vertex δ̃ of the maximal interval Ni, we have:

• if δ̃ ∈ Ni ∩ I, then δ̃ is contained in each maximal interval of DA(f),

• if δ̃ ∈ Ni\I (this set cannot be empty), then there exists at least one
maximal interval different from Ni, let us denote it Nj for which

I ⊂ Nj ∧ δ̃ ∈ Nj .
Let us choose a vertex α̃ such that α̃ ∈ I ∩ Ni and a vertex β̃ different from
α̃ exactly in m coordinates and such that β̃ ∈ Ni\I. The dimension of Ni is
m, therefore, such two vertices exist. Hence, there exists a maximal interval Nj
which contains both α̃ and β̃. As α̃ and β̃ generate an m-dimensional subcube,
the dimension of Nj is at least m. If it equals m, then Nj = Ni. If the dimension
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of Nj is greater than m, then Ni ⊂ Nj . But this contradicts the fact that Ni is
the maximal interval.

We have shown that all maximal intervals belong to the core. Therefore we
can not omit any interval from abbreviated d.n.f. while constructing irredundant
d.n.f.. Otherwise we would violate irreducibility of d.n.f.. Considering that DA(f)
contains all maximal intervals, we have proved that there does not exist another
irredundant d.n.f.. Because minimal d.n.f. is also the unique irredundant, it holds
DA(f) = DM (f). �

Now we discuss the converse of Theorem 3.2. Let DM (f) be a minimal d.n.f.
of a Boolean function f . Suppose that DA(f) = DM (f), then Γ(f) need not be
complete. In the example below, we show that there exists a Boolean function f
such that DA(f) = DM (f) but the graph Γ(f) is not complete. Thus the converse
oof Theorem 3.2 is false.

Example 3.1. The Boolean function is described in Figure 1 left by bold lines.
The interval graph of this function is shown in Figure 1 right. The abbreviated
d.n.f. of the function f is DA(f) = x̄1 ∨ x̄2x̄3 ∨ x2x3 and it is easy to see that it
is also minimal.

Figure 1. Geometric representation of a Boolean function f(x1, x2, x3), covering with maximal

intervals and corresponding interval graph Γ(f).

4. The interval graph and a minimal disjunctive normal form

In this section we construct a Boolean function for an arbitrary simple graph G
such that the interval graph of this function is isomorphic with G. We also consider
the number of variables that such a function needs to have.

Theorem 4.1. Let G be a graph of order n. There exists a Boolean function
f(x1, . . . , xn) whose abbreviated d.n.f. is also its minimal d.n.f. and Γ(f) ∼= G.

Proof. We will prove the Theorem by induction with respect to n.

The base case. We prove the Theorem for graph G = (V,E) consisting of n
vertices for n = 1 and n = 2. This case is described in Figure 2.

We divide the base case into 3 subcases, the number of vertices being the pri-
mary criterion and the number of edges being a secondary criterion.
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Figure 2. Graph Γ(f) ∼= G of the function f and corresponding maximal intervals for n = 1

and n = 2.

(1) |V | = 1 and |E| = 0. The satisfying Boolean function is f(x1) = x1.
(2.1) |V | = 2 and |E| = 0. The Boolean function is f(x1, x2) = x̄1x̄2 ∨ x1x2.
(2.2) |V | = 2 and |E| = 1. The Boolean function is f(x1, x2) = x1 ∨ x̄2.

It is clear that in these 3 subcases the following holds DA(f) = DM (f).

Induction step. Let G = (V,E) be an arbitrary graph with n + 1 vertices.
We want to show that there exists a Boolean function f(x1, . . . , xn+1) such that
Γ(f) ∼= G and the abbreviated d.n.f. is also its minimal d.n.f.. Let v be a vertex
of G with minimum degree. Let G′ = G − v. By the induction hypothesis there
exists a Boolean function f ′(x1, . . . , xn) with Γ(f ′) ∼= G′ such that the abbreviated
d.n.f. is also its minimal d.n.f..

We enlarge the n-cube with maximal intervals corresponding to vertices Γ(f ′)
by one. We create the copy and add 2n edge. An interval of f ′ will be called
active if it corresponds to a neighbour of v. Otherwise it will be called passive.
We denote the interval corresponding to v as Nn+1.

An edge between vertices implies that the corresponding maximal intervals have
a common intersection. We need at least one vertex belonging to the added interval
for each active interval. To make sure that these intervals are from the core they
contain at least one point which is not contained in any other interval. In our
construction maximal intervals have the same dimension as their degree in the
interval graph.

We enlarge the original maximal intervals in the direction towards the copy.
We will construct maximal interval corresponding to the new vertex in the copy
and its dimension will be equal to its degree. Vertices corresponding to passive
maximal intervals are not affected.
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If the degree of v is 0, we will find the vertex belonging to N−f in the original

object. Such vertex has to be found there, because the degree of a vertex in G′ is
not more than n−1 and thus the dimension of the corresponding maximal interval
in the n-cube is not more than n − 1. To keep dimensions and number of these
intervals and to avoid a situation that we would be able to join two intervals into
one bigger, it is necessary to separate these n intervals with vertices belonging to
N−f . We find one such vertex and move in the direction towards the copy. This
vertex we have been looking for will be Nn+1. We add all other points in the copy
to the set N−f .

If degree of v is k, 1 ≤ k ≤ n, we need to increase the dimension of k active
intervals. Let us denote them Ni1 , . . . , Nik . So we increase the dimensions of all
intervals from the set {Ni1 , . . . , Nik} by one towards the copy. It is clear that we
do not affect passive intervals in original object and the intervals with a common
intersection in the original object will have a common intersection also in the copy.

Now we find the maximal interval Nn+1 with the dimension of k which contains
at least one point from each of the intervals Ni1 , . . . , Nik and also one vertex which
is not covered by any other interval. We can place this k-dimensional interval in
such a way that in the direction towards the original object there are only points
from N−f or from the common intersection of k incident maximal intervals, because
0s separates the maximal intervals in the original object. We add all other points
in the copy to the set N−f .

This completes the construction of the required function f(x1, . . . , xn+1). From
the manner of construction it follows that all maximal intervals of the abbre-
viated d.n.f. belong to the core. We have proved, that DA(f) is also the ir-
redundant d.n.f.. Because minimal d.n.f. is also unique irredundant, it holds
DA(f) = DM (f). �

Figure 3. Graph G = (V,E) with |V | = 4 and |E| = 4.
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In Figure 3, there is the graph G = (V,E) with |V | = 4 and |E| = 4. We
illustrate how we construct the maximal intervals of searched Boolean function in
4-dimensional cube such that Γ(f) ∼= G and the Theorem 4.1 holds. Vertex which
we add is denoted as N4.

In the following part, we consider the number of variables of a Boolean function.
For a graph G of order m, let n(G) be the minimal number n of variables of a

Boolean function f(x1, . . . , xn) such that Γ(f) ∼= G. Set

n(m) = min{n(G); G of order m}
n(m) = max{n(G); G of order m}

Theorem 4.2. For every positive integer m, one has n(m) = dlogme+ 1 and
n(m) = m.

Proof. We first prove that n(m) = dlogme + 1. The dimension of maximal
intervals depends on the degree of the corresponding vertex in the interval graph.

Figure 4. Number of 0-dimensional maximal intervals in the cubes of particular dimensions.
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Bigger degree of the vertex means bigger dimension of corresponding maximal
interval. The minimal dimension of a Boolean cube can be obtained for the interval
graph with no edges. The maximal intervals corresponding to the vertices can be
0-dimensional intervals. To avoid that two 0-dimensional intervals could be joined
into 1-dimensional, for each vertex α̃ at the distance 1 from each maximal interval
f(α̃) = 0 holds. Any two maximal intervals differ in at least two coordinates. It
follows that we can place 2m/2 0-dimensional intervals into the m-cube. From the
manner of construction it follows that n(m) = m. �

In this part we show examples of isomorphic interval graphs such that for one
graph the abbreviated d.n.f. is a minimal at the same time and for the other one
is not. The Boolean functions are described in both figures by bold lines on the
right side and the interval graphs of this functions are shown left.

Example 4.1. The abbreviated and at the same time minimal d.n.f. of the
function f from Figure 5 is D(f) = N1 ∨ N2 ∨ N3. The abbreviated d.n.f. of
the function f from Figure 6 is D(f) = N1 ∨ N2 ∨ N3 and its minimal d.n.f. is
D(f) = N1 ∨N3.

Figure 5. Interval graph and corresponding maximal intervals of a Boolean function f(x1, x2, x3).

Figure 6. Interval graph and corresponding maximal intervals of a Boolean function f(x1, x2, x3).

5. Conclusion

In the present paper we have proved that if the interval graph of a Boolean function
is a complete graph, then the abbreviated d.n.f. of this function is also a minimal
d.n.f.. In addition, we have described a construction of a Boolean function such
that the abbreviated d.n.f. of this function is also a minimal d.n.f. for an arbitrary
simple finite graphs. We have also studied the relationship between the number
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of vertices and edges in the interval graph and the dimension of the corresponding
Boolean function.

It would be interesting to study graph whose vertices are d.n.f.s and whose
edges are pairs of d.n.f.s that differ in exactly one conjunction. The study of
a simplified interval graph, for example, one without the vertices (maximal in-
tervals) corresponding to the core conjuctions or conjuctions belonging to every
irredundant d.n.f. would also be interesting. It would also be interesting to study
the behaviour of the interval graph under suitable transformations of Boolean
functions.
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