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ON (WEAK) GORENSTEIN GLOBAL DIMENSIONS

N. MAHDOU and M. TAMEKKANTE

Abstract. In this note, we characterize the (weak) Gorenstein global dimension for arbitrary asso-

ciative rings. Also, we extend the well-known Hilbert’s syzygy Theorem to the weak Gorenstein global
dimension, and we study the weak Gorenstein homological dimensions of direct product of rings which
gives examples of non-coherent rings with finite Gorenstein dimensions > 0 and infinite classical weak
dimension.

1. Introduction

Throughout this paper, R denotes – if not specified otherwise – a non-trivial associative ring and
the word R-module means left R-module.

Let R be a ring and let M be an R-module. As usual, we use pdR(M), idR(M), and fdR(M) to
denote the classical projective dimension, injective dimension and flat dimension of M , respectively.
We denote the character module of M by M+ = HomZ(M,Q/Z). We use also gldim(R) and
wdim(R), respectively, to denote the classical global and weak dimension of R.

For a two-sided Noetherian ring R, Auslander and Bridger [2] introduced the G-dimension,
GdimR(M) for every finitely generated R-module M . They showed that there is an inequality
GdimR(M) ≤ pdR(M) for all finite R-modules M and equality holds if pdR(M) is finite.

Several decades later, Enochs and Jenda [10], [11] introduced the notion of Gorenstein projective
dimension (G-projective dimension for short) as an extension of G-dimension to modules that are
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not necessarily finitely generated, and the Gorenstein injective dimension (G-injective dimension
for short) as a dual notion of Gorenstein projective dimension. Then, to complete the analogy with
the classical homological dimension, Enochs, Jenda and Torrecillas [13] introduced the Gorenstein
flat dimension. Some references are [7, 8, 10, 11, 13, 16].

Recall that a left (resp. right) R-module M is called Gorenstein projective if there exists an
exact sequence of projective left (resp. right) R-modules

P : · · · −→ P1 −→ P0 −→ P 0 −→ P 1 −→ · · ·

such that M ∼= Im(P0 → P 0) and the operator HomR(−, Q) leaves P exact whenever Q is a left
(resp. right) projective R-module. The resolution P is called a complete projective resolution.

The left and right Gorenstein injective R-modules are defined dually.
And an R-module M is called left (resp. right) Gorenstein flat if there exists an exact sequence

of flat left (resp. right) R-modules

F : · · · −→ F1 −→ F0 −→ F 0 −→ F 1 −→ · · ·

such that M ∼= Im(F0 → F 0) and the operator I ⊗R − (resp. −⊗R I) leaves F exact whenever I
is a right (resp. left) injective R-module. The resolution F is called a complete flat resolution.

The Gorenstein projective, injective and flat dimensions are defined in terms of resolutions and
denoted by Gpd(−), Gid(−) and Gfd(−), respectively; see [7, 12, 16]).

In [3], the authors proved the equality

sup{GpdR(M) |M is a left R-module} = sup{GidR(M) |M is a left R-module}.

They called the common value of the above quantities the left Gorenstein global dimension of R
and denoted it by l.Ggldim(R). Similarly, they set

l.wGgldim(R) = {GfdR(M) |M is a left R-module}
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which they called the left weak Gorenstein global dimension of R. Similarly, with the right modules,
we can define the right Gorenstein global and weak dimensions; r.Ggldim(R) and r.wGgldim(R).
When R is a commutative ring, we drop the unneeded letters r and l.

The Gorenstein global dimension measures how far away a ring R is from being quasi-Frobenius
(i.e., Noetherian and self injective rings); see [3, Proposition 2.6]). On the other hand, from Faith-
Walker Theorem [18, Theorem 7.56], a ring is quasi-Frobenius if and only if every right (resp.
left) injective module is projective, or equivalently, every right (resp. left) projective module is
injective. Hence, from [3, Proposition 2.6], we have the following corollary

Corollary 1.1. The following statements are equivalent:

(1) l.Ggldim(R) = 0.
(2) r.Ggldim(R) = 0.
(3) A left (and right) R-module is projective if and only if it is injective.

For rings with high l.Ggldim(−), [3, Lemma 2.1] gives a nice characterization to l.Ggldim(R)
for an arbitrary ring R, provided the finiteness of this dimension as shown by the next proposition.

Proposition 1.2. [3, Lemma 2.1] If l.Ggldim(R) < ∞, then the following statements are
equivalent:

1. l.Ggldim(R) ≤ n.
2. idR(P ) ≤ n for every (left) R-module P with finite projective dimension.

There is a similar result of Corollary 1.1 for the weak Gorenstein global dimension as shown by
the proposition bellow. Recall that a ring is called right (resp. left) IF-ring, if every right (resp.
left) injective module is flat, and it is called IF-ring, if it is both right and left IF-ring; see [9].

Proposition 1.3. The following statements are equivalent for any ring R:

(1) l.wGgldim(R) = 0.
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(2) R is an IF-ring.
(3) r.wGgldim(R) = 0.

Proof. We prove the implications (1) ⇒ (2) ⇒ (3), while the inverse implications are proved
similarly.

(1) ⇒ (2) Suppose that l.wGgldim(R) = 0. Let I be a right injective R-module. For an
arbitrary left R-module M and every i > 0, we have ToriR(I,M) = 0 (from the definition of
Gorenstein flat modules). Then, I is flat. Moreover, since every left R-module is Gorenstein flat
(since l.wGgldim(R) = 0), every left R-module can be embedded in a left flat R-module. In
particular, every left injective R-module is contained in a flat module. Then, every left injective
R-module is a direct summand of a flat module, and then it is flat as desired.

(2)⇒ (3) Let M be a right R-module. Assemble any flat resolution of M with its any injective
resolution, we get an exact sequence of right flat R-modules F (since every right injective module
is flat). Also, since every left injective module I is flat, F ⊗R I is exact. Hence, F is a complete
flat resolution. This means that M is Gorenstein flat. Consequently, r.wGgldim(R) = 0. �

In the next section, we give a generalization of Corollary 1.1 and Proposition 1.3 in the way of
Proposition 1.2 for an arbitrary ring with high (weak) Gorenstein global dimension (see Theorems
2.1, and 2.6). In the third section, we extend the well-known Hilbert’s syzygy Theorem to the
weak Gorenstein global dimension and we study the weak Gorenstein homological dimension of
the direct product of rings1 which gives examples of non-coherent rings with finite Gorenstein
dimensions > 0 and infinite classical weak dimensions.

1The extension of the Hilbert’s syzygy Theorem and the study the weak Gorenstein homological dimensions of direct
product of rings to weak Gorenstein dimension was done in [3] over a coherent rings. Here, we give a generalization
to an arbitrary ring.
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2. Characterizations of (weak) Gorenstein global dimensions

The first main result of this section is the following theorem.

Theorem 2.1. Let R be a ring and let n be a positive integer. Then,
l.Ggldim(R) ≤ n if and only if R satisfies the following two conditions:

(C1) idR(P ) ≤ n for every (left) projective R-module P .
(C2) pdR(I) ≤ n for every (left) injective R-module I.

Proof. (⇒) Suppose that l.Ggldim(R) ≤ n. We claim (C1). Let P be a projective R-module.
Since GpdR(M) ≤ n for every R-module M , we have ExtiR(M,P ) = 0 for all i > n ([16, Theorem
2.20]). Hence, idR(P ) ≤ n as desired.

Now, we claim (C2). Let I be an injective R-module. Since l.Ggldim(R) = sup{GidR(M) |
M is a left R-module} for an arbitrary R-module M , we have ExtiR(I,M) = 0 for all i > n ([16,
Theorem 2.22]). Hence, pdR(I) ≤ n as desired.

(⇐) Suppose that R satisfies (C1) and (C2). We claim that l.Ggldim(R) ≤ n. Let M be an
arbitrary R module and consider an n-step projective resolution of M as follows:

0 −→ G −→ Pn −→ · · · −→ P1 −→M −→ 0.

We have to prove that G is Gorenstein projective. Firstly, for every projective R-module P
and every i > 0, we have ExtiR(G,P ) = Extn+i

R (M,P ) = 0 by condition (C1). So, from [16,
Proposition 2.3], it suffices to prove that G admits a right co-proper projective resolution (see [16,
Definition 1.5]). Pick a short exact sequence

0 −→M −→ I −→M ′ −→ 0,

where I is an injective R-module and consider an n-step projective resolution of M ′ as follows

0 −→ G′ −→ P ′n −→ · · · −→ P ′1 −→M ′ −→ 0.
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We have the following commutative diagram

0

��

0

��

0

��

0

��

0 // G

��

// Pn

��

// · · · // P1

��

// M

��

// 0

0 // Q1

��

// Pn ⊕ P ′n

��

// · · · // P1 ⊕ P ′1

��

// I

��

// 0

0 // G′

��

// P ′n

��

// · · · // P ′1

��

// M ′

��

// 0

0 0 0 0

Since pdR(I) ≤ n (by (C2)), the module Q1 is clearly projective. On the other hand, we have
Ext1R(G′, P ) = Extn+1

R (M ′, P ) = 0 for every projective module P since (C1). Thus, the functor
HomR(−, P ) keeps the exactness of the short exact sequence 0→ G→ Q1 → G′ → 0. By repeating
this procedure, we obtain a right projective resolution of G

0 −→ G −→ Q1 −→ Q2 −→ · · ·

such that HomR(−, P ) leaves this sequence exact whenever P is projective. Hence, G is Gorenstein
projective. Consequently, GpdR(M) ≤ n and then l.Ggldim(R) ≤ n, as desired. �
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If we denote l.P(R) (resp. r.P(R)) and l.I(R) (resp. r.I(R)), respectively, the sets of all left
(resp. right) projective and injective R-modules, we have:

l.Ggldim(R) = sup{ pdR(I), idR(P ) | I ∈ l.I(R), P ∈ l.P(R)},
r.Ggldim(R) = sup{ pdR(I), idR(P ) | I ∈ r.I(R), P ∈ r.P(R)}.

There is another way to write the above theorem

Corollary 2.2. Let R be a ring and let n be a positive integer. The following statements are
equivalent:

(1) l.Ggldim(R) ≤ n.
(2) For any R-module M pdR(M) ≤ n⇔ idR(M) ≤ n.

Proof. (1) ⇒ (2) Let M be an R-module such that pdR(M) ≤ n. For such a module, consider
a projective resolution as follows

0 −→ Pn −→ · · · −→ P1 −→ P0 −→M −→ 0.

From Theorem 2.1, idR(Pi) ≤ n for each i = 0, . . . , n. Hence, idR(M) ≤ n. Similarly, we prove
that pdR(M) ≤ n for every R-module such that idR(M) ≤ n.

(2) ⇒ (1) follows directly from Theorem 2.1 since the conditions (C1) and (C2) are clearly
satisfied. �

Proposition 2.3. Let R be a ring with finite Gorenstein global dimension. Then, (C1) and
(C2) of Theorem 2.1 are equivalent, and then the following statements are equivalent:

(1) l.Ggldim(R) ≤ n.
(2) idR(P ) ≤ n for every projective R-module P .
(3) pdR(I) ≤ n for every injective R-module I.
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Proof. From Theorem 2.1, only the equivalence of (C1) and (C2) needs a proof. However, we
will be satisfied to prove the implication (C1)⇒ (C2) whereas the other implication is proved in an
analogous fashion. Let M be an arbitrary R-module. For every projective R-module P and any i >
n, we have ExtiR(M,P ) = 0 (by (C1)). Then, by [16, Theorem 2.20], GpdR(M) ≤ n. Therefore,
we have l.Ggldim(R) ≤ n. Accordingly, by Theorem 2.1, (C2) is satisfied, as desired. �

Using the definition of the Gorenstein flat modules, we have immediately the following lemma

Lemma 2.4. An R-module M is left (resp. right) Gorenstein flat if and only if

(1) ToriR(I,M) = 0 (resp., ToriR(M, I) = 0) for every right (resp. left) injective R-module I
and every i > 0.

(2) There exists an exact sequence of left (resp. right) R-modules

0 −→M −→ F0 −→ F1 −→ · · · ,

where each Fi is flat such that the functor I ⊗R − (resp. − ⊗R I) keeps the exactness of
this sequence whenever I is right (resp. left) injective.

Remark 2.5. Using the lemma above and an n-step flat resolution of left (resp. right) R-module
M we conclude that if GfdR(M) ≤ n, then ToriR(I,M) = 0 (resp., ToriR(M, I) = 0) for every right
(resp. left) injective R-module I and all i > n. The inverse implication is given by Holm ([16,
Theorem 3.14]) when GfdR(M) <∞ and the ring is right (resp. left) coherent.

Recall that over a ring R, Ding and Chen [9] defined and investigated two global dimensions as
follows:

r. IFD(R) = sup{ fdR(I) | I is a right injective R-module}.
l. IFD(R) = sup{ fdR(I) | I is a left injective R-module}.
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For such dimensions, in [9], Ding and Chen gave a several characterizations over arbitrary rings,
over coherent rings, and also over commutative rings. Our second main result of this section is
given by the theorem bellow.

Theorem 2.6. Let R be a ring and let n be a positive integer. The following conditions are
equivalent:

(1) sup{ l.wGgldim(R), r.wGgldim(R)} ≤ n.
(2) GfdR(R/E) ≤ n for every (left and right) ideal E.
(3) fdR(I) ≤ n for every (left and right) injective R-module I.

Consequently

sup{ l.wGgldim(R), r.wGgldim(R)} = sup{ fdR(I) | I ∈ l.I(R) ∪ r.I(R)}
= sup{ l. IFD(R), r. IFD(R)}.

Proof. (1)⇒ (2) Obvious by the definition of the left and right weak Gorenstein global dimen-
sions.

(2)⇒ (3) Let I be a left injective R-module. Since GfdR(R/E) ≤ n for every right ideal E and
by Remark 2.5, we get ToriR(R/E, I) = 0 for all i > n. Hence, by [19, Lemma 9.18], fdR(I) ≤ n.
Similarly, we prove that fdR(I) ≤ n for every right injective R-module.

(3)⇒ (1) Let M be an arbitrary left R-module and consider an n-step projective resolution of
M as follows:

0 −→ G −→ Pn −→ · · · −→ P1 −→M −→ 0.

We have to prove that G is a Gorenstein flat R-module. Firstly, for every right injective R-module
I and any i > 0, we have ToriR(I,G) = Torn+i

R (I,M) = 0 since fdR(I) ≤ n (by hypothesis).
Pick a short exact sequence of left R-modules

0 −→M −→ J −→M ′ −→ 0,
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where J is an injective R-module and consider an n-step projective resolution of M ′ as follows

0 −→ G′ −→ P ′n −→ · · · −→ P ′1 −→M ′ −→ 0

We have the following commutative diagram

0

��

0

��

0

��

0

��

0 // G

��

// Pn

��

// · · · // P1

��

// M

��

// 0

0 // F1

��

// Pn ⊕ P ′n

��

// · · · // P1 ⊕ P ′1

��

// J

��

// 0

0 // G′

��

// P ′n

��

// · · · // P ′1

��

// M ′

��

// 0

0 0 0 0

Since fdR(J) ≤ n, the module F1 is clearly left flat. On the other hand, we have Tor1R(I,G′) =
Torn+1

R (I,M ′) = 0 for every right injective R-module I (since fdR(I) ≤ n). Thus, the functor
I ⊗R− keeps the exactness of the short exact sequence 0→ G→ F1 → G′ → 0. By repeating this
procedure, we obtain a flat resolution of G as follows:

0 −→ G −→ F1 −→ F2 −→ · · ·
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such that I⊗R− leaves this sequence exact whenever I is right injective. Hence, from Lemma 2.4,
G is left Gorenstein flat. Therefore, GfdR(M) ≤ n. Consequently, l.wGgldim(R) ≤ n as desired.

Similarly, we prove that r.wGgldim(R) ≤ n. �

It is true that l.wGgldim(R) ≤ n implies that fdR(I) ≤ n for every right injective R-module
(by Remark 2.5). However, the inverse implication is not true in the general case as shown by the
next example. That explicates the form of Theorem 2.6.

Example 2.7. Let R be a two-sided coherent ring which is right IF, but not left IF (see [6,
Example 2]). Then, l.wGgldim(R) = r.wGgldim(R) =∞.

Proof. If l.wGgldim(R) < ∞, then using [16, Theorem 3.14] and since every right injective
R-module is flat (since R is right IF ring), we have GfdR(M) = 0 for every left R-module M .
Then l.wGgldim(R) = 0. So, by Proposition 1.3, R is left IF. So, we obtain a contradiction with
the hypothesis conditions.

Now, if r.wGgldim(R) = n < ∞, then fdR(I) ≤ n for every left injective R-module I. On the
other hand, fdR(I ′) = 0 ≤ n for every right injective R-module I ′ since R is right IF. Then, by
Theorem 2.6, sup{ l.wGgldim(R), r.wGgldim(R)} ≤ n. Absurd since l.wGgldim(R) =∞. �

Over a right coherent ring, the characterization of l.wGgldim(R) is simpler as shown by the
next proposition.

Proposition 2.8. Let R be a right coherent ring. Then

l.wGgldim(R) = sup{ l. IFD(R), r. IFD(R)}.

Proof. From Theorem 2.6, only the inequality (≥) needs a proof, and we may assume
l.wGgldim(R) ≤ n < ∞. Clearly, l.wGgldim(R) ≥ r. IFD(R) since fdR(I) ≤ n for every right
injective module I (by Remark 2.5). So, we have to prove this fact for l. IFD(R). Let I be a left
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injective R-module. Since l.wGgldim(R) ≤ n, we have GfdR(I) ≤ n. Then, by [16, Lemma 3.17],
there exists a short exact sequence 0 → K → G → I → 0 where G is left Gorenstein flat and
fdR(K) ≤ n − 1 (if n = 0, this should be interpreted as K = 0). Pick a short exact sequence
0 → G → F → G′ → 0, where F is left flat and G′ is left Gorenstein flat. Hence, consider the
following push-out diagram

0

��

0

��

K

��

K

��

0 // G

��

// F

��

// G′ // 0

0 // I

��

// D

��

// G′ // 0

0 0

Clearly, fdR(D) ≤ n and I is isomorphic to a direct summand of D since it is injective. Then,
fdR(I) ≤ n. Consequently, l.wGgldim(R) ≥ l. IFD(R), as desired. �

Similarly, we have the following proposition

Proposition 2.9. Let R be a left coherent ring. Then,

r.wGgldim(R) = sup{ l. IFD(R), r. IFD(R)}.



JJ J I II

Go back

Full Screen

Close

Quit

Corollary 2.10. Let R be a ring. The following statements holds:

(1) If R is right coherent, then r.wGgldim(R) ≤ l.wGgldim(R).
(2) If R is left coherent, then l.wGgldim(R) ≤ r.wGgldim(R).

Consequently, if R is two-sided coherent, then r.wGgldim(R) = l.wGgldim(R).

Proof. We suggest to prove (1) whereas the proof of (2) will be similar. If R is right coherent,
we have

l.wGgldim(R) = sup{ l. IFD(R), r. IFD(R)} (by Proposition 2.8).

= sup{ r.wGgldim(R), l.wGgldim(R)} (by Theorem 2.6).

Then, we obtain the desired result. �

Remark 2.11. Using Theorem 2.6, Proposition 2.8, Proposition 2.9 and Corollary 2.10, we can
find many other characterizations of l.wGgldim(R) and r.wGgldim(r) by using the characteriza-
tions of the l. IFD(R) and r. IFD(R). For example, we use [9, Theorems 3.5 and 3.8, Proposi-
tion 3.17, Corollary 3.18].

The commutative version of Theorem 2.6 is as follows

Theorem 2.12. Let R be a commutative ring and let n be a positive integer. The following
conditions are equivalent:

(1) wGgldim(R) ≤ n,
(2) GfdR(R/E) ≤ n for every ideal E of R,
(3) fdR(I) ≤ n for every injective R-module I.

Consequently, wGgldim(R) = IFD(R).

Proposition 2.13 ([9], Theorems 3.5, 3.8, and 3.21). For any commutative ring, the following
conditions are equivalent:
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(1) wGgldim(R)(= IFD(R)) ≤ n,
(2) fdR(M) ≤ n for every FP-injective module M ,
(3) fdR(M) ≤ n for every R-module M with FP-idR(M) <∞,
(4) idR(HomR(A,B)) ≤ n for every FP-injective module A and for every injective module B,
(5) fdR(HomR(F,B)) ≤ n for every flat modules F and every injective module B.

Moreover, if R is coherent, then wGgldim(R) = FP-idR(R).

3. Weak Global Gorenstein dimensions of polynomial rings
and direct products of rings

In [4, Theorems 2.11 and 3.5], the authors proved that:

(R1) If {Ri}ni=1 is a family of coherent commutative rings, then

wGgldim

(
n∏

i=1

Ri

)
= sup{wGgldim(Ri) : 1 ≤ i ≤ n}.

(R2) If the polynomial ring R[x] in one indeterminate x over a commutative ring R is coherent,
then

wGgldim(R[x]) = wGgldim(R) + 1.

In the next theorems, we will see that the coherence condition is not necessary in (R1) and (R2).

Theorem 3.1. For every family of commutative rings {Ri}ni=1, we have

wGgldim

(
n∏

i=1

Ri

)
= sup{wGgldim(Ri) : 1 ≤ i ≤ n}.
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Proof. By induction on n, it suffices to prove this result for n = 2.
Assume that wGgldim(R1 × R2) ≤ k. Let Mi be an Ri-module for i = 1, 2. Since each Ri is a

projective R1×R2-module, by [16, Proposition 3.10], we have GfdRi(Mi) ≤ GfdRi×R2(M1×M2) ≤
k. This follows that wGgldim(Ri) ≤ k for each i = 1, 2.

Conversely, suppose that sup{wGgldim(Ri) : i = 1, 2} ≤ k. Let I be an arbitrary injective
R1 ×R2-module. We can see that

I ∼= HomR1×R2(R1 ×R2, I) ∼= HomR1×R2(R1, I)×HomR1×R2(R2, I)

and Ii = HomR1×R2
(Ri, I) is an injective Ri-module for each i = 1, 2. Since wGgldim(Ri) ≤ k for

each i = 1, 2, we get fdRi
(Ii) ≤ k (by Theorem 2.12). Using [4, Lemma 3.7], we have fdR1×R2

(I1×
I2) = sup{ fdRi

(I1), 1 ≤ i ≤ 2} ≤ k. Consequently, by Theorem 2.12, wGgldim(R1 × R2) ≤ k.
This completes the proof.

A remark to the other easy proof to this Theorem is that the category of modules over a finite
product of rings is equivalent to the product of the categories of modules over each of the rings in
the product. �

Theorem 3.2. Let R[x] be the polynomial ring in one indeterminate x over a commutative ring
R. Then

wGgldim(R[x]) = wGgldim(R) + 1.

To prove this theorem, we need the following lemmas.

Lemma 3.3 ([14], Theorem 2.1). Let R be any ring and let M be an R-module. Then fdR(M) =
idR(M+).

Lemma 3.4 ([17], Theorem 202). Let R be any ring (not necessarily commutative). Let x
be a central non-zero-divisor in R, and write R∗ = R/(x). Let A be a non-zero R∗-module with
idR∗(A) = n <∞. Then idR(A) = n + 1.
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Proof of Theorem 3.2. Firstly, we claim that wGgldim(R) ≤ wGgldim(R[x]). Let I be an arbi-
trary injective R-module. Clearly, the R[X]-module HomR(R[x], I) is injective. Hence, by Theorem
2.12, fdR[x](HomR(R[x], I)) ≤ wGgldim(R[x]). On the other hand, by [15, Theorem 1.3.12],

fdR(HomR(R[x], I)) ≤ fdR[x](HomR(R[x], I)),

and it is clear that I ∼= HomR(R, I) is isomorphic to a direct summand of
HomR(R[x], I) (as an R-modules). Hence, fdR(I) ≤ wGgldim(R[x]). Then

wGgldim(R) = sup{ fdR(I) | I an injective R-module} ≤ wGgldim(R[x]).

Secondly, we will prove that wGgldim(R[x]) ≤ wGgldim(R) + 1. We may assume that
wGgldim(R) = n < ∞. Otherwise, the result is obvious. Let I be an arbitrary injective
R[x]-module. From [15, Theorem 1.3.16], fdR[x](I) ≤ fdR(I) + 1. However, I is also an injective
R-module since R[x] is a free (then flat) R-module. Then fdR[x](I) ≤ fdR(I)+1 ≤ wGgldim(R)+1.
Hence,

wGgldim(R[x]) = sup{fdR[x](I) : I an injective R[x]-module} ≤ wGgldim(R) + 1.

Finally, we have to prove that wGgldim(R[x]) ≥ wGgldim(R) + 1. From the first part of this
proof, we may assume that wGgldim(R) = n < ∞. Otherwise, the result is obvious. Let I be
an injective R-module such that fdR(I) = n (such a module exists by Theorem 2.12). Then by
Lemma 3.3, idR(I+) = n < ∞. Therefore, by Lemma 3.4, idR[x](I

+) = n + 1. Again, by Lemma
3.3, fdR[x](I) = n+1. On the other hand, by Lemma 3.4, idR[x](I) = 1. Pick an injective resolution
of I over R[x] as follows:

0→ I → I0 → I1 → 0

where I0 and I1 are an injective R[x]-modules. Then

n + 1 = fdR[x](I) ≤ sup{ fdR[x](I0), fdR[x](I1)− 1} ≤ wGgldim(R[x]).

Therefore, wGgldim(R) + 1 ≤ wGgldim(R[x]) as desired. This finishes our proof. �
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Remark 3.5. Let M be an R-module. Using thedefinition of the character M+ =HomZ(M,Q/Z),
we see that the modulation of M+ over R[x] is the same:

(1) When we consider M+ as an R-module and then we consider M+ as an R[x]-module.
(2) When we consider M as an R[x]-module (by setting xM = 0) from the beginning.

Now, we are able to give a class of non-coherent rings {Rn}n>0 with infinite weak global
dimensions such that wGgldim(Rn) = n.

Example 3.6. Consider the local Noetherian non semisimple quasi-Frobenius ring R :=
K[X]/(X2) where K is a field, and let S be a non-coherent commutative ring with wdim(R) = 1.
For each n > 0, set Tn = R[X1, X2, . . . , Xn] the polynomial ring over R. Then

(1) wdim(Tn × S) =∞,
(2) wGgldim(Tn × S) = n,
(3) Tn × S is not coherent.

Proof. (1) Follows from the fact that wdim(R) =∞.
(2) Clearly, since R is Noetherian and by using [4, Theorem 3.5], [3, Corollary 1.2 and Proposi-

tion 2.6], and [12, Theorem 12.3.1], we have wGgldim(Tn) = Ggldim(Tn) = n and wGgldim(S) =
wdim(S) = 1. Hence, by Theorem 3.1, wGgldim(Tn × S) = n as desired.

(3) Clearly since S is non-coherent, this completes the proof. �
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