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ON THE APPROXIMATION OF THE NULL-CONTROLLABILITY

PROBLEM FOR PARABOLIC EQUATIONS∗

FRANCK BOYER† , FLORENCE HUBERT ‡ , AND JÉRÔME LE ROUSSEAU §

Abstract. In this paper we are interested in the study of semi-discrete and full discrete ap-
proximations of the null-controllability problem for parabolic equations. We restrict ourselves to the
monodimensional case and to finite difference approximations in space. We first show that the semi-
discretisation in space of such a problem can be proved to be uniformly controllable with respect to
the mesh size if we only try to reach an exponentially small target and not the null target. Then, we
extend this result to full discrete problems by using a classical Implicit Euler scheme or a θ-scheme
for the time discretization of the problem.

The proofs, not given here, are essentially based on the proof of a partial discrete Lebeau-
Robbiano inequality which is itself obtained by proving a global Carleman estimate for a semi-discrete
elliptic operator. Attractive features of our approach is that it applies to variable coefficient problems
and are not restricted to uniform meshes.

Key words. Null-controllability problem; Second order parabolic equation; Finite difference
methods; Uniform observability inequality.
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1. Introduction. Let Ω = (a, b), and ω be non-empty bounded intervals of R

with ω ⋐ Ω. We consider the following parabolic problem in (0, T ) × Ω, with T > 0,

∂ty − ∂x(γ∂xy) = 1ωv on (0, T ) × Ω, y|∂Ω = 0, and y|t=0 = y0, (1.1)

where the diffusion coefficient γ satisfies

0 < γmin ≤ γ ≤ γmax < ∞, ‖∂xγ‖∞ < ∞. (1.2)

G. Lebeau and L. Robbiano prove in [LR95] the null controllability of system (1.1),
i.e., for all y0 ∈ L2(Ω), there exists v ∈ L2((0, T ) × Ω), such that y(T ) = 0 and
‖v‖L2((0,T )×Ω) ≤ C|y0|L2(Ω), where C > 0 only depends on Ω, ω, γ and T . They in
fact constructed the control function v semi-explicitly. This construction is based on
the following spectral inequality.

Theorem 1.1 ([LR95]). Let (φk)k∈N∗ be a set of L2(Ω)-orthonormal eigenfunc-
tions of the operator A := −∂x(γ∂x) with homogeneous Dirichlet boundary conditions,
and (µk)k∈N∗ be the set of the associated eigenvalues (with finite multiplicities) sorted
in a non-decreasing sequence. There exists C > 0 such that for all µ ≥ 0

∑

µk≤µ

|αk|
2 =

∫

Ω

∣

∣

∣

∑

µk≤µ

αkφk

∣

∣

∣

2

≤ CeC
√
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∣

∣

∑
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∣

∣

∣

2

, ∀(αk)k∈N∗ ⊂ R.

The proof of this result relied on local Carleman estimates for the augmented elliptic
operator −∂2

t + A in (0, T∗) × Ω, for some T∗ > 0, where t is an additional variable.
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We proved in [BHLa] a discrete in space counter-part of this inequality when the
diffusion operator is replaced by a finite-difference operator and then we deduced a
corresponding controllability result for the semi-discrete in space parabolic problem.
We recall the notation and the precise statement of these results in Section 2.

The proofs of these results, rely on a global discrete Carleman estimate for a
related semi-discrete bidimensional elliptic operator.

The aim of the present paper is to present similar controllabity results for full
discrete systems, that is to say when one couples the finite-difference in space scheme
with an implicit Euler time discretization, or more generally with a θ-scheme time
discretization. To this end we first give in Section 3.1 the time discrete counter-part
of the well-known observability inequalities and related controllability results in a
general setting. Then, in section 3.2, we prove the announced uniform controllability
results. These results will hold under a condition between the time step and the mesh
size which looks like a CFL condition. In section 3.3, we finally deduce from the above
results that some kind of uniform approximate observability inequality holds with a
super-algebraically small additional term. We describe the associated minimisation
procedure that leads to the practictal computation of a suitable full discrete control
function for our problem.

Notice that most of the techniques used in this paper do not depend on the
space dimension. We will give in [BHLb] the corresponding detailed results in higher
dimension.

2. Uniform controllability for semi-discrete in space approximations.

2.1. Notation and discrete settings. Let us consider the elliptic operator on
Ω = (a, b) given by A = −∂x(γ∂x) with homogeneous Dirichlet boundary conditions
with γ satisfying (1.2).

We introduce finite-difference approximations of the operator A on weakly-varying
meshes. Let a = x0 < x1 < · · · < xN < xN+1 = b. We refer to this discretization as to
the primal mesh M := {xi; i = 1, . . . , N}. We set |M| := N . We set hi+ 1

2
= xi+1−xi

and xi+ 1
2

= (xi+1 + xi)/2, i = 0, . . . , N , and h = max0≤i≤N hi+ 1
2
. We call M :=

{xi+ 1
2
; i = 0, . . . , N} the dual mesh and we set hi = xi+ 1

2
−xi− 1

2
= (hi+ 1

2
+hi− 1

2
)/2,

i = 1, . . . , N .
In the present article, we shall only consider families of meshes obtained as the

image of uniform meshes through smooth increasing maps. More precisely, for any
smooth function ψ : [0, 1] 7→ Ω = [a, b] satisfying

ψ([0, 1]) = Ω, and inf
[0,1]

ψ′ > 0, (2.1)

and any N , we shall consider the mesh M of Ω defined by

xi = ψ

(

i

N + 1

)

, ∀i ∈ {0, . . . , N + 1}. (2.2)

The dual mesh M is then defined as described above.
Such a family of meshes is quasi-uniform in the usual sense, that is to say that

there exists Cψ depending only on ψ such that

1

Cψ
≤

hi+ 1
2

h
≤ Cψ,∀i ∈ {0, . . . , N},
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1

Cψ
≤

hi

h
≤ Cψ,∀i ∈ {1, . . . , N}.

We denote by R
M and R

M the sets of discrete functions defined on M and M re-
spectively. If u ∈ R

M (resp. R
M), we denote by ui (resp. ui+ 1

2
) its value corresponding

to xi (resp. xi+ 1
2
). For u ∈ R

M we define

uM =
N
∑

i=1

1[x
i− 1

2

,x
i+ 1

2

]ui ∈ L∞(Ω).

Since no confusion is possible, by abuse of notation, we shall often write u in place of
uM. For u ∈ R

M we define
∫

Ω
u :=

∫

Ω
uM(x)dx =

∑N
i=1 hiui, and similarly, we define

the following L2 inner product and norms on R
M

(u, v)L2 =
∫

Ω

uM(x)vM(x) dx, and |u|L2(Ω) = (u, u)
1
2

L2 .

For some u ∈ R
M, we shall need to associate boundary conditions that we denote

by u∂M = {u0, uN+1}. The set of such extended discrete functions is denoted by
R

M∪∂M. Homogeneous Dirichlet boundary conditions then consist in the choice u0 =
uN+1 = 0, in short u∂M = 0. We can now define two difference operators D :
R

M∪∂M → R
M and D : R

M → R
M, given by

(Du)i+ 1
2

:=
ui+1 − ui−1

hi+ 1
2

, ∀u ∈ R
M∪∂M,∀i ∈ {0, . . . , N},

(Du)i :=
vi+ 1

2
− vi− 1

2

hi
, ∀v ∈ R

M,∀i ∈ {1, . . . , N}.

With the notation introduced above, the consistent finite-difference approxima-
tion of Au with homogeneous boundary conditions that we consider is AMu = −D(γ̃Du)
for u ∈ R

M∪∂M satisfying u∂M = 0, where γ̃ = (γ(xi+ 1
2
))0≤i≤N is the sampling of the

function γ on the dual mesh M.
For any subspace F ⊂ R

M, we shall denote by F⊥, the L2-orthogonal complement
of F and by ΠF the L2-orthogonal projection from R

M onto F . We shall also note
1ω for the characteristic function of ω sampled on the mesh, that is (1ω)i = 1 if and
only if xi ∈ ω.

2.2. Discrete Lebeau-Robbiano inequality. We note that AM is selfadjoint
with respect to the L2 inner product on R

M introduced in (2.1). We denote by φM a
set of discrete L2 orthonormal eigenfunctions, φj ∈ R

M, 1 ≤ j ≤ |M|, of the operator
AM with homogeneous boundary conditions, and by µM the set of the associated
eigenvalues sorted in a non-decreasing sequence, µj , 1 ≤ j ≤ |M|.

The partial Lebeau-Robbiano spectral inequality for the lower part of the spec-
trum we obtain in [BHLa] reads

Theorem 2.1 (Partial discrete Lebeau-Robbiano inequality). Let ψ satisfying
(2.1). There exist C > 0, C1 > 0 and h0 > 0 such that, for any mesh M obtained
from ψ by (2.2) and such that h ≤ h0, for all 0 < µ ≤ C1/h2, we have

∑

µk∈µM
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, ∀(αk)1≤k≤|M| ⊂ R.
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Note that this inequality is optimal in some sense: for dimension reasons this
inequality cannot be true for the whole spectrum of the operator AM. In particular,
it is reasonable to think that C1 should behave like |ω|/|Ω|.

2.3. Controllability results and observability inequalities. From Theorem
2.1, we deduced in [BHLa] the following uniform controllability result for the semi-
discrete problem.

We introduce the following finite dimensional spaces

Ej = Span{φk; 1 ≤ µk ≤ 22j} ⊂ R
M, j ∈ N. (2.3)

Theorem 2.2. Let T > 0 and ψ satisfying (2.1). There exist h0 > 0, CT > 0
and C1, C2, C3 > 0 such that for any mesh M obtained from ψ by (2.2) such that
h ≤ h0, and all initial data y0 ∈ R

M, there exists a semi-discrete control function
v ∈ L2(]0, T [, RM) such that the solution to

∂ty + AMy = ∂ty − D(γ̃Dy) = 1ωv(t), y∂M = 0, y|t=0 = y0. (2.4)

satisfies ΠE
jM

y(T ) = 0, and

∫ T

0

|v(t)|2L2(Ω) dt ≤ C2
T |y0|

2
L2(Ω), and |y(T )|L2(Ω) ≤ C2e

−C3/h2

|y0|L2(Ω),

with

jM = max{j; 22j ≤ C1/h2}. (2.5)

Thanks to this result, we deduced the following h-uniform approximate observ-
ability inequality for the semi-discrete problem under-study.

Theorem 2.3. Let T > 0 and ψ satisfying (2.1). There exist h0 > 0, Cobs > 0
and C > 0 depending on Ω, ω and T , and ψ, such that: for any mesh M obtained
from ψ by (2.2) such that h < h0, the semi-discrete solution q in C∞([0, T ], L2(Ω))
to











−∂tq + AMq = 0 in (0, T ) × Ω,

q = 0 on (0, T ) × ∂Ω,

q(T ) = qT ∈ R
M,

satisfies

|q(0)|2L2(Ω) ≤ C2
obs

T
∫

0

∫

ω

|q(t)|2 dt + Ce−C/h2

|qT |
2
L2(Ω).

Using this observability inequality, we can now provide some constructive way to
compute a suitable semi-discrete control function. To this end, let h 7→ φ(h) ∈ R

+ be

a function which tends to zero when h goes to 0 and such that e−C/h2

/φ(h) → 0. We
have the following result.

Theorem 2.4. We consider the same assumptions and notation as in Theorem
2.3.
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For any mesh M obained from ψ by (2.2) such that h ≤ h0, and any y0 ∈ R
M,

we consider the functional qT ∈ R
M 7→ JM(qT ) defined by

JM(qT ) =
1

2

∫ T

0

|q(t)|2L2(ω) dt +
φ(h)

2
|qT |

2
L2(Ω) + (y0, q(0))L2(Ω),

where t 7→ q(t) is the solution to the adjoint problem −∂tq(t) +AMq(t) = 0 with final
data q(T ) = qT .

This functional JM has a unique mimiser denoted by qF,opt ∈ R
M. This minimiser

produces a solution q of the adjoint problem such that, if we define the control function
v(t) = 1ωq(t) then we have:

• The cost of the control is bounded as follows

∫ T

0

|v(t)|2L2(ω) dt ≤ C2
obs|y0|

2
L2(Ω).

• The controlled solution y to (2.4) is such that

|y(T )|L2(Ω) ≤
√

φ(h)Cobs|y0|L2(Ω).

3. On the controllability and observability of fully discrete systems.

3.1. General framework. We consider in this section the problem of control-
ling fully discrete approximations of system (2.4). More precisely, for M > 0 and
δt = T/M , We shall consider two time-discretization schemes:

• The implicit Euler scheme:






y0 = y0,
yn+1 − yn

δt
+ AMyn+1 = 1ωvn+1, ∀n ∈ {0, . . . ,M − 1},

(3.1)

• The θ-scheme, with θ ∈ [1/2, 1):






y0 = y0,
yn+1 − yn

δt
+ AM(θyn+1 + (1 − θ)yn) = 1ωvn+1, ∀n ∈ {0, . . . ,M − 1},

(3.2)

where, in both cases, (vn)1≤n≤M ∈ (RM)M is a fully discrete control.
Naturally, (3.1) is nothing but (3.2) when θ = 1. We present the two schemes

separately, even though most of the following results are similar for both schemes.
In fact, the only particular case we will encounter is the one of the Crank-Nicholson
scheme, that is when θ = 1/2, which is just at the stability limit.

Let us first state a relationship between a partial controllability result and a
suitable observability inequality. For this result we treat in the same way the Implicit
Euler scheme and the θ-scheme.

Theorem 3.1. Let E be a subspace of R
M such that AME ⊂ E. Let θ ∈ [0, 1],

and F = ker(I − δt(1 − θ)AM). For a given Cobs > 0, the following statements are
equivalent.

1. For any y0 ∈ R
M, there exists v = (vn)1≤n≤M ∈ (RM)M such that

M
∑

n=1

δt|vn|2L2(Ω) ≤ C2
obs|y0|

2
L2(Ω), (3.3)
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and such that the solution to






y0 = y0,
yn+1 − yn

δt
+ AM(θyn+1 + (1 − θ)yn) = 1ωvn+1, ∀n ∈ {0, . . . ,M − 1},

satisfies ΠE∩F⊥yM = 0.
2. Any solution q = (qn)1≤n≤M+1 of the adjoint problem in E ∩ F⊥:



















qM+1 ∈ E ∩ F⊥,

qM − qM+1

δt
+ θAMqM = 0,

qn − qn+1

δt
+ AM(θqn + (1 − θ)qn+1) = 0, ∀n ∈ {M − 1, . . . , 1},

(3.4)

satisfies

|q1 − δt(1 − θ)AMq1|2L2(Ω) ≤ C2
obs

M
∑

n=1

δt|qn|2L2(ω). (3.5)

Notice, when θ < 1, the particular form of the first iterate of the adjoint problem
and of the left-hand side member of the observability inequality (3.5). In many cases
the space F is trivial (in particular for the implicit Euler scheme). In the cases where
F 6= {0}, we remark that one single iteration of the forward scheme (without control)
satisfy the property

ΠE∩F⊥yM = 0 ⇒ yM+1 = (I+δtθAM)−1(I−δt(1−θ)AM)yM , is such that ΠEyM+1.

This is the key ingredient to get rid of this non trivial kernel F in the proofs of the
following results.

3.2. Partial observability inequalities and uniform controllability re-

sults. We shall now use the discrete Lebeau-Robbiano inequality recalled in Section
2 in order to prove actually that, under suitable assumptions the above observability
inequality is satisfied for the spaces Ej defined in (2.3) and for j ≤ jM.

Theorem 3.2. Let T > 0, ψ satisfying (2.1) and consider h0, CT , C1, C2, C3

given in Theorem 2.2. We recall that jM ∈ N is given by (2.5) and we define µM

max =
C1

h2 .
Let now θ be given in [1/2, 1]. There exists C > 0 (which does not depend on T )

such that the following observability inequality holds true for any mesh M obtained
from ψ by (2.2) such that h ≤ h0

|q1 − δt(1 − θ)AMq1|2L2(Ω) ≤ C(1 + T 2)
eC2j

T

M
∑

n=1

δt|qn|2L2(ω),

for any solution to the adjoint problem (3.4) with E = Ej, for any j ≤ jM.
Notice that this result holds without any restriction on the time step δt. We

also remark that the observability inequality is true for any final data in Ej and in
particular for any final data in Ej ∩ F⊥, so that we will be able to apply Theorem
3.1.

With this result at hand we can conclude to the following uniform controllability
results for the schemes under study.
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Theorem 3.3 (Implicit Euler scheme and θ-scheme with θ > 1/2). Let T > 0,
ψ satisfying (2.1) and θ ∈]1/2, 1].

Let 0 < β ≤ 1, α > 0 and 0 < β′ < β. There exists CT > 0, C > 0, and
h0 > 0 such that for any mesh M obtained from ψ by (2.2) such that h ≤ h0, and any
M ∈ N

∗ such that δt = T/M ≤ αh1+β we have:
For any y0 ∈ R

M, there exists a full discrete control v = (vn)1≤n≤M such that:
• The solution (yn)0≤n≤M to (3.1) satisfies

ΠE
jM

yM = 0, and |yM |L2(Ω) ≤ Ce−C/h1+β′

|y0|L2(Ω).

• The control v satifies

M
∑

n=1

δt|vn|2L2(ω) ≤ C2
T |y0|

2
L2(Ω).

In the case θ = 1/2, the result we obtain is weaker since a more restrictive
condition on δt is imposed.

Theorem 3.4 (Crank-Nicholson scheme). Let T > 0, ψ satisfying (2.1) and
assume θ = 1/2. Let α > 0 and 0 < β′ < 1. There exists CT > 0, C > 0 and
h0 > 0 such that for any mesh M obtained from ψ by (2.2) such that h ≤ h0, and any
M ∈ N

∗ such that δt = T/M ≤ αh2 we have:
For any y0 ∈ R

M, there exists a full discrete control v = (vn)1≤n≤M ∈ (RM)M

such that:
• The solution (yn)0≤n≤M to (3.2) satisfies

ΠE
jM

yM = 0, and |yM |L2(Ω) ≤ Ce−C/h1+β′

|y0|L2(Ω).

• The control v satifies

M
∑

n=1

δt|vn|2L2(ω) ≤ C2
T |y0|

2
L2(Ω).

3.3. Global uniform approximate observability inequalities and appli-

cations. From the two previous results, we can show the following global uniform
approximate observability result.

Theorem 3.5. Let T > 0, ψ satisyfing (2.1) and θ ∈ [1/2, 1]. Let 0 < β ≤ 1,
0 < β′ < β and α > 0. If θ = 1/2, we further assume that β = 1.

There exists Cobs > 0, C > 0 and h0 > 0 such that, for any mesh M obtained
from ψ by (2.2) such that h ≤ h0, and any M ∈ N such that δt = T/M ≤ αh1+β we
have

|q1 − δt(1 − θ)AMq1|2L2(Ω) ≤ C2
obs

M
∑

n=1

δt|qn|2L2(ω) + Ce
− C

h1+β′ |qM+1|2L2(Ω),

for (qn)n solution of the adjoint problem (3.4) associated to any qM+1 ∈ R
M.

With this result at hand we can provide, just like for the semi-discrete problem,
a constructive way to compute an uniformly bounded control v for which the solution
(yn)n to the controlled problem has a final state as small as we want (see Theorem
2.4).
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Let h 7→ φ(h) ∈ R
+ be a function such that φ(h) → 0 and e

− C

h1+β′ /φ(h) → 0,
when h → 0. Typically, we can choose for φ(h) any positive power of h.

Theorem 3.6. We consider the same assumptions and notation as in Theorem
3.5.

For any mesh M defined by (2.2) with h ≤ h0, and any y0 ∈ R
M, we consider the

functional qF ∈ R
M 7→ JM

δt (qF ) defined by

JM

δt (qF ) =
1

2

M
∑

n=1

δt|qn|2L2(ω) +
φ(h)

2
|qF |

2
L2(Ω) + (y0, q

1 − δt(1 − θ)AMq1)L2(Ω),

where (qn)n is the solution of the adjoint problem (3.4) with final data qM+1 = qF .
This functional JM

δt has a unique minimiser qF,opt,δt ∈ R
M. This minimiser pro-

duces a solution (qn)n to (3.4), and if one define vn = 1ωqn for any 1 ≤ n ≤ M , then
the discrete control v satisfies :

• The cost of the control is bounded as follows

M
∑

n=1

δt|vn|2L2(ω) ≤ C2
obs|y0|

2
L2(Ω).

• The controlled solution (yn)n associated to v is such that

|yM |L2(Ω) ≤
√

φ(h)Cobs|y0|L2(Ω).

For instance if one choose φ(h) = h2p for any given p, one can construct this
way a uniformly bounded sequence of controls leading to a final state not larger than
hpCobs|y0|L2(Ω). Notice in particular that the value of Cobs does not depend on the
particular choice of φ we use.

The practical computation of qopt can be performed by a conjugate gradient solver
as proposed in [GL94]. Each iteration of this solver consists in solving the solution to
a first full discrete adjoint problem then the solution to a full discrete direct problem.

Notice that similar semi-discrete h-uniform approximate observability and con-
trollabiliy results are given in [LT06]. The results in this reference are stronger in
some sense since they apply to a wider class of semi-discrete problems under suitable
assumptions on the continuous problem under study and the considered discretisation.
Nevertheless, in the context we discussed in this paper, our results are much more
precise since we obtain exponentially small targets associated to uniformly bounded
sequences of controls. In particular, the results in [LT06] implies Theorem 2.4 but
only for a function φ(h) = hβ for a suitable exponent β > 0 which is given by the
properties of the problem under study. In particular, for a finite element discretisa-
tion of the heat equation, and for a boundary control problem (this a minor difference
with the present study), they show that one can take β = 0.45 so that the computed
target has a size of h0.225 which is a very low convergence rate.

Notice that our results are in some sense optimal since it is known that, in higher
dimensions, there exists high frequencies modes whose associated eigenfunctions are
localized in space (see [LZ98b, Zua06]). In particular, if the control domain ω does
not intersect the support of these eigenmodes, then it is guaranteed that we can not
achieve exactly the null target for any initial data y0. Nevertheless, since these very
particular modes correspond to the highest frequencies in the discrete problem (of

order ∼ C
h2 ), we can expect to reach a target of size e

−CT

h2 . This is exactly the result
we proved in the semi-discrete case (Theorem 2.2) and also in the full discrete case
(Theorems 3.3 and 3.4) with a slightly lower power of h in the exponential term.
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4. Convergence when the time step goes to zero. We conclude this paper
by a convergence result of the full discrete controls sequence, when δt → 0, towards a
semi-discrete control function. More precisely, the following results holds.

Theorem 4.1. We consider the assumptions and notation as in Theorems 2.4
and 3.6. In particular, we suppose given a function h 7→ φ(h) as described just before
these two theorems.

For any δt = T/M small enough, we define the piecewise constant function

ṽδt(t) =

M
∑

n=1

1](n−1)δt,nδt[(t) vn, ∀t ∈]0, T [,

where (vn)n is the full discrete control obtained by minimizing the functional JM

δt given
in Theorem 3.6.

We have the following convergence result

∫ T

0

|ṽδt(t) − v(t)|2L2(ω) dt −−−→
δt→0

0,

where t 7→ v(t) is the semi-discrete control function obtained by minimizing the func-
tional JM given in Theorem 2.4.

Note that this result gives a strong convergence property of the controls. Hence,
it also implies the strong convergence in a suitable sense of the full discrete controlled
solution (yn)n towards the semi-discrete controlled solution y.

5. Conclusions. We provide in this paper uniform observability and approxi-
mate null-controllability results for the semi-discretisation in space and the full dis-
cretisation of 1D distributed control problem for a linear parabolic equation. The
originality of this work is that is provides a way to compute effectively a uniformly
bounded (with respect to the discretization parameters) sequence of controls for which
the associated controlled solution of the parabolic discrete problem reach a final state
which is essentially as small as we want. More precisely, we are able to prove a
super-algebraically smallness estimate for this final state.

We also prove the strong convergence of the full discrete control functions towards
a corresponding semi-discrete control function.

We shall give in further works some numerical illustrations of the various proper-
ties given in this paper.
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