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NEW LIMITER FUNCTIONS FOR HIGH-ORDER
FINITE-VOLUME-METHODS

MIROSLAV ČADA∗ AND MANUEL TORRILHON †

Abstract. We consider finite volume methods for the numerical solution of conservation laws.
In order to achieve high-order accurate numerical approximation to nonlinear smooth functions, we
introduce a new class of nonlinear and non-polynomial limiter functions for the spatial reconstruction
of hyperbolic equations. The new scheme is of third-order accuracy. Its shape preserving properties
are significantly improved. Discontinuities are reconstructed sharp and accurate. Smearing, clipping
and squaring effects of classical second-order limiters are completely avoided.
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1. Introduction. In the present paper we will derive a new third-order accurate
method for the computation of numerical fluxes within the framework of finite volume
(FV) schemes for conservation laws. For simplicity and in order to settle our notation
we consider the numerical approximations to the one-dimensional scalar initial value
problem

ut = −f(u)x, with u(x, t = 0) = u0(x),(1)

where u0 is either a piecewise smooth function with compact support or a periodic
function. Note that the flux in Eq. (1) appears on the right hand side to emphasize the
semi-discrete formulation. We cover the uniform computational region with control
cells Cn

i = [xi−∆x/2, xi+∆x/2]× [tn, tn+1], with tn+1 = tn +∆t and the computational
grid xi±1 = xi±∆x. Integrating the conservation law Eq. (1) over the control volume
Ci, we obtain the standard FV update
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∫ xi+∆x/2

xi−∆x/2
un(x) dx at time tn based on the numerical flux

function F , which is supposed to be Lipschitz continuous and consistent with the

flux f(u). The evolution of ūn
i is governed by the left and right limits û

(±)

i+ 1
2

– the

interface values – of the reconstructed function û(x). The cell interface value ûi+ 1
2

=

û(ūn
i , ūn

i+1) denotes the intermediate value at xi+1/2 of the Riemann problem solution
with initial data ūn

i , ūn
i+1. The calculation of the interface values from the known cell

mean values is the essential reconstruction task and determines the scheme’s order of

accuracy. This is the main concern of this paper.
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2. Compact Finite Volume Reconstruction based upon Limiters. In this
section we review spatial reconstruction techniques, which adopt a local three-point
stencil and are related to limiter functions. Hence the interface values are functions of
nearest neighbours, i.e û

(−)

i+ 1
2

≡ L(ūi−1, ūi, ūi+1) and û
(+)

i+ 1
2

≡ R(ūi, ūi+1, ūi+2), where

capital L and capital R denote the left and right cell interface approximations, respec-
tively. In order to obtain high order non-oscillatory reconstructions, the interpolation
function R and L are a priori nonlinear.

We assume, that the cell-face values are calculated with an upwind-biased ap-
proach, i.e.
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where δi+ 1
2

= ūi+1− ūi is the difference across a cell interface, and φ(θi) is the limiter
with

θi =
δi− 1

2

δi+ 1
2

, with δi+ 1
2
6= 0(4)

is a local smoothness measurement. It can be clearly seen that the reconstruction
Eqs. (3) employ a rather simple Taylor expansion. Yet to approximate the cell in-
terface values Eqs. (3) to third-order accuracy, the first derivatives at xi±1/2 have to
be of second order accuracy, i.e u′(xi± 1

2
) = δi± 1

2
/∆x ± O(∆x2). Note that in the

context of finite-differences, i.e. point value based reconstruction un
i and not cell av-

erages based ūn
i , it holds u′(xi±1/2) = δi± 1

2
/∆x±O(∆x). Thus we recover one order

less than employing FV methods. The limiter is defined as a function of consecutive
gradients (slopes), i.e. φi = φ(θi). To avoid spurious oscillations for high order inter-
polation around discontinuous data, Harten [4] derived explicit algebraic conditions
on the limiter φ:

0 ≤ φ(θ) ≤ 2 θ and 0 ≤ φ(θ) ≤ 2 ∀θ ≥ 0.(5)

Harten’s fundamental theorem ensures the resulting scheme to be total variation di-
minishing (TVD) and hence with an appropriate time integrator to be monotonicity-
preserving. The region, which is spanned by Harten’s TVD conditions Eqs. (5) is
called Sweby’s TVD region [6]. Limiter function inside this region are TVD and of
high-order accuracy essentially away from smooth extrema and discontinuous data.
A major drawback of high-order TVD schemes is their inability to recover smooth
extrema. A complete summary of the theory of TVD methods and classical second-
order accurate limiters can be found in standard text books, e.g. LeVeque [7].

We should mention that the most well known limiters are of second-order spatial
accuracy and satisfy the symmetry condition φ(θ−1) θ = φ(θ). Therefore Eqs. (3) can
be simplified and no limiter evaluation of θ−1 is necessary. This reduces the amount
of floating point operation and makes symmetric second-order limiters quite effective.
A necessary condition for limiting methods to be of high-order accuracy, is that the
function φ must pass Lipschitz continuously through the point φ(1) = 1. There exists
a whole set of linear methods, which depend on φ′(1) and approximate the cell-face



NON-POLYNOMIAL AND NON-LINEAR LIMITERS FOR HIGH-ORDER FV-METHODS63

q = 1.0

q = 1.4

q = 2.0

New limiter

q = 1.4

Dubois’s extended

monotonicity region

Fig. 1. Left: Shape of the limiter function φ(θ) Eq. (7) for different values of q. Right: New

limiter φ̂ Eq. (9) matching for logarithmic limiter with q = 1.4.

values û
(∓)

i± 1
2

employing Eqs. (3) to second-order accuracy. Yet one finds only one

unique reconstruction

φ(θ) =
2 + θ

3
,(6)

for which we get third-order of spatial accuracy. This function is a parabola through
the discrete set of cell mean values {ūi−1, ūi, ūi+1}.

3. Logarithmic Limiter. Recently Čada and Torrilhon [5] have derived a new
smooth limiter, which applies a logarithmic function as building block. The limiter
function is based upon nonlinear and especially non-polynomial local double loga-
rithmic reconstruction (LDLR) suggested by Artebrant and Schroll [1]. The LDLR
is essentially of third-order accuracy away from discontinuities without the explicit
use of limiters. Due to the logarithmic nature its total variation bound (TVB), in
the presence of jump discontinuities, is O(∆xq | ln(∆x)|). It turns out that the whole
reconstruction procedure could be reformulated in a convenient limiting procedure,
which uses only a single limiter function

φ(θi) =
2p((p2 − 2p θi + 1) ln p − (1 − θi)(p

2 − 1))

(p2 − 1)(p − 1)2
(7)

with

p = p(θi, q) = 2
|θi|

q

1 + |θi|2q
.(8)

The exponent q in Eq. (8) controls the amount of the total variation of the reconstruc-
tion. It also appears as an exponent in the convergence estimate of the total variation
of LDLR at jump discontinuities. We can identify the following characteristics of the
limiter φ(θ) Eq. (7):

i) φ(1 + ∆x) = 1 + ∆x
3 + O(∆xm) and φ(−1 + ∆x) = 1

3 + ∆x
3 + O(∆xn) with

n, m ≥ 2

ii) limθ→0 φ(θ) → 0 and limθ→±∞ φ(θ) → 0

iii) limq→0 p(θ, q) → 1 ∀θ ∈ R \ {0} we recover limp→1 φ(θ) → 2+θ
3 , Eq. (6)
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The first condition i) guarantees a third-order accurate resolution of local extrema,
for which holds θ = ±1 + ∆x. It also takes care of the removable singularities at
p(±1, q) = 1. The second ii) ensures Eq. (7) to be local variation bounded in the
presence of discontinuities. The third condition iii) quantifies the asymptotic be-
haviour of the limiter. The left plot in Fig. 1 shows the shape of the logarithmic
limiter Eq. (7) for different values of the parameter q. It is obvious that the smaller q
the more the reconstruction resembles the unlimited quadratic interpolation. Keeping
the main features i), ii) and iii) in mind, we can construct a piecewise-linear limiter
function with similar properties, yet even improving its shock capturing abilities.

Without the use of a logarithmic function, we not only avoid troublesome sin-
gularities but also get better control on the reconstruction routine, thus on the total
variation. The new limiter reads:

φ̂(θ) = max

[

0, min

[

2 + θ

3
, max

[

−
1

2
θ, min

(

2 θ,
2 + θ

3
,
3

2

)]]]

.(9)

The building block of φ̂(θ) is the quadratic reconstruction of Eq. (6) for smooth data
for which holds θ = ±1 + ∆x. The limiter is inside Harten’s TVD region for θ ≥ 0
and recovers smooth extrema for θ ∈ [−2,− 4

5 ] and for θ ∈ [25 , 5
2 ] to third-order ac-

curacy. In this formulation the limiter is also contained inside Dubois’s [2] extended
monotonicity region. The extended monotonicity region, is indicating a domain where

the resulting interpolated functions û
(∓)

i± 1
2

are monotone, even though the data is not

necessarily monotone. Dubois derived new monotonicity conditions for second-order
limiter function which take θ < 0 into account by restricting the upper bound of
Harten’s TVD region. The right plot in Fig. 1 shows the new limiter φ̂ Eq. (9) inside
Dubois’s extended monotonicity region matching the logarithmic limiter with q = 1.4.

Unfortunately in this form, the accuracy of the reconstruction still degenerates to
first-order in cells with one vanishing lateral derivative δi±1/2. In the following we will
discuss the problem of resolving smooth extrema for which θ ≈ ±0 hold with limiters.
For a detailed discussion see [5]. In order to overcome this drawback we have to

extend the new limiter φ̂(θ) formulation, in particular the smoothness measurement

θ. We have to formulate a criterion which prohibits the limiter φ̂(θ) to pass through
zero in the presence of a local extremum. For this we have introduced an asymptotic
region based on the indicator

η(δi−1/2, δi+1/2) =
δ2
i−1/2 + δ2

i+1/2

(r ∆x)2
(10)

which is a function of the lateral derivatives δi±1/2, instead of θ. In addition it de-
pends on the grid size ∆x and a dimensionless constant r ∈ R \ {0}. We will refer to
the constant r as radius of the asymptotic region.

We say, that for η ≤ 1 one of the lateral derivatives δi±1/2 is too small for θ
being a good measure for smooth but steep gradients. For η > 1, δi±1/2 are large

enough so that a limiter function based solely upon θ can be applied, e.g. φ̂(θ) Eq. (9).
This definition appears at first kind of ad-hoc. But one should think of this function
η exclusively as an additional indicator for smooth extrema with one vanishing lat-
eral derivative, i.e. for limθ→±0 φ(θ) → ±0. The original reconstruction procedure
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Eqs. (3) will not be changed. This function will eventually regulate the amount of
total variation in the vicinity of smooth extrema or sharp gradients.

To investigate the meaning of η for continuous data with a vanishing derivative
we first expand the lateral derivatives δi±1/2 around xi−1/2:

δi−1/2 = u′(xi−1/2)∆x +
1

12
u′′′(xi−1/2)∆x3 + O(∆x4)

δi+1/2 = u′(xi−1/2)∆x + u′′(xi−1/2)∆x2 +
7

12
u′′′(xi−1/2)∆x3 + O(∆x4)

Assuming a local extremum u′(xi−1/2) = 0, u′′(xi−1/2) 6= 0 and cancelling higher
order terms, the indicator function Eq. (10) yields

η(δi−1/2, δi+1/2) =

(

u′′(xi−1/2)

r

)2

∆x2 + O(∆x3).(11)

Thus the function η is a measure of the second derivative, i.e. of the curvature of
the data for u′(xi−1/2) → 0 inside a cell. Note that η = O(∆x2) which is smaller
than the required linear convergence of η for a third-order reconstruction. In this
perspective the quadratic convergence is optimal, since one can not expect more from
a three-point stencil.

We switch now to the discrete FV-setting. We consider the case of smooth extrema
with one vanishing lateral derivative, i.e. δi+1/2 ≈ 0 and δi−1/2 ≈ cO(∆xτ ) with
c ∈ R and τ ∈ R. The asymptotic region η reads

η(0, cO(∆xτ )) =
( c

r

)2

O(∆x2(τ−1)).(12)

For τ ≥ 1 the lateral derivative is a smooth and bounded function and lim∆x→0 η = 0
holds. Consequently we are inside the asymptotic region, i.e. the spatial reconstruc-
tion is of third-order accuracy. For τ < 1 the data is discontinuous, i.e. one of
the lateral derivatives is an unbounded function with a singularity in the gradient at
∆x = 0. Hence we are outside the asymptotic region and full limiting is applied. If

τ = 1, Eq. (12) yields η(0, cO(∆x)) =
(

c
r

)2
. Remember we consider functions inside

the asymptotic domain η ≤ 1 as smooth. For c
r ≤ 1 we are inside and for c

r > 1 out-
side the asymptotic region. Thus the parameter r plays a significant role for bounded
function of O(∆x). We do not have any analytical possibility to estimate the size of
the constant |c|. Heuristically a ”large” |c| might indicate discontinuous data or sharp
gradients, whereas one could expect a smooth function to have a slighter curvature,
i.e a ”smaller” |c|. It is important to understand that playing with the constant r,
i.e. increasing or decreasing the size of the asymptotic domain clearly affects the
amount of introduced variation. Thus we switch to full limiting already on a coarse
grid in the presence of a jump discontinuity. Remember a scheme based upon classical
TVD limiters would result in a first-order reconstruction of the cell interface values
independent of the parameters c or τ . Finally our new third-order limiter function
reads:

φO(3)(δi−1/2, δi+1/2) =















2+θ
3 if η ≤ 1 − ǫ

φ̂ if η ≥ 1 + ǫ

1
2

(

(

1 − η−1
ǫ

)

2+θ
3 +

(

1 + η−1
ǫ

)

φ̂
)

else

(13)
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Fig. 2. Sketch of new reconstruction routine including the asymptotic region for smooth extrema
with one vanishing lateral derivative δi±1/2. Red color indicates third order recovery.

with ǫ being a small positive number, which is about the size of the particular ma-
chine precision and ensures Lipschitz continuity for φO(3) Eq. (13). Note that in
the proposed limiter, the problem of accurately recovering smooth extrema with one
vanishing lateral derivative and simultaneously reconstructing sharp gradients is rigor-
ously decoupled. Consequently, in the presence of a discontinuity, i.e. τ = −1 we get

η(0, cO(∆x−1)) =
(

c
r

)2
O(∆x−4), hence fourth-order convergence towards infinity.

The new limiter yields φO(3) → φ̂(0) = 0 with O(∆x4). Because of the decoupling,

the character of the limiter φ̂(θ) is not changed. It remains a monotone homogenous

function of degree one, i.e. φ̂(λ θ) = λ φ̂(θ), ∀λ ∈ R and min(δi−1/2, δi+1/2) ≤

φ̂(θ) ≤ max(δi−1/2, δi+1/2). These are the main ingredients for a reconstruction to be
TVD.

Fig. 2 points out the characteristic properties of the final limiter φO(3) Eq. (13). It
is, for simplicity, more a sketch rather than an actual plot of the function φO(3). This
way we can geometrically clarify the asymptotic region η, the confidence region and
the transition domain. In the first two regions the interface values are reconstructed
to full third-order of accuracy, since we are ”confident” that the input data is smooth,
i.e. τ > 1 and c

r ≤ 1 in Eq. (12). Whereas in the transition region the discretized input
data is discontinuous. In other words τ < 1 or c

r ≫ 1 in Eq. (12) and consequently
the data has to be fully limited. The lower limit (1 − ǫ) and upper limit (1 + ǫ),
i.e. the thickness of the dark circle around the asymptotic region ensure Lipschitz
continuity of the limiter φO(3). Therefor the numerical flux function F in Eq. (2)
is also Lipschitz continuous away from the asymptotic domain. Cuts along constant
δi−1/2 correspond to the limiter function Fig. 1, right plot.

4. Numerical Experiments. We reduce our numerical test cases solely to the
linear advection equation. A more ellaborate collection of test cases including Euler
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Fig. 3. Log-log-plots: u0(x) = sin(π x), t = 1, ν = 0.9.

equations in 1D and 2D can be found in [5]. The 1D linear advection equation reads

ut = −ux, u(t = 0, x) = u0(x).(14)

The boundaries are set to be periodic on the domain x ∈ [−1, 1] for all numerical
experiment. The purpose is to examine the effects of the asymptotic region, in par-
ticular of its the radius r on the accuracy of the reconstruction quality. We use the
explicit third-order TVD Runge-Kutta (RK3rd) method of Gottlieb and Shu [3] in
combination with φO(3) Eq. (13). Second-order accurate limiter function are com-
bined with the Heun time marching scheme.

Example 1: We solve Eq. (14) with u0(x) = sin(π x). Fig. 3 shows the computed
L1- and L∞-errors obtained at t = 1 with Courant number ν = 0.9. We compare
the accuracy to the pure unlimited quadratic interpolation Eq. (6). This gives a clear
impression when –in terms of spatial resolution ∆x and radius r– the optimal error
is reached. The formal third-order convergence rate is already achieved with only 40
cells. Yet it is obvious that the designated accuracy is only reached with more cells,
especially for a small asymptotic region r ≤ 0.01.

Example 2: In Fig. 4 we clarify the effect of the asymptotic region for discon-
tinuous data. We conduct numerical experiment with a square- and sin-wave using
200 grid-cells. Choosing a small radius r ≤ 0.01, the limiter needs a sufficient resolu-
tion, to be able to distinguish between a discretized smooth extremum or a shallow
gradient. We can also observe that even for a large asymptotic region, essentially
no limiting, the method does not become unstable, unlike an unlimited second-order
TVD-method. The over- and under-shoots remain localized and do not grow with
time, which is an effect of the rather diffusive character of third-order methods. Note
that the two profiles are advected ten times (t = 20).

Example 3: To test the shock capturing properties and the shape preserving
quality of the proposed limiter, we choose initial conditions with discontinuities.The
test case consists of a tight combination of four waves, namely a smooth but narrow
Gaussian peak, a square wave, a triangle wave and a half ellipse. The triangle has a
smooth transition at its base. The initial profile is advected until t = 20. In Fig. 5
we compare our new limiter function φO(3) (LimO3) with third-order ENO method
(ENO3) and with LDLR. ENO3 is essentially not local since it uses a five point sten-
cil to choose between the ”smoothest” reconstruction for the interface values. All
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Fig. 4. Left: Square wave. Right: Sin-wave, t = 20, ν = 0.8.

schemes use the same explicit third-order Runge-Kutta method for time integration.

Especially in contrast to the classical TVD-MUSCL scheme (see Fig. 5 bottom),
the new method gives a good approximation of the exact profile. Typical drawbacks
of second-order TVD limiter, such as smearing and squaring of linear waves are com-
pletely avoided. The results are perfectly symmetric and corners a very well resolved.
The symmetry of the results is due to the fact, that near θ = 1 we recover a smooth
function of second degree. Whereas second-order TVD limiters, such as super-bee
or minmod, are only Lipschitz continuous near θ = 1. This drawback enhances the
probability, that the wrong choice of slopes is used for the one-sided approximation.
Furthermore third-order algorithms exhibits a rather dissipative character, whereas
second-order accurate schemes a rather dispersive. Therefor even smooth second-
order accurate limiters, such as van Leer, MCD (see e.g. [7]) do not give symmetric
profiles.

Both LimO3 and LDLR are essentially of the same quality, yet LimO3 has a higher
Gaussian peak and produces less overshoots for the half ellipse. Whereas ENO3 is not
able to distinguish between the different waves and always produces sinusoidal-like
wave patterns. All three method produce negative values, yet for LimO3 they are of a
smaller magnitude. Remember the asymptotic region scales, in the presence of jump
discontinuities, with O(∆x4).

Example 4: In order to examine the TVB properties of the proposed scheme,
we solve Burger’s equation

ut = −

(

u2

2

)

x

, u0(x) = 1 +
1

2
sin(π(x − 1))(15)

on a periodic domain x ∈ [−1, 1] under CFL condition ν = 0.9. Fig. 6 (left) shows
the numerical behavior of the total variation for Burger’s equation and the LimO3
approximation at t = 2.0. We calculate for both equations the total variation for a grid
function ū: TV (ūn) ≡

∑N
i=1 |ū

n
i+1 − ūn

i |. We observe that the calculated variation
is bounded by the initial variation TV (ū0) and gradually decreases with time as a
jump discontinuity forms at t ≈ 1.0. In contrast to LDLR, the accuracy of the
solution with 40 cells is significantly better (see [1]) and the evolving smooth profile
for t ∈ [0, 0.8] is recovered accurately. Note that for all three resolutions the value
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Fig. 5. Advection of discontinuities with ν = 0.8 until t = 20. Top profile: Proposed method
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of total variation before the shock forms is always larger than of LDLR. Hence the
smooth profile is resolved more accurately with few computational cells. This could
even be improved with a larger asymptotic region, yet also leading to larger, but
bounded spurious oscillations shortly before the jump discontinuity forms. However
once the discontinuity clearly appears the limiter yields φO(3) −→ φ̂(0) = 0 and the
oscillations completely disappear.

5. Conclusions. We have derived and analyzed a new third-order limiter for the
numerical solution of hyperbolic conservation laws. In contrast to classical second-
order TVD-limiters, the proposed limiter function maintains its formal accuracy at
local extrema. It has very good shape-preserving properties and known limiter effects,
such as smearing and squaring do not appear. The proposed limiter employs a local
piecewise parabolic reconstruction for smooth data and preserves accuracy within the
asymptotic region. Numerical experiments indicate the superiority of the proposed
limiter over classical second-order TVD limiters. The new scheme also compares favor-
ably with third-order methods such as LDLR and ENO3. It is computationally more
economical than ENO scheme, because costly optimal stencil searches and memory
storage are avoided.
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