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CHECKERBOARD MODES AND WAVE EQUATION

STÉPHANE DELLACHERIE∗

Abstract. Checkerboard modes are unphysical oscillations that sometime appear when the
incompressible Navier-Stokes system is solved with a colocated scheme. In this paper, we study
the rate of dissipation of these modes when the pressure and the velocity are solution of the lin-
ear wave equation solved with a Godunov scheme on a cartesian mesh. More precisely, we show
that the checkerboard modes are the fastest diffused modes when we use the Godunov scheme in
monodimensional geometry and that they are constant modes when the Godunov scheme is modified
by centering the discretization of the pressure gradient. This study underlines that, on a cartesian
mesh, the checkerboard modes do not exist at low Mach number when the compressible Navier-Stokes
system is solved with a Godunov type scheme and may appear at large Reynolds number when the
Godunov type scheme is modified to obtain an accurate scheme at low Mach number.

Key words. Checkerboard mode, linear wave equation, low Mach number flow, Godunov
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1. Introduction. Many numerical experiments show that Godunov type schemes
applied to the numerical resolution of the compressible Euler or Navier-Stokes system
are not accurate at low Mach number [12, 13, 14]. Some recent results show also that
this inaccuracy is more important on a quadrangular mesh than on a triangular mesh
[17]. Moreover, other colocated schemes suffer from this loss of accuracy at low Mach
number [19]. In [6], we have shown that the inaccuracy of Godunov type schemes
applied to the compressible Euler system at low Mach number can be explained by
studying the equivalent equation solved on [0,+∞[×Ω (where Ω ⊂ R

d, d ∈ {1, 2, 3})
{

∂tq +
L

M
q = Bκq,

q(t = 0, x) = q0(x)
(1.1)

associated to the Godunov scheme applied to the linear wave equation ∂tq +
L

M
q = 0

on a cartesian mesh. In (1.1), q :=

(
r
u

)
,

L

M
q =

a

M

(
∇ · u
∇r

)
. The constant a is

a strictly positive constant of order 1 and M ≪ 1 is the Mach number (a/M is the
sound velocity). The unknows r and u are respectively the pressure perturbation and
the velocity of the fluid. Moreover, the term Bκq is linked to the numerical diffusion.
In 3D, it reads

Bκq = K




∆r
∂2u1

∂x2
1

∂2u2

∂x2
2

∂2u3

∂x2
3




with K =




νr 0 0 0
0 νu1

0 0
0 0 νu2

0
0 0 0 νu3


 (1.2)
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where νr = νuk
= νnum := a ∆x

2M
(νnum is the numerical viscosity, ∆x is the space step

supposed to be identical in each direction and ∆r is the laplacian operator applied to
r). More precisely, we have linked the inaccuracy of Godunov scheme in the case of
the linear wave equation to the following invariance property verified by the spaces




E =

{
q :=

(
r
u

)
∈ (L2(Td))1+d such that ∇r = 0 and ∇ · u = 0

}
,

E
⊥ =

{
q :=

(
r
u

)
∈ (L2(Td))1+d such that

∫

Td

rdx = 0 and ∃φ ∈ H1(Td), u = ∇φ

}

(1.3)

where the Hilbert space (L2(Td))1+d :=

{
q :=

(
r
u

)
such that

∫

Td

r2dx +

∫

Td

||u||2dx < +∞

}

is equipped with the classical inner product 〈q1, q2〉 =
∫

Td q1q2dx:

Lemma 1.1. We have:
1) when Ω = T

d=1: ∀K ≥ 0, the spaces E and E
⊥ are invariant for the equation (1.1);

2) when Ω = T
d∈{2,3}: ∀K ≥ 0, the spaces E and E

⊥ are invariant for the equation
(1.1) if and only if νu = 0.

In (1.3) and in the lemma 1.1, T
d is the torus T

d := [a1, b1] × . . . × [ad, bd] in R
d (in

other words, we apply periodic boundary conditions on ∂Ω) and νu := (νuk
)k=1,...,d.

Let us note that the spaces E and E
⊥ verify [3, 15]:

Lemma 1.2.

E ⊕ E
⊥ = (L2(Td))1+d and E ⊥ E

⊥.

In other words, any q ∈ (L2(Td))1+d can be decomposed with

q = q̂ + q⊥ where (q̂, q⊥) ∈ E × E
⊥ (1.4)

and this decomposition is unique. Thus, we can define the projection P – named Hodge
projection – with q̂ := P(q).

The Hodge decomposition (1.4) allows to define the energies




E := ||q||2 = total energy,
Einc := ||q̂||2 = incompressible energy,
Eac := ||q⊥||2 = acoustic (or compressible) energy.

(1.5)

Let us remark that E = Einc + Eac since E ⊥ E
⊥. The lemma 1.1 shows that the

1D-case and the 2D(or 3D)-case are very different: this difference is due to the fact
that, when νu 6= 0, the velocity diffusive term in (1.2) is isotropic if and only if the
space dimension is equal to one. The lemma 1.1 allows to write the following theorem:

Theorem 1.3. Let q(t, x) be solution of (1.1) on Ω = T
d∈{1,2,3}. Then:

||q0 − P(q0)|| = O(M) =⇒ ||q − P(q0)||(t ≥ 0) = O(M) (1.6)

if and only if one of the two following conditions are valid:
1) Ω = T

d=1 and K ≥ 0;
2) Ω = T

d∈{2,3}, K ≥ 0 and νu = 0.
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The theorem 1.3 means that if we modify the Godunov scheme applied to the lin-
ear wave equation by deleting the numerical diffusion on the velocity equation, this
modified Godunov scheme should not create any spurious pressure waves of order
O(M∆x). This condition is a necessary condition to obtain an accurate scheme at
low Mach number [6, 12, 13, 14]. Then, we have proposed to extend the theorem 1.3
to the non-linear case and to any colocated scheme with the following conjecture [6]:

Conjecture 1.4. Let X be a colocated scheme of Godunov type (X = Roe for
example) or not (X = kinetic scheme for example [16]) applied to the compressible
Euler system on any 2D (or 3D) mesh. We suppose that the scheme X is stable at
low Mach number. Let us modify the scheme X in using the center differences:
1) to discretize the momentum flux;
2) or to discretize only the pressure gradient in the momentum flux when it is possible
(X = VFRoe [4, 11, 13, 14] or X = FDS [1, 5] for example).
Then, at low Mach number:
i) the modified X scheme remains stable;
ii) the modified X scheme does not create any spurious pressure wave of order O(M∆x)
and, thus, is accurate at low Mach number.
This modified X scheme is named “low Mach X scheme”.

In [6, 7], we have justified the conjecture 1.4 with numerical results. Nevertheless,
we do not have studied the problem of checkerboard modes. These modes are not
the spurious pressure waves mentioned in the conjecture 1.4. They are unphysical
oscillations that sometimes appear when the incompressible Navier-Stokes system is
solved with a colocated scheme [2, 9, 10]. We want to study the possible existence
of checkerboard modes at low Mach number when the compressible Euler or Navier-
Stokes system is solved with a X scheme of Godunov type or with a low Mach X
scheme. Nevertheless, we again limit the analysis to the case of the linear wave

equation ∂tq +
L

M
q = 0 solved on a cartesian mesh with a Godunov scheme. We will

consider the boundary condition (instead of periodic boundary conditions)





∇r(t, x) · n(x)|∂Ω = 0, (a)

u(t, x) · n(x)|∂Ω = 0 (b)
(1.7)

where n(x) is the outer normal on the boundary ∂Ω. Let us note that for regular

solutions of ∂tq +
L

M
q = 0, (1.7)(a) is a consequence of (1.7)(b).

2. Checkerboard modes on a cartesian mesh. We now clearly define the
checkerboard modes. Let us underline that this notion has a sense only at the discrete
level. This is not the case for the spurious pressure waves mentioned in the conjecture
1.4. This means that we have to define the spaces E and E

⊥ at the discrete level,
and that we cannot study the notion of checkerboard modes by studying the equation
(1.1) at the continuous level.

2.1. Definitions and basic properties at the continuous level. As we solve
the linear wave equation with the boundary condition (1.7), the definition (1.3) has
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to be replaced by

E =

{
q :=

(
r
u

)
∈ (L2(Ω))1+d such that ∇r = 0,∇ · u = 0 and u(x) · n(x)|∂Ω = 0

}

(2.1)
and

E
⊥ =

{
q :=

(
r
u

)
∈ (L2(Ω))1+d such that

∫

Ω

rdx = 0 and ∃φ ∈ H1(Ω), u = ∇φ

}
.

(2.2)
Let us note that E = KerL. Of course, the Hodge decomposition – see lemma 1.2 – is
valid when (1.3) is replaced by (2.1) and (2.2). At last, we recall the classical relation

〈u,∇r〉 = −〈∇ · u, r〉 +

∫

∂Ω

ru · ndσ. (2.3)

In the sequel, we will write the definitions (2.1)(2.2) and the relation (2.3) at the
discrete level in the 1D-case. We will also obtain the discrete formulation of the lemma
1.1. Let us underline that when the mesh is cartesian, the study of the checkerboard
modes in the 2D(or 3D)-case may be deduced from the study in the 1D-case.

2.2. Discretization of the spaces E and E
⊥. The space (L2(Ω))1+d is re-

placed by R
N,2 that is equipped with the inner product 〈q1, q2〉 = 〈r1, r2〉+〈u1, u2〉

where q := (r, u) ∈ R
N,2 and 〈f1, f2〉 =

N∑

i=1

f1,if2,i is the inner product in R
N . The

euclidian norm is noted || · || in R
N,2 and in R

N . The discrete version of (2.1) is given
by

E = {q := (r, u) ∈ R
N,2 such that Dr = 0 and D · u = 0}. (2.4)

The discrete divergence operator noted D· applied to f = (fi)i=1,...,N ∈ R
N is given

by

D · f =




f2+f1

2∆x

D2f
...

DN−1f

− fN+fN−1

2∆x




(2.5)

where Dkf = fk+1−fk−1

2∆x
, k ∈ {2, . . . , N −1}. The boundary condition (1.7)(b) in (2.1)

is taken into account in (2.5) through the boundary terms f2+f1

2∆x
and − fN+fN−1

2∆x
. The

discrete gradient operator D is defined with

Df =




f2−f1

2∆x

D2f
...

DN−1f
fN−fN−1

2∆x




. (2.6)

The boundary terms f2−f1

2∆x
and fN−fN−1

2∆x
in (2.6) are chosen so that the following

relation be satisfied [8]

∀(r, u) ∈ R
N,2 : 〈u,Dr〉 = −〈D · u, r〉. (2.7)
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The relation (2.7) is the discrete version of (2.3) with the boundary condition (1.7)(b).
Let us note that the definition (2.4) is equivalent to the definition

E = {q := (r, u) ∈ R
N,2 such that ri = Cste

1 and u2i = −u2i+1 = Cste
2 }

= V ect{1} × V ect{e}

where 1 = (1, 1, 1, 1, . . . )
T

and e = (−1, 1,−1, 1, . . .)
T
. Thus, the orthogonal of E in

R
N,2 is given by

E
⊥ = {q := (r, u) ∈ R

N,2 such that
∑

i

ri = 0 and
∑

2i

u2i =
∑

2i+1

u2i+1}. (2.8)

The space E
⊥ defined with (2.8) is the discrete version of (2.2). Indeed, we have [8]:

Lemma 2.1. The definition (2.8) is equivalent to the definition

E
⊥ = {q := (p, u) ∈ R

N,2 such that
∑

i

pi = 0 and ∃φ ∈ R
N , u = Dφ} (2.9)

where D is the discrete gradient operator defined with (2.6).

By using the lemma 2.1, we easily obtain the discrete version of the Hodge decom-
position q = q̂ + q⊥ and of the Hodge projection P (see lemma 1.2). This allows to
define also the incompressible and acoustic discrete energies with (1.5).

2.3. Definition of the checkerboard modes. We now define




Er = {r ∈ R
N such that Dr = 0}

= {r ∈ R
N such that ri = Cste}

= V ect{1},

E
⊥
r = {r ∈ R

N such that
∑
i

ri = 0}

(2.10)

and




Eu = {u ∈ R
N such that D · u = 0}

= {u ∈ R
N such that u2i = −u2i+1 = Cste}

= V ect{e},

E
⊥
u = {u ∈ R

N such that
∑
2i

u2i =
∑

2i+1

u2i+1}.

(2.11)

Of course, we have E = Er × Eu and E
⊥ = E

⊥
r × E

⊥
u . We propose the following

definition:

Definition 2.2. The space of checkerboard modes is defined with

Echeckerboard := {0} × Eu.

Moreover, we define the space of constant modes with

Econstant := Er × {0}.

Then, Econstant ⊕ Echeckerboard = E.
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Let us note that, due to the discrete Hodge decomposition, any q ∈ R
N,2 may be

written with q = (r̂, 0) + (0, û) + q⊥ where (r̂, 0) is a constant mode, (0, û) is a
checkerboard mode and q⊥ is an acoustic mode. Let us also underline that r and u
do not play symmetric roles because of the boundary condition u(x) · n(x)|∂Ω (more
precisely, D· 6= D). If the boundary condition was periodic, the variables r and u
would have played symmetric roles.

3. Time behavior of the checkerboard modes. We now study the time
behavior of the checkerboard modes q := (r, u) ∈ Echeckerboard := {0} × Eu when the
wave equation is discretized with the 1D colocated scheme





d

dt
ri +

a

M

ui+1 − ui−1

2∆x
= νr ·

ri+1 − 2ri + ri−1

∆x2
,

d

dt
ui +

a

M

ri+1 − ri−1

2∆x
= νu ·

ui+1 − 2ui + ui−1

∆x2

(3.1)

where i ∈ {1, . . . , N} is the space subscript and ∆x the space step. The boundary
condition (1.7) is discretized with

{
r0 = r1 and rN+1 = rN , (a)
u0 = −u1 and uN+1 = −uN . (b)

(3.2)

The Godunov scheme is obtained when (νr, νu) = νnum(1, 1) where νnum := a∆x
2M

.
The low Mach Godunov scheme – deduced from the conjecture 1.4 – is obtained when
(νr, νu) = νnum(1, 0). The scheme (3.1) with the initial condition q0 := (r0, u0) can
be rewritten as





d

dt
q +

Lν

M
q = 0,

q(t = 0) = q0

(3.3)

where ν := (νr, νu), Lν := L − Bν and





Lq = a(D · u,Dp), (a)

Bνq =
M

∆x2
(νrBrr, νuBuu) . (b)

(3.4)

In (3.4)(a), the discrete operators D· and D are defined with (2.5) and (2.6). The
discrete operators Br and Bu are the classical diffusion matrices in R

N,N that take
into account the boundary condition (3.2). They are defined as

Br =




−1 1 0 0 0
1 −2 1 0 0
0 1 −2 1 0

· · ·
· · ·

· · ·
0 1 −2 1 0
0 0 1 −2 1
0 0 0 1 −1




and Bu =




−3 1 0 0 0
1 −2 1 0 0
0 1 −2 1 0

· · ·
· · ·

· · ·
0 1 −2 1 0
0 0 1 −2 1
0 0 0 1 −3




.
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3.1. Basic properties. We have the following classical property:

Lemma 3.1. The discrete operators L, Br, Bu and Bν verify:
1) the operator L is antisymmetric;

2) the symmetric operators Br and Bu verify for any (f̃ , f) ∈ R
N,2:





〈f̃ ,Brf〉 = −

N−1∑

i=1

(f̃i+1 − f̃i)(fi+1 − fi), (a)

〈f̃ ,Buf〉 = −

N−1∑

i=1

(f̃i+1 − f̃i)(fi+1 − fi) − 2(f̃NfN + f̃1f1). (b)

(3.5)

Thus, KerBr = Er and KerBu = {0};
3) the operator Bν is symmetric negative-semidefinite when ν ∈ R

+ ×R
+ and verifies

for any q := (r, u) ∈ R
N,2:

〈q, Bνq〉 = −
M

∆x2

{
νr

N−1∑

i=1

(ri+1 − ri)
2 + νu

[
N−1∑

i=1

(ui+1 − ui)
2 + 2(u2

N + u2
1)

]}
.

(3.6)
The first point of lemma 3.1 is a direct consequence of (2.7). Let us note that

KerL = E as in the continuous case. Nevertheless, KerLν ⊆ E.

3.2. Time behavior. We deduce from the lemma 3.1:

Lemma 3.2. Let q(t) := (r, u)(t) be solution of (3.3). Then:

∀(q̃, q0) ∈ E×R
N,2,∀ν ∈ R

2 : 〈q̃, q〉(t) = 〈q̃, q0〉+〈ũ, u0〉

[
exp

(
−

4νut

∆x2

)
− 1

]
(3.7)

where q̃ := (r̃, ũ).

By taking q0 = (1, 0), q0 = (0, e) and q0 ∈ E
⊥, we deduce from this lemma:

Corollary 3.3. For any ν ∈ R
2, the spaces Econstant, Echeckerboard and E

⊥ are
invariant spaces for the equation (3.3).

We now precise the result obtained in lemma 3.2:

Theorem 3.4. Let q(t) be solution of (3.3). Then:
1) the checkerboard mode energy is equal to

||û||2(t = 0) exp

(
−

8νut

∆x2

)
;

2) when (νr, νu) ∈ R
+×R

+, the acoustic energy is a decreasing function that is always
greater than

Eac(t = 0) exp

(
−

8 max(νu, νr)t

∆x2

)
;

3) when νu ≥ νr > 0, the checkerboard mode is the fastest diffused mode.
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This result shows that numerical diffusion prevents from detecting any checkerboard
mode at low Mach number when the compressible Euler or Navier-Stokes systems is
solved with a Godunov type scheme. However, it shows also that by using a low Mach
X scheme (cf. conjecture 1.4), it could be possible to detect a chekerboard mode at
large Reynolds number – i.e. when the physical diffusion is not large – although the
scheme remains diffusive (it only diffuses the acoustic mode in that case).

Proof of lemma 3.2: For any q̃ ∈ R
N,2, we have M d

dt
〈q̃, q〉 = −〈q̃, Lq〉+〈q̃, Bνq〉. Then

M
d

dt
〈q̃, q〉 = 〈Lq̃, q〉 +

M

∆x2
(νr〈r̃,Brr〉 + νu〈ũ,Buu〉) .

On the other hand, we have

∀q̃ ∈ E :





Lq̃ = 0 (since KerL = E),

〈r̃,Brr〉 = 0 (since KerBr = Er).

Then

∀q̃ ∈ E :
d

dt
〈q̃, q〉 =

νu

∆x2
〈ũ,Buu〉.

Moreover, we deduce from (3.5)(b) that 〈e,Buu〉 = −4〈e, u〉. Thus, ∀ũ ∈ Eu :
〈ũ,Buu〉 = −4〈ũ, u〉. This implies that ∀q̃ ∈ E : d

dt
〈q̃, q〉 = − 4νu

∆x2 〈ũ, u〉. We con-
clude the proof by taking q̃ ∈ Er × {0} and q̃ ∈ {0} × Eu.¤

Proof of theorem 3.4: Let us define Echeckerboard

inc (t) := ||û(t)||2 (checkerboard mode
energy). Taking q̃ = (0, e) and noting that the dimension of Echeckerboard is equal to
one, we deduce from lemma 3.2 that Echeckerboard

inc (t) = ||û0||2 exp
(
− 8νut

∆x2

)
. On the

other hand, since d
dt

E(t) = 2〈q, d
dt

q〉, we obtain, by using the lemma 3.1, that

d

dt
E(t) = −

2

∆x2

{
νr

N−1∑

i=1

(ri+1 − ri)
2 + νu

[
N−1∑

i=1

(ui+1 − ui)
2 + 2(u2

N + u2
1)

]}
.

(3.8)
Thus, the inequality d

dt
E(t) ≤ 0 is satisfied by the acoustic energy Eac(t) since E⊥ is

invariant (cf. corollary 3.3). Moreover, the relation (3.8) can be rewritten as

d

dt
E(t) +

8

∆x2

(
νr

N∑

i=1

r2
i + νu

N∑

i=1

u2
i

)
= λ

where λ =
2

∆x2

{
νr

[
2(r2

1 + r2
N ) +

N−1∑

i=1

(ri+1 + ri)
2

]
+ νu

N−1∑

i=1

(ui+1 + ui)
2

}
. Thus

d
dt

E(t) + 8
∆x2 max(νr, νu)

(
N∑

i=1

r2
i +

N∑
i=1

u2
i

)
≥ λ that implies that

d

dt
E(t) +

8

∆x2
max(νr, νu)E(t) ≥ 0 (3.9)

since λ ≥ 0. The inequality (3.9) is valid for the acoustic energy Eac(t) since E⊥ is
invariant (cf. corollary 3.3). Thus, by using the Grönwall’s lemma, we obtain that

Eac(t) ≥ Eac(t = 0) exp
(
− 8 max(νu,νr)t

∆x2

)
. Statement 3) is a direct consequence of 1)

and 2).¤
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4. Numerical results. We choose the initial conditions r0 = (sin(8πi∆x))i=1,...,N

and u0 = e

2 with Ω = [0, 1], ∆x = 1/N and N = 100 (thus, (r̂0, û0) = (0, u0) and

(r⊥
0
, u⊥0

) = (r0, 0)). The sound velocity a/M is equal to 1 and the time step is
given by ∆t = 0, 15×∆x (we use an explicit Euler scheme for the time discretization
of (3.3)). The figures 1 and 2 show that the checkerboard mode e

2 is diffused when
(νr, νu) = νnum(1, 1) and is a constant mode when (νr, νu) = νnum(1, 0). Let us note

that for these two test-cases, r̂n≥0 = 0 and that u⊥n>0
6= 0 although u⊥0

= 0. On the
figures 3 and 4, we show the incompressible energy Einc(n), the acoustic energy Eac(n)

(normalized by the initial condition) and the function ψ(n) = exp(−8 max(νu,νr)n∆t

∆x2 ).
The figures 3 and 4 confirm the theorem 3.4.
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Fig. 1: νu = νr = νnum Fig. 2: νu = 0 and νr = νnum

u(n = 100, x) (∇) and r(n = 100, x) (◦)
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Fig. 3: νu = νr = νnum Fig. 4: νu = 0 and νr = νnum

Einc(n) (∇), Eac(n) (◦) and ψ(n) (−) (0 ≤ n ≤ 32)

5. Conclusion. In [6, 7], we have proposed a class of colocated schemes that
allow to solve the compressible Navier-Stokes system with accuracy at low Mach
number. This class of colocated schemes is obtained by modifying Godunov type
schemes in a simple way. The modification consists in centering the discretization
of the pressure gradient in the velocity equation, the rest of the scheme remaining
unchanged. Let us note that this modification may be applied to colocated schemes
that are not of Godunov type. This method is justified by a theoretical study of
the Godunov scheme applied to the linear wave equation and by numerical results in
the non-linear case as well. Nevertheless, we have not studied in [6, 7] the possible
existence of checkerboard modes at low Mach number although this question is classi-
cal in the field of colocated schemes solving the incompressible Navier-Stokes system.
Therefore, we have studied in this paper the checkerboard modes in the case of the
linear wave equation solved with a Godunov scheme on a cartesian mesh. We have
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shown that the checkerboard modes are the fastest modes diffused by the Godunov
scheme and that these modes are constant modes when the Godunov scheme is mod-
ified by centering the discretization of the pressure gradient. This study underlines
that, for any Reynolds number, it is impossible to detect any checkerboard mode at
low Mach number when the compressible Navier-Stokes system is solved with a Go-
dunov type scheme. Moreover, it shows that by using a low Mach X scheme at large
Reynolds number on a cartesian mesh and at low Mach number, it could be possible
to detect chekerboard modes although the scheme remains diffusive.
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