Proceedings of ALGORITMY 2009
pp. 429-439

ON BLOCK JACOBI ANNIHILATORS*

VJERAN HARIT

Abstract. The paper reveds the structure of the block Jacmbi annihil ator associated with one step of the general
block Jamhi-type processof the form A(k+1) = [P(k)]* A(K) Q(F) | k. > 0. Here P(%) and Q(*) are norsinguar
elementary block-matrices which differ from the identity in four blocks: two diagoral and the two correspondng
off-diagorel blocks. In the cae of unitary P(*) and Q(¥), the block Jahbi annihilator is up to a permutational
similarity a direct sum of an identity matrix, of a z&o matrix and o a unitary matrix. The block Jacohi annihil ators
are building Hocks of the block Jambi operators, which are used in proving the global convergence of block Jambi-
type processes.
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1. Introduction. Let A be asquare matrix of order n andlet

All Alm ni
A=] (D

Apr -+ Amm Nm

bethe matrix block-partitionwherethe diagoral blocksare square. The matrix block-partition
(1.1) isdetermined by the partition7 = (n1,...,n,,) of n, wheren; > 1foral 1 <i <m
andny + -+ ny, = n.

Block Jaaobi-type methods are iterative processs of the form
AFHD — pR* A Q) > 0, (1.2)

where P(*), Q(*) are elementary block matrices, [P(¥)]* is the Hermiti an transpase of P(*)
and A(® = A istheinitial matrix. Generally, elementary block matrix E is a norsinguar
n X n matrix of the form

Be o Be | ! .
E;; = I ;o 1<y, or Ey4= Ei; i, 1=,
Eji Ejj S Inj I

where E cariesthe same partitionas A. All elements of E, except possbly for the dements
inthe blocks E;;, E;;, E;; and E;;, are asin theidentity matrix I,,. Indicess, j are the pivot
indices, (i, j) isthe pivot pair and

. E.: E.. . . )

E = " ”] ifi<j or E=FE; ifi=j
{ Eji Ejj

is the pivot submatrix or the (i, j) — restriction of E. We will write E;; = E(i,j;E), where

& = &, isthe mapping which constructsthe n x n matrix E;; from theinput data s, j and E.

*Thiswork was auppated by the Croatian Ministry of Science, Education and Sports, grant 037-03727833042
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429



430 V. HARI

Each iteration o the block Jambi-type method (1.2) is asociated with pivot indices
i =i(k), j = j(k), i < j, P® = &(i(k),j(k);; P®) and Q¥ = £((i(k), j(k); QM)
When the emphasisis on pvot indices, we shall write P () instead of P(*) or sometimes
P;; when £ isclea from the context. If n; = ng = -+ = n,, = 1, we spesk of anon-block
Jacobi-type method a simply of a Jacbi-type method

The process (1.2) is defined if at ead step k£ one knaws the pivot pair (4,7) and the
algorithmwhich determines the pivot submatrices P(*) and Q(*) from the dementsof A %),

The way of choasing the pivot pairsis referred to as pivot strategy, but since eab pivot
pair addresses one block, one can use the term block pivot strategy. For simplicity we cdl
it briefly strategy. Let Ng = {0,1,2,...,} andP,, = {(s,t) : 1 < s <t < m}. Then
card(Py,) = m(m+1)/2isthe cadinality of P,,. We can definepivot strategiesas functions
from Ny to P,,,. Each strategy | : Ny — P, satisfies | (k) = (i(k),j(k)), k > 0. If | isa
periodic function, then | is caled periodic strategy. Let | be aperiodic strategy with period
M. If M > card(Py,) (M = card(P,,)) and{l(k) : k =0,1,...,M — 1} = P, then | is
cdled quasi-cydic (cydic) strategy.

For any square matrix X = (w;;), thefunction Off (X), Off *(X) = | X — diag(X)||%
is referred to as departure from the diagond form or the off-norm of X. Here || - ||» is the
Frobeniusnormwhilediag(X ) isthediagoral part of X. When used with the iteration matrix
A®) generated by the iteration (1.2), it measures how far the processhas advanced. So, in
provingthe global convergenceof Jambi-type methods, it i simportant to find some sufficient
condtionsfor the convergenceof A (%) to diagoral form, i.e. for Off (A(*)) — 0 ask — oo.

As has been shown in [4], one important tod for proving the convergenceto diagorel
form of the block Jacohi-type process(1.2) isthe theory of block Jacobi operators. In[6] and
[5] Henrici and Zimmermannintroduced Jacobi operators as tool for proving the global and
asymptotic convergence of the alumn-cyclic Jacobi method for symmetric matrices. Later,
this tod has been generalized to work for complex Hermitian matrices [3], and for proving
convergenceto diagoral form of general Jambi-type processes [1], [2], [3]. Eadh Jambi
operator isa product of M Jambi annihil ators, where M isthe period of the pivot strategy. In
[4] Jacobi annihil atorsand operatorshave been generali zed to cope with the block Jambi-type
processes. Therefore, we cdl them here block Jacobi annihil ators and operators.

The block Jacobi operators are made up d block Jaabi annihilators. Hence, the latter
arethe building Hocksfor the whole theory. Here, we reved the structure of the block Jaaobi
annihilators. This dructure is used in [4] for estimating the norms of certain block Jambi
operators.

2. Block Jacobi Annihilators. To an arbitrary p x ¢ matrix X we can asciate the
column-vedor col (X) and the row-vedor row (X) asfollows

11 T 1
a col (X) = [xn,acgl,...,acpl,...,xlq,acgq,...,qu] ,
X . . .

Tpp - Tpq rO\N(X):[1'11,1612,...,,CClq,...,,CEpl,,CEpQ,...,SL’pq].
Thus, col (X) (row (X)) isthe mlumn- (row-) vedor obtained by using the alumn-( row-)
wise ordering of the dements of X . Here, generally, Z7 stands for the transpose of Z.
Letw = (n1,...,n,) be apartition o n, andlet A = (A,;) bethe correspondng Hock

matrix partition (1.1). For 2 <i,j < m, let

col (A1j>

col (AQj)

r;, = [rO\N (Azl) row (AZQ) ... Tow (Ai,iflﬂ ) C; = .

col (Ajfl_’j)
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With A and 7, we as%ciate the alumn-vedor
a=vec(A) = [cg, c el s, ,rm]T . (2.1)
Thus, vec = vec, : C"*"™ — C2K where

- -1
K:KWZN—Z%, N =
t=1

n(n—l)_

5 (2.2)

Let C*™ = Cpr™ C C™*" bethe linea subspaceof n by n matrices whose dl diagonal
blocks from the block partition (1.1) equal to zero. It isimmediate to seethat the restriction
of vec to this subspaceis aregular linea operator from C?*" to C?X and it is isometry if
Cn*" is equipped with the Frobenius norm and C2% with the Euclidean vedor norm. We
denate thisrestriction by vec,.

We shall also use the vedor spaceC’ of K-vedorsfor which hdds C?X = CX ¢ CK.
Here @ denotesthe orthogoral sum of vedor spaces. If a isasin therelation (2.1), then

aj T 71T T K
a[a2], alz[c%...,cm} , as=/[re,...,ry] , a;, ag € C™.

Leti < jandletP = £(4,5; P), Q = £(i, j; Q) be dementary block matrices with

- P Py n; ~ Qi Qij n;
P= J = J . 2.3
[ Py Py } n; Q [ Qji Qjj ] n; 23

Theblock partitionin (2.3) isinherited from 7. Let
A'=P*AQ, AcC™™ (2.4)

If P and Q are chasen such that the (i, j)-restriction of A’ isdiagorel, then the relation (2.4)
inducesin C2X the eguation

a’ = 3;(P,Q)a, a=vec(A), a =vec(A'). (2.5)

We cdl the 2K by 2K matrix SZ—]—(P, Q) Jacobi anrihilator or Jacobi factor associated with
the dementary block matrices P and Q. It is evident that the diagoral elements of 3 (P, Q)
which correspondto those dements of a which are not aff eded bythetransformationare one,
and those which correspondto the dements of a’ which are annihil ated, are zeo.

Next, we extend the definition o the Jacobi annihilator/fador. Let P and Q be any
elementary block matrices, i.e. we only require that P and Q from the relation (2.3) are
regular. This means that the (4, j)-restriction of A’ from the relation (2.4) does not have be
diagorel. We define the Jacohi fador S;; (P, Q) by help of the relation (2.5), but require that
A’ isobtained from A in the following way

A'=2Z,;(A), A=P*AQ, AecC™"

Here, Z;; maps the (4, j)-restriction o the agument matrix to zero. Thus, if X carries the
block matrix partition defined by 7, then the (4, j)-restriction Z;;(X) is zero.

The structure of S;;(P, Q) in the speda caseny = --- = n,, = 1, P, Q unitary, is
described in [3] .
The partition 7 and the pair of elementary block matrices P = £(i, j; P), Q = £(i,; Q)
uniquely determine the Jacohi factor S;;(P, Q). To seethat, we describe with more detail s
how S;(P, Q) ads onan arbitrary vedor x € C?,
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Letx € C2X andlet X € C™*" betheunique matrix X = vec, ! (x). Thematrix X car-
ries the partition (X ;) induced by 7 andits diagoral blocks are zeo. Let X be transformed
intoY € CJ*" by thefollowingrule

Y = Pj; XW+P iXjr, 1<r<m

Yjr = P Xor + Pj;Xjr, 1<r<m

Y”' = XMQ“ -+ erjS, 1 S T S m (26)

Yo"j == Xm'Qij + erij7 1 S r S m

Yij:O7 Y}i:Ov Yii = O, Y}j:O

Yot = Xse Whenever {s,t}n{i,j} =0,
where the linesin (2.6) are to be rea (i.e. performed) sequentially from top to battom. The
transformation (2.6) is a compasition o the linea transformation X — X = P* XQ andthe
linea transformationX — Y = Z,;;(X) which S|mply sets the blocks X;, X”, Xﬂ, X of
X tozero. Lety = vec(Y) = vec, (Y). Then S (P, Q) isthe unique matrix which 91|sf|e£
y = Si;(P,Q)x for dl x € C*¥. Sincevec, and vec; ! are linea transformations, the
mappingx — y islinea. So, the matrix J;; (P, Q) exists.

To show the uniquenessof S;; (P, Q), suppcse that

%ij(lal, Q/) 7é %ij(la, Q) and %ij(f’/, QI)$ = %ij(ls, Q)l’ for all z.
Thiswould imply
O = (Pii — P)" Xir + (Pji — Pj;)" Xjr, for1<r<m
O = (PZJ *Pi/j)*Xir+(ij 7PJ(]-)*X]'T, forl <r<m
0= Xi(Qii — Qi) + X1 (Qsi — Q}), forl<r<m
0 = Xi(Qij — Qi) + Xrj(Qj; — Qjy), forl<r<m
If for example, P;; # P/, thenel Pyies # el Pes for some a and 3, wheree,, and e
arethe clumnsof 7,,,. Choosingan = such that X;,eg = eg and X ;,eg = 0, we obtain that
thefirst equationin (2.7) isviolated. The agumentsfor other cases ares'mil ar.

2.7)

Finally, let us consider the case i = j. In this case the relation (2.6) simplifies to just
threelines. The seaond, the forth and the fifth line can be removed, whil e the first and the
third lines are smplified to Y;,, = PiX;, 1 <r < mand¥,; = X;;Qu, 1 <1 < m.
Hence X andY are linked solely by the transformation Y = P*XQ, i.e. the operator Z;;
isnot needed.

2.1. Thestructure of 3, (P, Q). Herewe find the structure of the matrix S (P, Q).
We first consider the nontrivia case: i@ < j.
Letw = (ny,...,ny,) be apartition o n andlet

=%, =(81,82,---,8m), Sr=n1+-+n., 1<r<m.
Obvioudy, wehave s, = s,._1 + n,, 1 < r < m, provided that s; = 0. Let
b(r)=(sr—1+1,...,8), 1<r<m,

denate the “block index” correspondngto the r’th block-column and Hock-row of X and’Y
from the relation (2.6).

Let x,y € C2£ with x arbitrary and y satisfyingy = $y;x. The most natural block-
partition of x andy isdefined by the foll owing partition o 2K,

:V(QK):(Vly---aVNm;VNm-Q—I;--wVZNm) (28)
= (n1n2 , M1N3, N2N3, - ooy N1Nm , N2Mm 5 -+« 5 Nn—1Mm,,

ninz, ning, nNang, ... , N1Mm , N2Nm, - .-, nmflnm)a
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where N,,, = m(m — 1)/2. In addition, let

p=pR2K,v)=(p1,02, -, PNps- -+ P2N, )
where p; isthe sum of thefirst ¢ elements of v. Note that
NN + NNz + nong + - - - + NNy, + NoNpy + -+ + Ny 1Ny, = K,
sowehavepiin,, = K+ pi, 1 <t < N,,. Let
b(t) = (pt—1+1,...,pt), 1<t <2N,,

denote the “block index” correspondngto the ¢'th block of thevedorsx andy. Let & be any
Jaohi fador of order 2K. For the blocks of & and x, y as well, we shall use the foll owing
notation

ye =y(O(), @ =x(0(t), St,0 =3(b(tr),b(t2)), 1 <t,t1,t2 < 2N

Thus,

Y1, Z1, S1,1 $1,2 S1,2N,,

Y2 T2 S2,1 32,2 $2,2N,,

y = ) X = ) % =
Y2N,, T2N,, S$2N,,,1  S2N,,,2  ° S2N,,.2N,.
Let
.. 1—D(—2)/2+1, 1<i<ji<m,
7(i,j) = ( . 2 )/ . (2.9)
T(],Z)+Nm, 1<j<i<m

be the function which counts how many steps are neaded within ore ¢/cle to read the stage
when X;; and X;; become the pivot blocks under the mlumn-cyclic strategy. Since we
have asaumed that the step courter starts with zero, then within the aurrent cycle, at step
k=r(,5)—1,i < j, X;; and X;; arethepivot blocks. If 7 > j, then X;; and X ;; are again
the pivot blocks, but in the next cycle.

Each Jaoohi fador differs from the identity matrix only in certain principal submatrices
obtained at the intersedion o two block-rows and Hock-columns. We shall now indicae
their position and their structure. These submatrices can be nicdy expressed by help of the
Kronedker matrix product, denoted by .

THEOREM 2.1. Let 7 = (n1,...,n,,) bea patition o n such that n > m > 2 andlet
K beasintherelation (2.2).

Letl < i < j < m. Let P;; and Q;; be dementary block matrices and let & =
%ij(f), Q) be the associated Jacobi annihil ator. Then < differs from the identity matrix Iox

in exactly 2m — 2 principal submatrices. Using the function = from the relation (2.9), these
submatrices can be written in the foll owing form:

Sr(ig)rg) = O SeGarGa) = O,
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[ Pi®l,, Pj;®l,
| e, Pyol,
|: S7'(1',1“),7'(1',7") S7'(1‘,1“),7'(]‘,7‘) :| — I’VIT ® P;; S (Pj*z ® Inr)

o * * 5 141 <r< j -1
SrGr),r@r) St rGr) | S(In, ®P5) Pl @1, }

]P*@Inr, 1<r<i-—1

_Inr®Pii I, ® Py
| In, @ Pji In, ® Pj;
Tol, QLol,,
| QG ®In, Qj;® 1,
[ I, ®Qh S(Qf;®In,)
| S (In, ® QL) T @I,

] , JH1I<r<m
]QT®IHT,1§7*§1'1

[Sr(r,i),r(r,i) S'r(a",i).,'r(a",j) :| —

},¢+1§r§j1
Sr(rg) (i) Sr(rg)r(r)

r T
I, @ Qi In, ®Qij
Ny Qu Ny Q’L] : j + 1 S r S m,
| L, ®Qji In, ®Qjj
where
In, ®ef In, ®é1
S = : =0, ®& ... In,®é&,], S= : =[,®er ... In;® en,].
Ini ®62;T Inr ®éz;]

Here, e;, €; andé; denotethe ith column of 1, , I,,, and I, respedively.
Leti = 5. Then S = %n(ls, Q) differs from the identity matrix Iox in exactly 2m — 2
principal submatrices, which can be written in the form:
N _ [ PeL, =P @, 1<r<i-1
ST, ) = { L, @P:=1I, ®P*, i+1<r<m

[ Q@LeLL, =Q"T®I,, 1<r<i-1
St(r,i),m(rd) = InT®Q£:InT®QTa it1<r<m

Proof. Let usfix i, j, i < j and denate S;;(P, Q) simply by &. The matrix S has order
2K whichisgiven by (2.2).

Obviously, the block rows of , with subscripts (4, ) and 7(4, 1) = 7(4, j) + Ny, have
to be zeo. Thus,

Sr(ig),t = 0, Sr(ji)t = O, 1<t<2N,,.

All information onthe nontrivia principal submatrices of & can be extraded fromtherela
tion (2.6). So, let us consider the first two equations from (2.6). They shoud be combined
with the fad that the pivot blocks are annihil ated. Then they split i nto the threerelations

}/zr:P*XM‘“i’P*XT .
(A1) _ p= ey }1§r§z—1
}/jr - P)inir + ijXjr
}/ir:P'*'Xir“i’Pfk'X'r . .
I S L T
ijr - PiniT + ijXjr
Y = P Xy + P X, .
(A3) _ px e }y+1§r§m
ijr - PiniT + ijXjr

We consider how these relations define .
First, we consider the relations labeled (A3). If e; denatesthe [th column of I,, ., then

}/i'r‘el = P{;Xirel + P;;'Xjrela 1 < l <n,

i+1<r<
Yirer = P Xiver + P Xjrer, 1 <1<n, } Jrlsrsm,
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shows the rule how the ’th column of Y;,. (Yj,) is obtained from the 'th columns of X,
and X,.. Notethat z,(; ,) = [(Xire1)”, ..., (Xiren,)"]" andsimilar for y,; ). Hence, for
eah j+ 1 <r < m,wehave

Pz*z P;'L

*

S‘r(i,'r),‘r(i,'r) g‘r(i,'r),‘r(j,r) P:; Pf*i _ Inr ® Pi; Inr ® Pz]

g‘r(j,r),T('L,r) S7'(j,'r),‘r(j,7‘) PZ*J P;J' - Inr & PJ'L [nT & PJJ
P P
Let us now consider the relation (Al). If €; denates the /th column of I,,, and ¢; the ith
columnof I, thenforal 1 <r <i—1
&Yy =& Py Xir + & P Xj, 1<1<n,

o 7 T 1<r<i1-1
e Y, =¢ P;}X” +é Pj*ijT, 1<i<ny

shows the rule how the I'th row of Y, (Yj,) is obtained from the matrices X;, and X,.
Transpasing the equationsyields
Viie, = X Piéi+ X[ Pye;, 1<1<n,

T — pa—_— 1<r<t-1
erel = Xir]Dijel +Xerjjela 1<I< n;

Sincei > randj > r, wehavez,(; .y = [é] Xir,..., e X;,|T andsimilar for y,(; .. Note
also that
X5 Pier =Y (Pi)a(Xjes), 1<1<m,

s=1

and similar holdsfor &/ P}; X;,.. Thisimplies

(Pii)11ln, (Pii)211n, o (Pii)nga T, ny
(Pii)121n, (Pii)22ln, (Pii)n;,2In, T .

Sr(ir) i) = : : y : . =P,
(Pi)1,ngIny  (Pid)am;In, - (Pi)ngngIng, Ny

andsimilarly
Sr(iyr),r (o) = Fj; @ In,.-
'nasimilar way we obtain ST(Gr), i) = PJE ® In,, St(g,r). () = Pj*j ® I,,. Thus,
Sr(ir),r(ir)  St,r),7(,r) ] _ [ B:i ® I, PJ} ® I, ] _brel i
SrGr),r (i) ST, (,r) Pji ® I, ij ® I, .

Let us now consider the relation (A2). If ¢; denotes the ith column of I, and ¢; the ith
columnof I, thenforal i +1 <r <j—1
}/irel = P;;Xirel + P;;Xj'rel; 1 < l <n,
- I o i+1<r<j-1, (210
e Y =¢ P Xip+ ¢ P X, 1<1<n;

showsthe rule how the {’th column (row) of Y;,. (Y},) is obtained from the columns (rows) of
Xir and Xj,.. Thisimplies s.(; ) 7,y = diag(Pj, ..., Pj;) = I, ® Pj.
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Toobain s.(; ), ~(j,r), Weshal first find the auxili ary column-vedor z andthe matrix T
such that z = Tz, (; ) correspondsto therelation Z = P}; X, so that z = row(Z)T. As
ealier, one ca find ou that T = P;;- ® I,,,. Notethat Z hasto be alded to P} X, which
has been stored by columns as the clumn-veaor s(; ;) (i,»)Tr(i,r)- S0, We have to add Z
to P;; X, by columns. This means that before adding 2 10 S7(; ), 7(i,r)Tr(i,r)» WE have to
transform it to the alumn-vedor 2z’ = col(Z). This can be dore by the permutation matrix
S of order n;n,., whase row- and column-partition has the form (heree;, ¢;, é; denatetheith
column of 1., , In,, In,, respedively),

T
S = [eb €1+n,s - €1+ (n;-1)n,.» €2, €2+n,5 - - -, €24+ (n-1)nps -+ 5 €npy €200y - 7eninr]
= [eb €1+n;,-- - 7e1+(nT'1)ni ,€2,€2+4n,,..., e2+(nr'1)n¢7 e Cny€2n,, .y enrni]
In, ® eT
= : =[I, ®é I, ®é ... I, ®¢&y].
Ini ® egr
/
Thus, 2’ = S((ijZ ® InT) x‘r(i,r)) = S(Pj*z ® InT) Tr(iyr)s hence
Pj*i ® elT
* .
Sr(ir),r(Gr) =S (Pji ® Ip,) = :
PJ'*i ® egr

If we transpose the secondequationin (2.10), we obtain
Yile = X Pjé + X Pjjéq.

Note that the clumnsof X7 and o Y, are conseautively savedin = ; ) andy.; . There-
fore, the contributionto y,(; -, comingfrom P;; X j,., isjust

(Pij)itIn, (Pij)otln, - (Pij)njaln,
(Pji)izIn, (Pjj)2zIn,. -+ (Pjj)nj2In, .
: : : Tr(r) = (P ® In,) T7(jr)-
PFii)tmniIne  (Pij)zmiln, -~ (Pij)ngm;ln,
Thisimplies

S‘r(j.,a"),‘r(j_,r) = Pj*j X InT-

To oltain s.(;.),+(i,r),» We shall first find the auxiliary column-vedor z and the matrix T,
suchthat 7 = T'w,(; , correspondsto the relation Z = P} X;,, so that Z = col(Z). Since
Tr(iyy = COl(X;.), one can find as ealier, that T' = I, ® P:. Note that Z has to be
added to Pj; X ;- by rows, since P;; X, is sved in the column-vedor S ; ) ~(j,r) T~ (j.r)
by rows. So, before ading 2z t0 S, (; ), ~(j,r) T+(j,r) it hasto be transformed to the column-
vedor 2’ = [row(Z)]”. Thiscan be dore by the permutation matrix S of order n;n,., whose
column- and row-partition has form (here e;, e;, ¢; denote the ith column of 1, .., I, I,
respedively),

S =[e1,€14n, ;- €14(n;-1)n,» €2, €240, - €2+ (n,~1)nrs> -+ > €01 €205+ €nin,
= [e1,@14n, 5 - -+ €14 (n,-1)n;» €2, €240, s - - s €2+ (n=1)nys - -+ » €nyr €205, -+ enrn].]T
I, ®é&f
= = [Inj X e In]. Rey ... In]. ®€nr].
I, ®él

g
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Thus, 2’ = S((In, ® P) @7,)) = S(In, ® P}) x1(;,), hence

I,, ® (Pjé)*
Sr(jr)rtir) = S (In, @ Pyj) = : =[Pi®er ... P;®en)].
In'r‘ ® (Pijénj>*
Thelatest relationsimply that fori + 1 < r < j — 1 hdds

Sr(ir),r(ir)  St,r),m(,r) :| — |: Inr ® P;; S (Pj*z ® Iﬂr)

Sr(r),rlir)  ST(r),T(Gr)

S (I, ® P;;) P ® I,

Let us yet consider the third and fourth relation from (2.6). They shoud be combined
with the fad that the pivot blocks are annihil ated. Then they split i nto the threerelations

Yii = X0iQu + X0 Qjs
Y = X0iQij + XjrQjj

Yyi = XriQui + X0 Qi
B2 i rildii rjji
(B2) Y, = X0iQij + X05Q55
Yo = X0iQii + X0 Qji
Y, = X0iQij + X0jQj5
We oonsider how these relations define .

First, we consider the relation (B1). If & and ¢; are the Ith columns of I,,, and [,
respedively, then

(B1) }1§r§il

}i+1§r§jL

(B3) }j+1§r§m

Yiier = XriQuier + X0 jQji6, 1 <1< n;
Yo = XriQijér + X5pQj 561, 1 <1< ny,

holds. Sincer < i andr < j the lumnsof Y;;, X,; and X,.; take conseautive positionsin

thevedorsy: . .., T7(rs), adx, (. ;. SO, we can conclude s ealier,

Sr(r,i),7(r,3) :T(m),r(m) ] _ { i @ In, %' ® In, = QT@)]nM 1<r<i—1.

%T(T,j),T(T,i) N Q;l; ® Inr ij & I’Vh

Next, we consider therelation (B3). If ¢; isthe [th column of I, , then

7(r,3),7(r.4)

T T T
e Yri = e XriQii +e] X05Q i 1<]<
I — — nT;

e Yoj = ef XpiQij + €] XrjQjj

shows how the rows of Y;.; andY;.; are obtained from the rows of X,; and X,;. Sincer > i
andr > j, the transposed rows of Y,;, X,; and X,; (that is the columns of Y2, X~ and
XTTj) take mnseautive positionsin the cnlumn VedorSyT.(m,), Tr(r,i) ANA X, (), rESPEAIVEY.
Therefore, by transposing the last two relations, we obtain

7

T, _ T T T T, °
Yie = Qz‘ij'@l + ijerel

T _ T~vT T T
Yie = @QuXpe + QX e 1<1<n,.

From this, we obtain

I, ® Qi In, ® Qi
I, ® Qi In, ®Qjj

S‘r(r,i),‘r(r,i) g‘r(r,i),‘r(r,j) :|

N N , J+1<r<m.
ST(rg),T(rd)  S7(rg),7(rg)
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Theresult for the caei + 1 < r < j — 1 is obtained from the relation (B2) in a similar
way as we have obtained the gopropriate result from the relation (A2). One ca also use the
argument followingthe relation (2.13).

Finally, for the cae i = j, we now easily conclude that S;; is up to a permutational
similarity adired sum of an identity matrix and o the matrices

Sr(i,r),r(i,r) and Sr(ri),m(r,)> 1<r<m,r # i, (211)
which are described above. This provesthe theorem. O
We seethat 35, ¢ < j, isupto a permutational similarity a dired sum of an identity
matrix, of the null matrix of order 2n;n; and o the matrices

{ Sr(i)rlir)  Sr(ir)rGi) } { Sr(ri)r(rd)  S7(ri)(rd) } lsrsm 519
S x x v ) .. .
Sr()rn) St TG S i) Sr(ri)r(r) r & {i, 5}

which are described abowve.
Notethat Y = Z,;(P*XQ) impliesY* = Z,;;(Q*X*P) andthe latter yields

Y2 | _ (A D X2 y2 | A B
les@n | 2] oo [ Bewen|[E] en
Inthevedors[xJ x{|7 and[y? yI1]7, the subscripts7(r, i), 7(r, ) (r(i,7), 7(j, 7)) address
theblocksof x; andys (x; andy;). Takinginto acournt (2.13), we can understandwhy inthe
assertion o the theorem, the right-hand sides in the seandset of formulas are obtained from
the right-hand sides in the first set of formulas by repladng P with Q. From (2.13) one ca
conclude that ;; P,Q) = JTJZJ(Q, P)J for a suitable permutation (block-transposition)
matrix J.

The following result i simportant sincethe most important Jacohi-type methods use uni-
tary transformations.

PROPOSITION 2.2. If the dementary block matrices P;; and Q;;, ¢ < j are unitary,
then the matrices defined in (2.12) and(2.11) are also unitary and

IS2=1. (2.14)

Prodf. It sufficesto provethat the matricesfromtherelations(2.12) and (2.11) (thelatter
inthe cae: = j) areunitary. Let usfirst consider the matrices from (2.12).

The Kronedker product of unitary matricesis unitary. So, we have to chedk the six types
of matrices given in Theorem 2.1. For simplicity we shall denote ead of of these matrices
by S...

Forl <r <i-—1,wehave ather @T =P ® I, or @T = QT®InT. In the both cases
the matrices S, are unitary asthe Kronedker product of unitary matrices.

Forj +1 <r <m, weseetha S, isupto apermutational similarity adired sum of n,
matrices P* or n, matrices QT SinceP* and QT are unitary, suchisalso eat ...

Fori+1<r <j—1,wefirst consider the cae

&>

I, ® P S (P @ In,) ) )
= ~ r (%) 7 r , 1< <i—-1
[sum@a*;) pretL, |0 'TISTS

To chedk whether S, is unitary, we make the product

g | In®Pi (L, oP)ST)[ InoP; SEFel,)] _[EF
T (P @ 1,,)ST Py eI, S, ®pP;) P;el, | |G H]



ON BLOCK JACOBI ANNIHILATORS 439

Next, we compute the four blocks of $,.S*. Since G = F*, it suffices to determine E, F
and H. Assuming that the matrix product has higher priority than the Kronedker product, we
have

E = (I, ® Pyi) (I, ® P;) + (I, ® P;;)STS (I, ® P}y)

= Inr ® PiiP;; + Im ® PZ]P;; = Im ® (P“P':; + PUP;;) = Im ® Im = Immv

F=(I,, ®Py)S(P}; ®In,) + (In, ® P;j)ST(P}; @ I,,)

L, @ el I, ®el
= (Inr ® Pu) (Pj*i ® Im) + (Inr ® PZ]) (Pj*j ® Im)
Ini ® egr I"J’ ® eg'r‘
i P” X 6? ]Dij X 6’{ 1
L P ® ey, Pj®ey, |
i PiiP;;‘@e{ P‘jP;j ®€,{ i (Piipji'f'PijP;})@e,{
- ; + 5 - s =0,
| rred | Lrmed | | emanmed

H = (Pj; @ In,) (P}; @ In,) + (Pji @ In,) (P}; ® In,)
— PP ® Iy, + PP @ I, = (PPl + PP @ Iy = Ly, ® Ly, = T, -

33+ 43 % 33733

The proof for for the remaining case is quite similar. The role of P* is played by the unitary
matrix Q7.

If i = j, we seefrom Theorem 2.1 that eah S, is the Kronedker product of two unitary
matrices. This completesthe proof. O
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