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ON BLOCK JACOBI ANNIHILATORS ∗

VJERAN HARI†

Abstract. Thepaper reveals thestructure of theblock Jacobi annihilator associated with onestep of thegeneral
block Jacobi-type processof the formA(k+1) = [P(k)]∗ A(k) Q(k), k ≥ 0. HereP(k) andQ(k) arenonsingular
elementary block-matrices which differ from the identity in four blocks: two diagonal and the two corresponding
off-diagonal blocks. In the case of unitary P(k) and Q(k), the block Jacobi annihilator is up to a permutational
similarity a direct sum of an identity matrix, of a zero matrix and of a unitary matrix. Theblock Jacobi annihilators
arebuilding blocks of theblock Jacobi operators, which areused in proving the global convergenceof block Jacobi-
type processes.
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1. Introduction. Let A be asquarematrix of order n and let

A =

2

6

4

A11 · · · A1m

...
. . .

...
Am1 · · · Amm

3

7

5

n1

...
nm

, (1.1)

bethematrixblock-partitionwherethediagonal blocksaresquare. Thematrix block-partition
(1.1) is determined by the partitionπ = (n1, . . . , nm) of n, whereni ≥ 1 for all 1 ≤ i ≤ m
andn1 + · · · + nm = n.

Block Jacobi-typemethodsare iterativeprocessesof the form

A(k+1) = [P(k)]∗ A(k) Q(k), k ≥ 0, (1.2)

whereP(k), Q(k) are elementary block matrices, [P(k)]∗ is the Hermitian transpose of P(k)

and A(0) = A is the initial matrix. Generally, elementary block matrix E is a nonsingular
n × n matrix of the form

Eij =

2

6

6

6

4

I

Eii Eij

I

Eji Ejj

I

3

7

7

7

5

}ni

}nj

, i < j, or Eii =

2

4

I

Eii

I

3

5}ni , i = j,

whereE carries thesamepartitionasA. All elementsof E, except possibly for the elements
in theblocksEii, Eij , Eji andEjj , are as in the identity matrix In. Indices i, j are thepivot
indices, (i, j) is thepivot pair and

Ê =

[

Eii Eij

Eji Ejj

]

if i < j or Ê = Eii if i = j

is the pivot submatrix or the (i, j) – restriction of E. We will write Eij = E(i, j; Ê), where
E = Eπ is themappingwhich constructs then× n matrix Eij from the input data i, j and Ê.

∗Thiswork was supported by the Croatian Ministry of Science, Education and Sports, grant 037-0372783-3042
†Department of Mathematics, University of Zagreb, Croatia (hari@math.hr).

429



430 V. HARI

Each iteration of the block Jacobi-type method (1.2) is associated with pivot indices
i = i(k), j = j(k), i ≤ j, P(k) = E(i(k), j(k); P̂(k)) and Q(k) = E((i(k), j(k); Q̂(k)).
When the emphasis ison pivot indices, weshall writePi(k)j(k) instead of P(k)or sometimes
Pij when k is clear from the context. If n1 = n2 = · · · = nm = 1, we speak of a non-block
Jacobi-typemethod or simply of aJacobi-typemethod.

The process (1.2) is defined if at each step k one knows the pivot pair (i, j) and the
algorithmwhich determinesthepivot submatricesP̂(k) andQ̂(k) from the elementsof A(k).

The way of choosing the pivot pairs is referred to as pivot strategy, but since each pivot
pair addresses one block, one can use the term block pivot strategy. For simplicity we call
it briefly strategy. Let N0 = {0, 1, 2, . . . , } and Pm = {(s, t) : 1 ≤ s ≤ t ≤ m}. Then
card(Pm) = m(m+1)/2 is the cardinality of Pm. We can definepivot strategiesasfunctions
from N0 to Pm. Each strategy I : N0 7→ Pm satisfies I(k) = (i(k), j(k)), k ≥ 0. If I is a
periodic function, then I is called periodic strategy. Let I be aperiodic strategy with period
M . If M ≥ card(Pm) (M = card(Pm)) and{I(k) : k = 0, 1, . . . , M − 1} = Pm, then I is
called quasi-cyclic (cyclic) strategy.

For any squarematrix X = (xij), the functionOff (X), Off 2(X) = ‖X − diag(X)‖2
F

is referred to as departure from the diagonal form or the off-norm of X . Here ‖ · ‖F is the
Frobeniusnormwhilediag(X) is thediagonal part of X . When used with theiterationmatrix
A(k) generated by the iteration (1.2), it measures how far the processhas advanced. So, in
provingtheglobal convergenceof Jacobi-typemethods, it is important to findsomesufficient
conditionsfor the convergenceof A(k) to diagonal form, i.e. for Off (A(k)) → 0 ask → ∞.

As has been shown in [4], one important tool for proving the convergenceto diagonal
form of theblock Jacobi-typeprocess(1.2) is thetheory of block Jacobi operators. In [6] and
[5] Henrici and Zimmermannintroduced Jacobi operators as tool for proving the global and
asymptotic convergenceof the column-cyclic Jacobi methodfor symmetric matrices. Later,
this tool has been generalized to work for complex Hermitian matrices [3], and for proving
convergence to diagonal form of general Jacobi-type processes [1], [2], [3]. Each Jacobi
operator isaproduct of M Jacobi annihilators, whereM is theperiod of thepivot strategy. In
[4] Jacobi annihilatorsand operatorshavebeen generalizedto copewith theblock Jacobi-type
processes. Therefore, we call them hereblock Jacobi annihilators andoperators.

The block Jacobi operators are made up of block Jacobi annihilators. Hence, the latter
are thebuilding blocksfor thewhole theory. Here, wereveal thestructureof theblock Jacobi
annihilators. This structure is used in [4] for estimating the norms of certain block Jacobi
operators .

2. Block Jacobi Annihilators. To an arbitrary p × q matrix X we can associate the
column-vector col (X) andthe row-vector row (X) as follows

X =







x11 · · · x1q

...
. . .

...
xp1 · · · xpq






7→







col (X) = [x11, x21, . . . , xp1, . . . , x1q, x2q, . . . , xpq]
T

,

row (X) = [x11, x12, . . . , x1q, . . . , xp1, xp2, . . . , xpq] .

Thus, col (X) (row (X)) is the column- (row-) vector obtained by using the column-( row-)
wise ordering of the elementsof X . Here, generally, ZT stands for the transposeof Z.

Let π = (n1, . . . , nm) be apartition of n, andlet A = (Ast) bethe corresponding block
matrix partition (1.1). For 2 ≤ i, j ≤ m, let

ri = [row (Ai1) row (Ai2) . . . row (Ai,i−1)] , cj =











col (A1j)
col (A2j)

...
col (Aj−1,j)











.
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With A andπ, we associate the column-vector

a = vec(A) =
[

cT
2 , cT

3 , . . . , cT
m, r2, r3, . . . , rm

]T
. (2.1)

Thus, vec = vecπ : Cn×n → C2K where

K = Kπ = N −

m
∑

t=1

nt(nt − 1)

2
, N =

n(n − 1)

2
. (2.2)

Let Cn×n
◦ = Cn×n

◦,π ⊆ Cn×n be the linear subspaceof n by n matrices whose all diagonal
blocks from the block partition (1.1) equal to zero. It is immediate to seethat the restriction
of vec to this subspaceis a regular linear operator from Cn×n

◦ to C2K and it is isometry if
Cn×n

◦ is equipped with the Frobenius norm and C2K with the Euclidean vector norm. We
denote this restriction byvec◦.

Weshall also usethevector spaceCK of K-vectorsfor which holdsC2K = CK ⊕CK .
Here⊕ denotes theorthogonal sum of vector spaces. If a is as in the relation(2.1), then

a =

[

a1

a2

]

, a1 =
[

cT
2 , . . . , cT

m

]T
, a2 = [r2, . . . , rm]T , a1, a2 ∈ CK .

Let i < j and let P = E(i, j; P̂), Q = E(i, j; Q̂) be elementary block matriceswith

P̂ =

[

Pii Pij

Pji Pjj

]

ni

nj
, Q̂ =

[

Qii Qij

Qji Qjj

]

ni

nj
. (2.3)

Theblock partition in (2.3) is inherited from π. Let

A′ = P∗AQ , A ∈ Cn×n. (2.4)

If P̂ andQ̂ are chosen such that the (i, j)-restriction of A′ isdiagonal, then the relation(2.4)
induces in C2K the equation

a′ = ℑij(P̂, Q̂)a, a = vec(A), a′ = vec(A′). (2.5)

We call the2K by 2K matrix ℑij(P̂, Q̂) Jacobi annihilator or Jacobi factor associated with
the elementary block matricesP andQ. It isevident that thediagonal elementsof ℑij(P̂, Q̂)
which correspondto those elementsof a which arenot affected bythetransformationareone,
and thosewhich correspondto the elementsof a′ which are annihilated, are zero.

Next, we extend the definition of the Jacobi annihilator/factor. Let P and Q be any
elementary block matrices, i.e. we only require that P̂ and Q̂ from the relation (2.3) are
regular. This means that the (i, j)-restriction of A′ from the relation (2.4) does not have be
diagonal. WedefinetheJacobi factor ℑij(P̂, Q̂) by help of therelation(2.5), but requirethat
A′ is obtained from A in the followingway

A′ = Zij(Ã), Ã = P∗AQ , A ∈ Cn×n.

Here, Zij maps the (i, j)-restriction of the argument matrix to zero. Thus, if X carries the
block matrix partition defined byπ, then the (i, j)-restrictionZij(X) is zero.

The structure of ℑij(P̂, Q̂) in the special case n1 = · · · = nm = 1, P̂, Q̂ unitary, is
described in [3] .
The partition π and the pair of elementary block matrices P = E(i, j; P̂), Q = E(i, j; Q̂)

uniquely determine the Jacobi factor ℑij(P̂, Q̂). To seethat, we describe with more details
how ℑij(P̂, Q̂) actsonan arbitrary vector x ∈ C2K .
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Let x ∈ C2K andlet X ∈ Cn×n
◦ betheuniquematrix X = vec−1

◦ (x). Thematrix X car-
ries the partition (Xst) induced byπ and its diagonal blocksare zero. Let X be transformed
into Y ∈ Cn×n

◦ by the followingrule
Yir = P

∗
iiXir + P

∗
jiXjr , 1 ≤ r ≤ m

Yjr = P
∗
ijXir + P

∗
jjXjr, 1 ≤ r ≤ m

Yri = XriQii + XrjQji, 1 ≤ r ≤ m

Yrj = XriQij + XrjQjj , 1 ≤ r ≤ m

Yij = O, Yji = O, Yii = O, Yjj = O

Yst = Xst whenever {s, t} ∩ {i, j} = ∅ ,

(2.6)

where the lines in (2.6) are to be read (i.e. performed) sequentially from top to bottom. The
transformation(2.6) isa composition of the linear transformationX 7→ X̃ = P∗XQ and the
linear transformationX̃ 7→ Y = Zij(X̃) which simply sets the blocks X̃ii, X̃ij , X̃ji, X̃jj of
X̃ to zero. Let y = vec(Y) = vec◦(Y). Thenℑij(P̂, Q̂) is theuniquematrix which satisfies
y = ℑij(P̂, Q̂)x for all x ∈ C2K . Since vec◦ and vec−1

◦ are linear transformations, the
mappingx 7→ y is linear. So, thematrix ℑij(P̂, Q̂) exists.

To show theuniquenessof ℑij(P̂, Q̂), supposethat

ℑij(P̂
′, Q̂′) 6= ℑij(P̂, Q̂) and ℑij(P̂

′, Q̂′)x = ℑij(P̂, Q̂)x for all x.

Thiswould imply
O = (Pii − P

′
ii)

∗
Xir + (Pji − P

′
ji)

∗
Xjr , for 1 ≤ r ≤ m

O = (Pij − P
′
ij)

∗
Xir + (Pjj − P

′
jj)

∗
Xjr, for 1 ≤ r ≤ m

O = Xri(Qii − Q
′
ii) + Xrj(Qji − Q

′
ji), for 1 ≤ r ≤ m

O = Xri(Qij − Q
′
ij) + Xrj(Qjj − Q

′
jj), for 1 ≤ r ≤ m

(2.7)

If f or example, Pii 6= P ′
ii, then eT

αPiieβ 6= eT
αP ′

iieβ for someα andβ, whereeα and eβ

are the columnsof Ini
. Choosingan x such that Xireβ = eβ andXjreβ = 0, we obtain that

thefirst equation in (2.7) is violated. The argumentsfor other casesaresimilar.

Finally, let us consider the case i = j. In this case the relation (2.6) simplifies to just
threelines. The second, the forth and the fifth line can be removed, while the first and the
third lines are simplified to Yir = P ∗

iiXir, 1 ≤ r ≤ m and Yri = XriQii, 1 ≤ r ≤ m.
Hence, X and Y are linked solely by the transformationY = P∗XQ, i.e. the operator Zii

is not needed.

2.1. The structure of ℑij(P̂, Q̂). Herewefind the structureof thematrix ℑij(P̂, Q̂).
We first consider the non-trivial case: i < j.
Let π = (n1, . . . , nm) be apartition of n and let

Σ = Σπ = (s1, s2, . . . , sm), sr = n1 + · · · + nr, 1 ≤ r ≤ m.

Obviously, wehavesr = sr−1 + nr, 1 ≤ r ≤ m, provided that s0 = 0. Let

b(r) = (sr−1 + 1, . . . , sr), 1 ≤ r ≤ m,

denote the “block index” correspondingto ther’ th block-column and block-row of X andY

from the relation (2.6).
Let x,y ∈ C2K with x arbitrary and y satisfying y = ℑijx. The most natural block-

partition of x andy is defined by the following partition of 2K,

ν = ν(2K) = (ν1, . . . , νNm
, νNm+1, . . . , ν2Nm

) (2.8)

= (n1n2 , n1n3 , n2n3 , . . . , n1nm , n2nm , . . . , nm−1nm,

n1n2 , n1n3 , n2n3 , . . . , n1nm , n2nm , . . . , nm−1nm),
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whereNm = m(m − 1)/2. In addition, let

ρ = ρ(2K, ν) = (ρ1, ρ2, . . . , ρNm
, . . . , ρ2Nm

),

whereρt is thesum of thefirst t elementsof ν. Note that

n1n2 + n1n3 + n2n3 + · · · + n1nm + n2nm + · · · + nm−1nm = K,

so wehaveρt+Nm
= K + ρt, 1 ≤ t ≤ Nm. Let

b(t) = (ρt−1 + 1, . . . , ρt), 1 ≤ t ≤ 2Nm,

denotethe “block index” correspondingto thet’ th block of thevectorsx andy. Let ℑ be any
Jacobi factor of order 2K. For the blocks of ℑ andx, y as well , we shall use the following
notation

yt = y(b(t)), xt = x(b(t)), ℑt1,t2 = ℑ(b(t1), b(t2)), 1 ≤ t, t1, t2 ≤ 2Nm.

Thus,

y =











y1,
y2

...
y2Nm











, x =











x1,
x2

...
x2Nm











, ℑ =











ℑ1,1 ℑ1,2 · · · ℑ1,2Nm

ℑ2,1 ℑ2,2 · · · ℑ2,2Nm

...
...

. . .
...

ℑ2Nm,1 ℑ2Nm,2 · · · ℑ2Nm,2Nm











.

Let

τ(i, j) =

{

(j − 1)(j − 2)/2 + i, 1 ≤ i < j ≤ m,
τ(j, i) + Nm, 1 ≤ j < i ≤ m

(2.9)

be the functionwhich countshow many steps are needed within one cycle to reach the stage
when Xij and Xji become the pivot blocks under the column-cyclic strategy. Since we
have assumed that the step counter starts with zero, then within the current cycle, at step
k = τ(i, j)− 1, i < j, Xij andXji are thepivot blocks. If i > j, then Xij andXji are again
thepivot blocks, but in thenext cycle.

Each Jacobi factor differs from the identity matrix only in certain principal submatrices
obtained at the intersection of two block-rows and block-columns. We shall now indicate
their position and their structure. These submatrices can be nicely expressed by help of the
Kronecker matrix product, denoted by⊗.

THEOREM 2.1. Let π = (n1, . . . , nm) be a partition of n such that n ≥ m ≥ 2 andlet
K beas in the relation (2.2).

Let 1 ≤ i < j ≤ m. Let Pij and Qij be elementary block matrices and let ℑ =

ℑij(P̂, Q̂) be the associated Jacobi annihilator. Then ℑ differs from the identity matrix I2K

in exactly 2m − 2 principal submatrices. Using the function τ from the relation (2.9), these
submatricescan bewritten in the following form:

ℑτ(i,j),τ(i,j) = O, ℑτ(j,i),τ(j,i) = O,
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[

ℑτ(i,r),τ(i,r) ℑτ(i,r),τ(j,r)

ℑτ(j,r),τ(i,r) ℑτ(j,r),τ(j,r)

]

=



































[

P ∗
ii ⊗ Inr

P ∗
ji ⊗ Inr

P ∗
ji ⊗ Inr

P ∗
jj ⊗ Inr

]

= P̂∗ ⊗ Inr
, 1 ≤ r ≤ i − 1

[

Inr
⊗ P ∗

ii S (P ∗
ji ⊗ Inr

)

S̃ (Inr
⊗ P ∗

ij) P ∗
jj ⊗ Inr

]

, i + 1 ≤ r ≤ j − 1

[

Inr
⊗ Pii Inr

⊗ Pij

Inr
⊗ Pji Inr

⊗ Pjj

]∗

, j + 1 ≤ r ≤ m

[

ℑτ(r,i),τ(r,i) ℑτ(r,i),τ(r,j)

ℑτ(r,j),τ(r,i) ℑτ(r,j),τ(r,j)

]

=







































[

QT
ii ⊗ Inr

QT
ji ⊗ Inr

QT
ij ⊗ Inr

QT
jj ⊗ Inr

]

= Q̂T ⊗ Inr
, 1 ≤ r ≤ i − 1

[

Inr
⊗ QT

ii S (QT
ji ⊗ Inr

)

S̃ (Inr
⊗ QT

ij) QT
jj ⊗ Inr

]

, i + 1 ≤ r ≤ j − 1

[

Inr
⊗ Qii Inr

⊗ Qij

Inr
⊗ Qji Inr

⊗ Qjj

]T

, j + 1 ≤ r ≤ m,

where

S =

2

6

4

Ini
⊗ eT

1

...
Ini

⊗ eT
nr

3

7

5
= [Inr ⊗ ẽ1 . . . Inr ⊗ ẽni

], S̃ =

2

6

4

Inr ⊗ êT
1

...
Inr ⊗ êT

nj

3

7

5
= [Inj

⊗ e1 . . . Inj
⊗ enr ].

Here, ei, ẽi and êi denote the ith column of Inr
, Ini

andInj
, respectively.

Let i = j. Then ℑ = ℑii(P̂, Q̂) differs from the identity matrix I2K in exactly 2m − 2
principal submatrices, which can be written in the form:

ℑτ(i,r),τ(i,r) =

{

P ∗
ii ⊗ Inr

= P̂∗ ⊗ Inr
, 1 ≤ r ≤ i − 1

Inr
⊗ P ∗

ii = Inr
⊗ P̂∗, i + 1 ≤ r ≤ m

ℑτ(r,i),τ(r,i) =

{

QT
ii ⊗ Inr

= Q̂T ⊗ Inr
, 1 ≤ r ≤ i − 1

Inr
⊗ QT

ii = Inr
⊗ Q̂T , i + 1 ≤ r ≤ m

.

Proof. Let usfix i, j, i < j and denoteℑij(P̂, Q̂) simply byℑ. Thematrix ℑ hasorder
2K which is given by (2.2).

Obviously, the block rowsof ℑ, with subscriptsτ(i, j) and τ(j, i) = τ(i, j) + Nm have
to be zero. Thus,

ℑτ(i,j),t = O, ℑτ(j,i),t = O, 1 ≤ t ≤ 2Nm.

All i nformation onthe non-trivial principal submatricesof ℑ can be extracted from the rela-
tion (2.6). So, let us consider the first two equations from (2.6). They should be combined
with the fact that thepivot blocksare annihilated. Then they split i nto the threerelations

(A1)
Yir = P ∗

iiXir + P ∗
jiXjr

Yjr = P ∗
ijXir + P ∗

jjXjr

}

1 ≤ r ≤ i − 1

(A2)
Yir = P ∗

iiXir + P ∗
jiXjr

Yjr = P ∗
ijXir + P ∗

jjXjr

}

i + 1 ≤ r ≤ j − 1

(A3)
Yir = P ∗

iiXir + P ∗
jiXjr

Yjr = P ∗
ijXir + P ∗

jjXjr

}

j + 1 ≤ r ≤ m

We consider how these relationsdefineℑ.
First, we consider the relations labeled (A3). If el denotesthe lth column of Inr

, then

Yirel = P ∗
iiXirel + P ∗

jiXjrel, 1 ≤ l ≤ nr

Yjrel = P ∗
ijXirel + P ∗

jjXjrel, 1 ≤ l ≤ nr

}

j + 1 ≤ r ≤ m,
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shows the rule how the l’ th column of Yir (Yjr) is obtained from the l’ th columns of Xir

andXjr. Note that xτ(i,r) = [(Xire1)
T , . . . , (Xirenr

)T ]T andsimilar for yτ(i,r). Hence, for
each j + 1 ≤ r ≤ m, we have

»

ℑτ(i,r),τ(i,r) ℑτ(i,r),τ(j,r)

ℑτ(j,r),τ(i,r) ℑτ(j,r),τ(j,r)

–

=

2

6

6

6

6

6

6

6

6

6

6

4

P∗

ii P∗

ji

. . .
. . .

P∗

ii P∗

ji

P∗

ij P∗

jj

. . .
. . .

P∗

ij P∗

jj

3

7

7

7

7

7

7

7

7

7

7

5

=

»

Inr ⊗ Pii Inr ⊗ Pij

Inr ⊗ Pji Inr ⊗ Pjj

–∗

Let us now consider the relation (A1). If ẽl denotes the lth column of Ini
and êl the lth

column of Inj
, then for all 1 ≤ r ≤ i − 1

ẽT
l Yir = ẽT

l P ∗
iiXir + ẽT

l P ∗
jiXjr, 1 ≤ l ≤ ni

êT
l Yjr = êT

l P ∗
ijXir + êT

l P ∗
jjXjr, 1 ≤ l ≤ nj

}

1 ≤ r ≤ i − 1

shows the rule how the l’ th row of Yir (Yjr) is obtained from the matrices Xir and Xjr.
Transposingthe equationsyields

Y T
ir ẽl = XT

irP̄iiẽl + XT
jrP̄jiẽl, 1 ≤ l ≤ ni

Y T
jr êl = XT

irP̄ij êl + XT
jrP̄jj êl, 1 ≤ l ≤ nj

}

1 ≤ r ≤ i − 1

Sincei > r andj > r, wehavexτ(i,r) = [ẽT
1 Xir, . . . , ẽ

T
ni

Xir]
T andsimilar for yτ(i,r). Note

also that

XT
irP̄iiel =

ni
∑

s=1

(P̄ii)sl(X
T
ir ẽs), 1 ≤ l ≤ ni,

andsimilar holds for ẽT
l P ∗

jiXjr. This implies

ℑτ(i,r),τ(i,r) =

2

6

6

6

6

4

(P̄ii)11Inr (P̄ii)21Inr · · · (P̄ii)ni,1Inr

(P̄ii)12Inr (P̄ii)22Inr · · · (P̄ii)ni,2Inr

.

.

.
.
.
.

. . .
.
.
.

(P̄ii)1,n1Inr (P̄ii)2,ni
Inr · · · (P̄ii)nini

Inr

3

7

7

7

7

5

nr

nr

.

.

.
nr

= P ∗
ii ⊗ Inr

.

andsimilarly

ℑτ(i,r),τ(j,r) = P ∗
ji ⊗ Inr

.

In a similar way we obtain ℑτ(j,r),τ(i,r) = P ∗
ji ⊗ Inr

, ℑτ(j,r),τ(j,r) = P ∗
jj ⊗ Inr

. Thus,

[

ℑτ(i,r),τ(i,r) ℑτ(i,r),τ(j,r)

ℑτ(j,r),τ(i,r) ℑτ(j,r),τ(j,r)

]

=

[

P ∗
ii ⊗ Inr

P ∗
ji ⊗ Inr

P ∗
ji ⊗ Inr

P ∗
jj ⊗ Inr

]

= P̂∗ ⊗ Inr
, 1 ≤ r ≤ i− 1.

Let us now consider the relation (A2). If el denotes the lth column of Inr
and êl the lth

column of Inj
, then for all i + 1 ≤ r ≤ j − 1

Yirel = P ∗
iiXirel + P ∗

jiXjrel, 1 ≤ l ≤ nr

êT
l Yjr = êT

l P ∗
ijXir + êT

l P ∗
jjXjr, 1 ≤ l ≤ nj

}

i + 1 ≤ r ≤ j − 1, (2.10)

showstherulehow the l’ th column (row) of Yir (Yjr) isobtained from the columns(rows) of
Xir andXjr . This implies ℑτ(i,r),τ(i,r) = diag(P ∗

ii, . . . , P
∗
ii) = Inr

⊗ P ∗
ii.
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To obtain ℑτ(i,r),τ(j,r), weshall first find the auxili ary column-vector z andthematrix T
such that z = Txτ(j,r) corresponds to the relation Z = P ∗

jiXjr , so that z = row(Z)T . As
earlier, one can find out that T = P ∗

ji ⊗ Inr
. Note that Z has to be added to P ∗

iiXir which
has been stored by columnsas the column-vector ℑτ(i,r),τ(i,r)xτ(i,r). So, we have to add Z
to P ∗

iiXir by columns. This means that before adding z to ℑτ(i,r),τ(i,r)xτ(i,r), we have to
transform it to the column-vector z′ = col(Z). This can be done by the permutation matrix
S of order ninr, whoserow- andcolumn-partition has the form (hereei, ei, ẽi denotethe ith
column of Ininr

, Inr
, Ini

, respectively),

S = [e1, e1+nr
, . . . , e1+(ni-1)nr

, e2, e2+nr
, . . . , e2+(ni-1)nr

, . . . , enr
, e2nr

, . . . , eninr
]T

= [e1, e1+ni
, . . . , e1+(nr-1)ni

, e2, e2+ni
, . . . , e2+(nr-1)ni

, . . . , eni
, e2ni

, . . . , enrni
]

=

2

6

6

4

Ini
⊗ eT

1

.

.

.
Ini

⊗ eT
nr

3

7

7

5

= [Inr
⊗ ẽ1 Inr

⊗ ẽ2 . . . Inr
⊗ ẽni

].

Thus, z′ = S((P ∗
ji ⊗ Inr

)xτ(i,r)) = S(P ∗
ji ⊗ Inr

)xτ(i,r), hence

ℑτ(i,r),τ(j,r) = S (P ∗
ji ⊗ Inr

) =

2

6

6

4

P∗

ji ⊗ eT
1

.

.

.
P∗

ji ⊗ eT
nr

3

7

7

5

.

If we transposethesecondequation in (2.10), weobtain

Y T
jr êl = XT

irP̄ij êl + XT
jrP̄jj êl.

Notethat the columnsof XT
jr and of Y T

jr are consecutively saved in xτ(j,r) andyτ(j,r). There-
fore, the contributionto yτ(j,r), coming from P ∗

jjXjr, is just

2

6

6

6

6

4

(P̄jj)11Inr (P̄jj)21Inr · · · (P̄jj)nj,1Inr

(P̄jj)12Inr (P̄jj)22Inr · · · (P̄jj)nj,2Inr

.

.

.
.
.
.

. . .
.
.
.

(P̄jj)1,nj
Inr (P̄jj)2,nj

Inr · · · (P̄jj)nj,nj
Inr

3

7

7

7

7

5

xτ(j,r) = (P ∗
jj ⊗ Inr

)xτ(j,r).

This implies

ℑτ(j,r),τ(j,r) = P ∗
jj ⊗ Inr

.

To obtain ℑτ(j,r),τ(i,r), we shall first find the auxili ary column-vector z̃ and the matrix T̃ ,
such that z̃ = T̃ xτ(i,r) corresponds to the relation Z̃ = P ∗

ijXir, so that z̃ = col(Z̃). Since

xτ(i,r) = col(Xir), one can find as earlier, that T = Inr
⊗ P ∗

ij . Note that Z̃ has to be
added to P ∗

jjXjr by rows, since P ∗
jjXjr is saved in the column-vector ℑτ(j,r),τ(j,r)xτ(j,r)

by rows. So, before adding z̃ to ℑτ(j,r),τ(j,r)xτ(j,r), it has to be transformed to the column-
vector z̃′ = [row(Z̃)]T . Thiscan be done by the permutationmatrix S̃ of order ninr, whose
column- and row-partition has form (hereei, ei, êi denote the ith column of Injnr

, Inr
, Inj

,
respectively),

S̃ = [e1, e1+nr
, . . . , e1+(nj-1)nr

, e2, e2+nr
, . . . , e2+(nj-1)nr

, . . . , enr
, e2nr

, . . . , enjnr
]

= [e1, e1+nj
, . . . , e1+(nr-1)nj

, e2, e2+nj
, . . . , e2+(nr-1)nj

, . . . , enj
, e2nj

, . . . , enrnj
]T

=







Inr
⊗ êT

1
...

Inr
⊗ êT

nj






= [Inj

⊗ e1 Inj
⊗ e2 . . . Inj

⊗ enr
].
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Thus, z′ = S̃((Inr
⊗ P ∗

ij)xτ(i,r)) = S̃(Inr
⊗ P ∗

ij)xτ(i,r), hence

ℑτ(j,r),τ(i,r) = S̃ (Inr
⊗ P ∗

ij) =







Inr
⊗ (Pij ê1)

∗

...
Inr

⊗ (Pij ênj
)∗






= [P ∗

ij ⊗ e1 . . . P ∗
ij ⊗ enr

)] .

The latest relations imply that for i + 1 ≤ r ≤ j − 1 holds
[

ℑτ(i,r),τ(i,r) ℑτ(i,r),τ(j,r)

ℑτ(j,r),τ(i,r) ℑτ(j,r),τ(j,r)

]

=

[

Inr
⊗ P ∗

ii S (P ∗
ji ⊗ Inr

)

S̃ (Inr
⊗ P ∗

ij) P ∗
jj ⊗ Inr

]

.

Let us yet consider the third and fourth relation from (2.6). They should be combined
with the fact that thepivot blocksare annihilated. Then they split i nto the threerelations

(B1)
Yri = XriQii + XjrQji

Yrj = XriQij + XjrQjj

}

1 ≤ r ≤ i − 1

(B2)
Yri = XriQii + XrjQji

Yrj = XriQij + XrjQjj

}

i + 1 ≤ r ≤ j − 1 .

(B3)
Yri = XriQii + XrjQji

Yrj = XriQij + XrjQjj

}

j + 1 ≤ r ≤ m

We consider how these relationsdefineℑ.
First, we consider the relation (B1). If ẽl and êl are the lth columns of Ini

and Inj
,

respectively, then

Yriẽl = XriQiiẽl + XrjQjiẽl, 1 ≤ l ≤ ni

Yrj êl = XriQij êl + XjrQjj êl, 1 ≤ l ≤ nj ,

holds. Sincer < i and r < j the columnsof Yri, Xri andXrj take consecutivepositions in
thevectorsyτ(r,i)

, xτ(r,i), andxτ(r,j). So, we can conclude asearlier,

[

ℑτ(r,i),τ(r,i) ℑτ(r,i),τ(r,j)

ℑτ(r,j),τ(r,i) ℑτ(r,j),τ(r,j)

]

=

[

QT
ii ⊗ Inr

QT
ji ⊗ Inr

QT
ij ⊗ Inr

QT
jj ⊗ Inr

]

= Q̂T ⊗Inr
, 1 ≤ r ≤ i−1.

Next, we consider the relation (B3). If el is the lth column of Inr
, then

eT
l Yri = eT

l XriQii + eT
l XrjQji

eT
l Yrj = eT

l XriQij + eT
l XrjQjj

, 1 ≤ l ≤ nr,

showshow the rowsof Yri andYrj are obtained from the rowsof Xri andXrj. Sincer > i
and r > j, the transposed rows of Yri, Xri and Xrj (that is the columns of Y T

ri , XT
ri and

XT
rj) take consecutivepositionsin the column vectorsyτ(r,i)

, xτ(r,i) andxτ(r,j), respectively.
Therefore, by transposingthe last two relations, we obtain

Y T
ri el = QT

iiX
T
riel + QT

jiX
T
rjel

Y T
rjel = QT

ijX
T
riel + QT

jjX
T
rjel

, 1 ≤ l ≤ nr.

From this, we obtain

[

ℑτ(r,i),τ(r,i) ℑτ(r,i),τ(r,j)

ℑτ(r,j),τ(r,i) ℑτ(r,j),τ(r,j)

]

=

[

Inr
⊗ Qii Inr

⊗ Qij

Inr
⊗ Qji Inr

⊗ Qjj

]T

, j + 1 ≤ r ≤ m.
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The result for the case i + 1 ≤ r ≤ j − 1 is obtained from the relation (B2) in a similar
way as we have obtained the appropriate result from the relation (A2). One can also use the
argument followingthe relation(2.13).

Finally, for the case i = j, we now easily conclude that ℑii is up to a permutational
similarity a direct sum of an identity matrix and of thematrices

ℑτ(i,r),τ(i,r) and ℑτ(r,i),τ(r,i), 1 ≤ r ≤ m, r 6= i, (2.11)

which aredescribed above. Thisprovesthe theorem.

We seethat ℑij , i < j, is up to a permutational similarity a direct sum of an identity
matrix, of thenull matrix of order 2ninj and of thematrices

»

ℑτ(i,r),τ(i,r) ℑτ(i,r),τ(j,r)

ℑτ(j,r),τ(i,r) ℑτ(j,r),τ(j,r)

–

,

»

ℑτ(r,i),τ(r,i) ℑτ(r,i),τ(r,j)

ℑτ(r,j),τ(r,i) ℑτ(r,j),τ(r,j)

–

,
1 ≤ r ≤ m,
r /∈ {i, j},

(2.12)

which aredescribed above.
Note that Y = Zij(P

∗XQ) impliesY∗ = Zij(Q
∗X∗P) andthe latter yields

[

ȳ2

ȳ1

]

= ℑij(Q̂, P̂)

[

x̄2

x̄1

]

or

[

y2

y1

]

= ℑij(
ˆ̄Q, ˆ̄P)

[

x2

x1

]

. (2.13)

In thevectors [xT
2 xT

1 ]T and [yT
2 yT

1 ]T , thesubscriptsτ(r, i), τ(r, j) (τ(i, r), τ(j, r)) address
theblocksof x2 andy2 (x1 andy1). Takingintoaccount (2.13), we can understandwhy in the
assertion of the theorem, the right-handsides in thesecondset of formulasareobtained from

the right-handsides in the first set of formulasby replacing P̂ with ˆ̄Q. From (2.13) one can

conclude that ℑij(P̂, Q̂) = JTℑij(
ˆ̄Q, ˆ̄P)J for a suitable permutation (block-transposition)

matrix J.
The followingresult is important sincethemost important Jacobi-typemethodsuseuni-

tary transformations.
PROPOSITION 2.2. If the elementary block matrices Pij andQij , i ≤ j are unitary,

then thematricesdefined in (2.12) and(2.11) are also unitary and

‖ℑ‖2 = 1 . (2.14)

Proof. It sufficesto provethat thematricesfrom therelations(2.12) and(2.11) (thelatter
in the case i = j) areunitary. Let usfirst consider thematrices from (2.12).

TheKronecker product of unitary matrices isunitary. So, wehaveto check thesix types
of matrices given in Theorem 2.1. For simplicity we shall denote each of of these matrices
by ℑ̂r.

For 1 ≤ r ≤ i− 1, wehave either ℑ̂r = P̂∗ ⊗ Inr
or ℑ̂r = Q̂T ⊗ Inr

. In theboth cases
thematrices ℑ̂r areunitary as theKronecker product of unitary matrices.

For j + 1 ≤ r ≤ m, weseethat ℑ̂r isup to apermutational similarity adirect sum of nr

matrices P̂∗ or nr matrices Q̂T . SinceP̂∗ and Q̂T areunitary, such isalso each ℑ̂r.
For i + 1 ≤ r ≤ j − 1, we first consider the case

ℑ̂r =

[

Inr
⊗ P ∗

ii S (P ∗
ji ⊗ Inr

)

S̃ (Inr
⊗ P ∗

ij) P ∗
jj ⊗ Inr

]

, i + 1 ≤ r ≤ j − 1

To check whether ℑ̂r is unitary, wemake theproduct

ℑ̂∗
rℑ̂r =

[

Inr
⊗ Pii (Inr

⊗ Pij)S̃
T

(Pji ⊗ Inr
)ST Pjj ⊗ Inr

][

Inr
⊗ P ∗

ii S (P ∗
ji ⊗ Inr

)

S̃ (Inr
⊗ P ∗

ij) P ∗
jj ⊗ Inr

]

=

[

E F
G H

]

.
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Next, we compute the four blocks of ℑ̂rℑ̂
∗
r . SinceG = F ∗, it suffices to determine E, F

andH . Assuming that thematrix product hashigher priority than theKronecker product, we
have

E = (Inr
⊗ Pii) (Inr

⊗ P ∗
ii) + (Inr

⊗ Pij)S̃
T S̃ (Inr

⊗ P ∗
ij)

= Inr
⊗ PiiP

∗
ii + Inr

⊗ PijP
∗
ij = Inr

⊗ (PiiP
∗
ii + PijP

∗
ij) = Inr

⊗ Ini
= Inrni

,

F = (Inr
⊗ Pii) S (P ∗

ji ⊗ Inr
) + (Inr

⊗ Pij)S̃
T (P ∗

jj ⊗ Inr
)

= (Inr
⊗ Pii)







Ini
⊗ eT

1
...

Ini
⊗ eT

nr






(P ∗

ji ⊗ Inr
) + (Inr

⊗ Pij)







Inj
⊗ eT

1
...

Inj
⊗ eT

nr






(P ∗

jj ⊗ Inr
)

=







Pii ⊗ eT
1

...
Pii ⊗ eT

nr






(P ∗

ji ⊗ Inr
) +







Pij ⊗ eT
1

...
Pij ⊗ eT

nr






(P ∗

jj ⊗ Inr
)

=







PiiP
∗
ji ⊗ eT

1
...

PiiP
∗
ji ⊗ eT

nr






+







PijP
∗
jj ⊗ eT

1
...

PijP
∗
jj ⊗ eT

nr






=







(PiiP
∗
ji + PijP

∗
jj) ⊗ eT

1
...

(PiiP
∗
ji + PijP

∗
jj) ⊗ eT

nr






= O,

H = (Pjj ⊗ Inr
)
(

P ∗
jj ⊗ Inr

)

+ (Pji ⊗ Inr
)
(

P ∗
ji ⊗ Inr

)

= PjjP
∗
jj ⊗ Inr

+ PjiP
∗
ji ⊗ Inr

= (PjjP
∗
jj + PjiP

∗
ji) ⊗ Inr

= Inj
⊗ Inr

= Injnr
.

The proof for for the remainingcase is quite similar. The roleof P̂∗ is played by the unitary
matrix Q̂T .

If i = j, we seefrom Theorem 2.1 that each ℑ̂r is the Kronecker product of two unitary
matrices. Thiscompletes theproof.
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