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DISCONTINUOUS GALERKIN METHOD FOR NONSTATIONARY
NONLINEAR CONVECTION–DIFFUSION PROBLEMS: A PRIORI

ERROR ESTIMATES∗

JIŘÍ HOZMAN†

Abstract. We deal with a numerical solution of a scalar nonstationary convection-diffusion
equation with nonlinear convective as well as diffusive terms which represents a model problem
for the solution of the system of the compressible Navier-Stokes equations describing a motion of
viscous compressible fluids. We present a discretization of this model equation by the interior penalty
discontinuous Galerkin methods. Moreover, under some assumptions on the nonlinear terms, domain
partitions and the regularity of the exact solution, we introduce a priori error estimates in the
L∞(0, T ;L2(Ω))-norm and in the L2(0, T ;H1(Ω))-semi-norm. A sketch of the proof and numerical
verifications are presented.

Key words. discontinuous Galerkin method, convection-diffusion problem, a priori error esti-
mates

AMS subject classifications. 65M60, 65M15, 65M12, 65M20

1. Introduction. Our goal is to develop a sufficiently robust, accurate and ef-
ficient numerical method for the solution of the system of the compressible Navier-
Stokes equations describing a motion of viscous compressible fluids. Due to the lack
of the theory concerning with an existence of the solution of the Navier-Stokes equa-
tions we consider the model problem represented by a nonstationary two-dimensional
convection–diffusion equation with nonlinear convection as well as diffusion.

Among a wide class of numerical methods, the discontinuous Galerkin finite
element method (DGFEM) seems to be a promising technique for the solution of
convection-diffusion problems. DGFEM is based on a piecewise polynomial but dis-
continuous approximation, for a survey, see, e.g., [4], [5]. Within this paper we deal
with the space semidiscretization of the model problem with the aid three variants of
DGFEM, namely nonsymmetric (NIPG), symmetric (SIPG) and incomplete interior
penalty Galerkin (IIPG) techniques, see [1].

This article represents a generalization of research papers [7], [8], [9], [10], where
the linear diffusion term was considered. Moreover, let us cite works [6], [11], [12],
where simpler forms of nonlinear diffusion were analysed.

2. Problem formulation. We consider the following unsteady nonlinear con-
vection-diffusion problem: Let Ω ⊂ IR2 be a bounded polygonal domain, T > 0, we
seek a function u : QT = Ω × (0, T ) → IR such that

∂u

∂t
+

2∑

s=1

∂fs(u)

∂xs
= div(IK(u)∇u) + g in QT ,(1)

u
∣∣
∂Ω×(0,T )

= uD,(2)
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u(x, 0) = u0(x), x ∈ Ω,(3)

where g : QT → IR, uD : ∂Ω × (0, T ) → IR, u0 : Ω → IR are given functions,
f1, f2 ∈ C1(IR) represent convective terms and the regular matrix IK(u) ∈ IR2,2 plays
a role of nonlinear anisotropic diffusive coefficients. If IK(u) = εII, where ε is a
positive constant and II ∈ IR2,2 the unit matrix, then problem (1) – (3) reduces to
the equation considered in [7], [8], [9], [10]. For simplicity we prescribe the Dirichlet
condition on the whole boundary but it is also possible to consider mixed Dirichlet–
Neumann boundary conditions.

3. Discretization. Let Th (h > 0) be a family of the partitions of the domain
Ω ⊂ IR2 into triangular elements. We do not require the conformity of the mesh, i.e.,
the so-called hanging nodes are allowed. However, more general elements (even non-
convex) can be considered within the frame of DGFEM, see [9]. By Fh we denote
the smallest possible set of all edges of all elements K ∈ Th. Furthermore, let FI

h

and FD
h represent the interior and boundary edges of Th, respectively. Obviously

Fh = FI
h ∪ FD

h . Finally, for each Γ ∈ Fh, we define a unit normal vector ~nΓ. We
assume that ~nΓ, Γ ⊂ ∂Ω has the same orientation as the outer normal of ∂Ω. For ~nΓ,
Γ ∈ FI the orientation is arbitrary but fixed for each edge.

Over a triangulation Th we define the so-called broken Sobolev space

Hk(Ω, Th) = {v; v|K ∈ Hk(K) ∀K ∈ Th}(4)

with the seminorm |v|Hk(Ω,Th) =
(∑

K∈Th
|v|2Hk(K)

)1/2

, where | · |Hk(K) denotes the

standard seminorm on the Sobolev space Hk(K), K ∈ Th. Moreover, the approximate
solution is sought in a space of piecewise polynomial but discontinuous functions

Shp ≡ Shp (Ω, Th) = {v; v|K ∈ Pp(K) ∀K ∈ Th},(5)

where Pp(K) denotes the space of all polynomials on K of degree ≤ p, K ∈ Th.
For each Γ ∈ FI

h there exist two elements KL, KR ∈ Th such that Γ ⊂ KL ∩ KR.
We use a convention that KR lies in the direction of ~nΓ and KL in the opposite direc-

tion of ~nΓ. For v ∈ Shp, by v|
(L)
Γ = trace of v|KL

on Γ, v|
(R)
Γ = trace of v|KR

on Γ
we denote the traces of v on edge Γ, which are different in general. Additionally,

[v]Γ = v
∣∣(L)

Γ
− v
∣∣(R)

Γ
, 〈v〉Γ =

1

2

(
v
∣∣(L)

Γ
+ v
∣∣(R)

Γ

)
,(6)

denotes the jump and the mean value of function v over the edge Γ, respectively. For
Γ ∈ ∂Ω there exists an element KL ∈ Th such that Γ ⊂ KL ∩ ∂Ω. Then for v ∈ Shp,

we put: v|
(L)
Γ = trace of v|KL

on Γ, 〈v〉Γ = [v]Γ = v|
(L)
Γ . In case that [·]Γ and 〈 · 〉Γ

are arguments of
∫
Γ . . . dS, Γ ∈ Fh we omit the subscript Γ and write simply [·] and

〈 · 〉, respectively.
Similarly as in [7], it is possible to derive the space semi-discretization of (1) –

(3). A particular attention should be paid to the nonlinear diffusive term. In order
to replace the interelement continuity, we add some stabilization and penalty terms
into formulation of the discrete problem. The convective term is approximated with
the aid of a numerical flux H(·, ·, ·), known from the finite volume method.

Therefore, we say that uh ∈ C1(0, T ; Shp) is the semi-discrete solution of (1) – (3)
if (uh(0), vh) = (u0, vh) ∀vh ∈ Shp and

(
∂uh(t)

∂t
, vh

)
+ bh(uh(t), vh) + aΘ

h (uh(t), vh) + αJσ
h (uh(t), vh)(7)

= ℓΘ
h (uh(t), vh) (t) ∀ vh ∈ Shp, ∀ t ∈ (0, T ),
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where

aΘ
h (u, v) =

∑

K∈Th

∫

K

IK(u)∇u · ∇v dx −
∑

Γ∈Fh

∫

Γ

〈IK(u)∇u · ~n〉[v] dS

+ Θ
∑

Γ∈Fh

∫

Γ

〈IK(u)∇v · ~n〉[u] dS,(8)

bh(u, v) = −
∑

K∈Th

∫

K

2∑

s=1

fs(u)
∂v

∂xs
dx +

∑

Γ∈Fh

∫

Γ

H(u|
(L)
Γ , u|

(R)
Γ , ~nΓ) [v]dS,(9)

Jσ
h (u, v) =

∑

Γ∈Fh

∫

Γ

σ[u] [v] dS,(10)

ℓΘ
h (u, v)(t) =

∫

Ω

g(t) v dx +
∑

Γ∈FD
h

∫

Γ

(
Θ IK(u)∇v · ~nuD(t) + σ uD(t) v

)
dS,(11)

and α is a positive constant whose specification follows from assumption (13, b). Non-
linear forms aΘ

h (·, ·) and bh(·, ·) are the discrete variants of the forms a(·, ·) and b(·, ·),
respectively. According to value of parameter Θ, we speak of SIPG (Θ = −1), IIPG
(Θ = 0) or NIPG (Θ = 1) variants of DGFEM. Penalty terms are represented by Jσ

h

and the penalty parameter function σ in (10) is defined by σ|Γ = CW diam(Γ)−1 , Γ ∈
Fh, where CW > 0 is a suitable constant depending on the used variant of scheme
and on the degree of polynomial approximation, the value of multiplicative constant
α before the penalty form Jσ

h will be specified in Section 4, assumption (13).
The problem (7) exhibits a system of ordinary differential equations for uh(t)

which has to be discretized by a suitable ODE method.
We shall assume that the numerical flux H is Lipschitz continuous (i.e., |H(u, v, ~n)

−H(u∗, v∗, ~n)| ≤ C(|u−u∗|+|v−v∗|) ∀u, u∗, v, v∗ ∈ IR ∀~n = (n1, n2)), consistent with
the convective fluxes f1, f2 (i.e., H(u, u, ~n) = f1(u)n1+f2(u)n2 ∀u ∈ IR ∀~n = (n1, n2))
and conservative (i.e., H(u, v, ~n) = −H(v, u,−~n) ∀u, v ∈ IR ∀~n = (n1, n2)). Then we
find that the sufficiently regular solution u of (1) – (3) satisfies

(
∂u(t)

∂t
, vh

)
+ bh(u(t), vh) + aΘ

h (u(t), vh) + αJσ
h (u(t), vh) = ℓΘ

h (u(t), vh) (t)(12)

∀ vh ∈ Shp ∀ t ∈ (0, T ),

4. Error analysis. To carry out the error analysis we need to specify the addi-
tional assumptions on mesh, nonlinear diffusion term and regularity of the solution u
of the continuous problem. Therefore, we assume that

(A1) The matrix IK(v) = {kij(v)}2
i,j=1, kij(v) : IR → IR, appearing in the diffusion

terms satisfies

(a) ‖IK(v)‖∞ ≤ CU < ∞ ∀ v ∈ IR,

(b) ‖IK(v1) − IK(v2)‖∞ ≤ CL|v1 − v2| ∀ v1, v2 ∈ IR,(13)

(c) ξT IK(v)ξ ≥ α‖ξ‖2, α > 0, ∀ v ∈ IR, ∀ ξ ∈ IR2,

where ‖ · ‖∞ represents the l∞-matrix norm, i.e., ‖IK‖∞ = max
1≤i≤n

∑n
j=1 |kij |.

(A2) The weak solution u is sufficiently regular, namely

(a) u ∈ L2(0, T ; Hs(Ω)),
∂u

∂t
∈ L2(0, T ; Hs(Ω)), s ≥ 1(14)

(b) ‖∇u(t)‖L∞(Ω) ≤ CD for a.a. t ∈ (0, T ),
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where s > 0 is a given number.
(A3) The triangulations Th, h ∈ (0, h0) are locally quasi-uniform and shape-regular

(for detailed definitions see [6]).
Further, we shall consider the new norm ||| · ||| :=

∑
K∈Th

| · |2H1(K) + Jσ
h (·, ·). Now, we

are ready to formulate the main result of this paper.
Theorem 4.1. Let assumptions (A1) be satisfied, let u be the exact solution of the

continuous problem satisfying (A2). Let Th, h ∈ (0, h0) be a family of triangulations
satisfying (A3) and let the numerical flux H from (9) be consistent, conservative and
Lipschitz continuous. Let uh ∈ Shp be the solution of the discrete problem given by
(7). Then the discretization error eh = uh − u satisfies

max
t∈[0,T ]

‖eh(t)‖2
L2(Ω) +

α

2

∫ T

0

|||eh(ϑ)|||
2
dϑ ≤ Ch2(µ−1),(15)

where µ = min(p + 1, s) and C > 0 is a constant independent of h.
Proof. Let u ∈ Hs(Ω) be the solution of the continuous problem. For v ∈ L2(Ω)

we denote by Πhv the L2-projection of v on Shp. We set ξ(t) = uh(t)−Πhu(t) ∈ Shp ,
η(t) = Πhu(t)−u(t), eh(t) = uh(t)−u(t) = ξ(t)+η(t) for a.a. t ∈ (0, T ). We subtract
(12) from (7), set vh := ξ and add terms −aΘ

h (Πhu, ξ) + ℓΘ
h (Πhu, ξ) on both sides of

this identity. Then we obtain

(
∂ξ

∂t
, ξ

)
+ aΘ

h (uh(t), ξ) − aΘ
h (Πhu, ξ) + ℓΘ

h (Πhu, ξ) − ℓΘ
h (uh, ξ) + αJσ

h (ξ, ξ)︸ ︷︷ ︸
=:χ1

(16)

= −

(
∂η

∂t
, ξ

)
+ bh(u, ξ) − bh(uh, ξ) − αJσ

h (η, ξ)

︸ ︷︷ ︸
=:χ2

+ aΘ
h (u, ξ) − aΘ

h (Πhu, ξ) + ℓΘ
h (Πhu, ξ) − ℓΘ

h (u, ξ)︸ ︷︷ ︸
=:χ3

With the aid of the multiplicative trace inequality, inverse inequality and approxima-
tion properties of the space Shp, (see [9, Lemmas 4.2–4.4]), we estimate terms χ1, χ2

and χ3. At first, we start with treatment of the term χ3. From (8), (11) and the fact
that [u]Γ = 0 ∀Γ ∈ FI

h , we have

χ3 =
∑

K∈Th

∫

K

(
IK(u)∇u − IK(Πhu)∇Πhu

)
· ∇ξ dx(17)

−
∑

Γ∈Fh

∫

Γ

(
〈IK(u)∇u · ~n〉 − 〈IK(Πhu)∇Πhu · ~n〉

)
[ξ] dS

+ Θ
∑

Γ∈Fh

∫

Γ

(
〈IK(u)∇ξ · ~n〉[u] − 〈IK(Πhu)∇ξ · ~n〉[Πhu]

)
dS

+ Θ
∑

Γ∈FD
h

∫

Γ

(
IK(Πhu)∇ξ · ~nuD + σ uD ξ − IK(u)∇ξ · ~n uD − σ uD ξ

)
dS

=
∑

K∈Th

∫

K

IK(u) (∇u −∇Πhu) · ∇ξ dx

︸ ︷︷ ︸
=:ϑ1
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+
∑

K∈Th

∫

K

(
IK(u) − IK(Πhu)

)
∇Πhu · ∇ξ dx

︸ ︷︷ ︸
=:ϑ2

+
∑

Γ∈Fh

∫

Γ

〈
IK(u) (∇Πhu −∇u) · ~n

〉
[ξ] dS

︸ ︷︷ ︸
=:ϑ3

+
∑

Γ∈Fh

∫

Γ

〈
(IK(Πhu) − IK(u))∇Πhu · ~n

〉
[ξ] dS

︸ ︷︷ ︸
=:ϑ4

+ Θ
∑

Γ∈Fh

∫

Γ

〈IK(u)∇ξ · ~n〉[u − Πhu] dS

︸ ︷︷ ︸
=:ϑ5

+ Θ
∑

Γ∈Fh

∫

Γ

〈
(IK(u) − IK(Πhu))∇ξ · ~n

〉
[Πhu − u] dS

︸ ︷︷ ︸
=:ϑ6

− Θ
∑

Γ∈FD
h

∫

Γ

(
IK(u) − IK(Πhu)

)
∇ξ · ~n (uD − u) dS =

6∑

i=1

ϑi,

where we used the fact that u = uD on Γ ∈ FD
h . Analogously as in [11] we derive

|ϑ1| ≤ C · CUhµ−1|u|Hµ(Ω)|ξ|H1(Ω,Th),(18)

|ϑ2| ≤ C
(
CUhµ−1|u|Hµ(Ω) + CDCLhµ|u|Hµ(Ω)

)
|ξ|H1(Ω,Th),(19)

|ϑ3| ≤ C · CUhµ−1|u|Hµ(Ω)J
σ
h (ξ, ξ)1/2,(20)

|ϑ4| ≤ C
(
CUhµ−1|u|Hµ(Ω) + CDCLhµ|u|Hµ(Ω)

)
Jσ

h (ξ, ξ)1/2,(21)

|ϑ5| ≤ C · CUhµ−1|u|Hµ(Ω)|ξ|H1(Ω,Th),(22)

|ϑ6| ≤ C · CUhµ−1|u|Hµ(Ω)|ξ|H1(Ω,Th).(23)

where CU , CL and CD are constants from (13a), (13b) and (14b), respectively. Finally,
since estimates (18)–(23), we can write

|χ3| ≤ C
(
CUhµ−1|u|Hµ(Ω) + CDCLhµ|u|Hµ(Ω)

)
|||ξ|||.(24)

The estimate of the second term χ2 follows from [6, Lemmas 14–15]

|χ2|≤C

{
hµ

∣∣∣∣
∂u

∂t

∣∣∣∣
Hµ(Ω)

‖ξ‖L2(Ω)+|||ξ|||(hµ|u|Hµ(Ω)+αhµ−1|u|Hµ(Ω)+‖ξ‖L2(Ω))

}
.(25)

Similarly as in (17), we treat the term χ1.

χ1 =
∑

K∈Th

∫

K

(
IK(uh)∇uh − IK(Πhu)∇Πhu

)
· ∇ξ dx(26)

−
∑

Γ∈Fh

∫

Γ

(
〈IK(uh)∇uh · ~n〉 − 〈IK(Πhu)∇Πhu · ~n〉

)
[ξ] dS



DGM FOR NONSTATIONARY NONLINEAR C–D PROBLEMS 299

+ Θ
∑

Γ∈Fh

∫

Γ

(
〈IK(uh)∇ξ · ~n〉[uh] − 〈IK(Πhu)∇ξ · ~n〉[Πhu]

)
dS

+ Θ
∑

Γ∈FD
h

∫

Γ

(
IK(Πhu)∇ξ · ~n uD − IK(uh)∇ξ · ~n uD

)
dS + αJσ

h (ξ, ξ)

=
∑

K∈Th

∫

K

IK(uh) (∇uh −∇Πhu) · ∇ξ dx

︸ ︷︷ ︸
=:ϑ7

+
∑

K∈Th

∫

K

(
IK(uh) − IK(Πhu)

)
∇Πhu · ∇ξ dx

︸ ︷︷ ︸
=:ϑ8

−
∑

Γ∈Fh

∫

Γ

(
〈IK(uh)∇u · ~n〉 − 〈IK(uh)∇Πhu · ~n〉

)
[ξ] dS

−
∑

Γ∈Fh

∫

Γ

(
〈IK(uh)∇Πhu · ~n〉 − 〈IK(Πhu)∇Πhu · ~n〉

)
[ξ] dS

+ Θ
∑

Γ∈Fh

∫

Γ

〈IK(uh)∇ξ · ~n〉[uh − Πhu] dS

+ Θ
∑

Γ∈Fh

∫

Γ

〈
(IK(uh) − IK(Πhu))∇ξ · ~n

〉
[Πhu] dS

+ Θ
∑

Γ∈FD
h

∫

Γ

(
IK(Πhu) − IK(uh)

)
∇ξ · ~n uD dS + αJσ

h (ξ, ξ)

= ϑ7 + ϑ8 + (Θ − 1)
∑

Γ∈Fh

∫

Γ

〈
IK(uh) (∇uh −∇Πhu) · ~n

〉
[uh − Πhu] dS

︸ ︷︷ ︸
=:ϑ9

+
∑

Γ∈Fh

∫

Γ

〈
(IK(Πhu) − IK(uh))∇Πhu · ~n

〉
[ξ] dS

︸ ︷︷ ︸
=:ϑ10

+ Θ
∑

Γ∈Fh

∫

Γ

〈
(IK(uh) − IK(Πhu))∇ξ · ~n

〉
[η] dS

︸ ︷︷ ︸
=:ϑ11

+αJσ
h (ξ, ξ)

For all three mentioned IPG variants according to (26), the term χ1 satisfies

χ1 ≥ ϑ7 − |ϑ8| + (Θ − 1)ϑ9 − |ϑ10| − |ϑ11| + αJσ
h (ξ, ξ).(27)

Analogously as in [11] we derive

ϑ7 ≥ α|ξ|2H1(Ω,Th),(28)

|ϑ8| ≤ C
(
CUhµ−1|u|Hµ(Ω) + CDCL‖ξ‖L2(Ω)

)
|ξ|H1(Ω,Th),(29)

|ϑ10| ≤ C
(
CUhµ−1|u|Hµ(Ω) + CDCL|ξ|L2(Ω)

)
Jσ

h (ξ, ξ)1/2,(30)

|ϑ11| ≤ C · CUhµ−1|u|Hµ(Ω)|ξ|H1(Ω,Th),(31)
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where α is constant from (13c).
The special attention is paid to the estimation of term ϑ9. For NIPG variant

(Θ = 1) this term disappears in (27). On the other hand, for IIPG and SIPG variants
by a particular choice of the constant CW we obtain the following inequalities

−ϑ9 ≥ −
α

2

(
|ξ|2H1(Ω,Th) − Jσ

h (ξ, ξ)
)
, for CW ≥

C2
UCM (1 + CI)

α2
(IIPG)(32)

−2ϑ9 ≥ −
α

2

(
|ξ|2H1(Ω,Th) − Jσ

h (ξ, ξ)
)
, for CW ≥

4C2
UCM (1 + CI)

α2
(SIPG),

where CM and CI are constants from [7, Lemmas 1–2], respectively.
Finally we can write

χ1 ≥
α

2
|||ξ|||

2
− C

(
CUhµ−1|u|Hµ(Ω) + CDCL‖ξ‖L2(Ω))

)
|||ξ|||.(33)

From (16), (24), (25), (33) and the identity
(

∂ξ
∂t , ξ

)
= 1

2
d
dt‖ξ‖

2
L2(Ω) we get

1

2

d

dt
‖ξ‖2

L2(Ω) +
α

2
|||ξ|||

2
− C

(
CUhµ−1|u|Hµ(Ω) + CDCL‖ξ‖L2(Ω))

)
|||ξ|||(34)

≤ C

{
hµ|∂u/∂t|Hµ(Ω)‖ξ‖L2(Ω) + |||ξ|||(hµ|u|Hµ(Ω) + αhµ−1|u|Hµ(Ω) + ‖ξ‖L2(Ω))

}

+ C
(
CUhµ−1|u|Hµ(Ω) + CDCLhµ|u|Hµ(Ω)

)
|||ξ|||.

We rewrite the above inequality (34) in the following form

1

2

d

dt
‖ξ‖2

L2(Ω) +
α

2
|||ξ|||

2
≤ C(1 + CDCL)|||ξ||| ‖ξ‖L2(Ω)(35)

+ C‖ξ‖L2(Ω)h
µ|∂u/∂t|Hµ(Ω) + C

(
CU + h(1 + CDCL) + α

)
|||ξ|||hµ−1|u|Hµ(Ω).

Applying Young’s inequality to the right-hand-side of (35) gives us

d

dt
‖ξ‖2

L2(Ω) + α|||ξ|||
2
≤

α

4
|||ξ|||

2
+

4C2(1 + CDCL)2

α
‖ξ‖2

L2(Ω) +
α

4
‖ξ‖2

L2(Ω)(36)

+
4C2

α
h2µ|∂u/∂t|2Hµ(Ω) +

α

4
|||ξ|||

2
+

4C2(CU + h(1 + CDCL) + α)2

α
h2µ−2|u|2Hµ(Ω).

Subsequently, we set C̃ = max(1, (CU +h(1+CDCL)+α)2) and put generic constant
C = 4C2, hence

d

dt
‖ξ(t)‖2

L2(Ω) +
α

2
|||ξ(t)|||

2
≤

(
α

4
+

C(1 + CDCL)2

α

)
‖ξ(t)‖2

L2(Ω)(37)

+ C
C̃

α
h2µ−2

(
|∂u(t)/∂t|2Hµ(Ω) + |u(t)|2Hµ(Ω)

)
.

The integration of (37) from 0 to t ∈ [0, T ] and the relation ξ(0) = u0
h − Πhu0 = 0

yield

‖ξ(t)‖2
L2(Ω) +

α

2

∫ t

0

|||ξ(ϑ)|||2dϑ ≤

(
α

4
+

C(1 + CDCL)2

α

)∫ t

0

‖ξ(ϑ)‖2
L2(Ω)dϑ(38)

+ C
C̃

α
h2µ−2

∫ t

0

(
|∂u(ϑ)/∂t|2Hµ(Ω) + |u(ϑ)|2Hµ(Ω)

)
dϑ.
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Now the application of Gronwall’s lemma (see, e.g. [7, Lemma 10]), implies that

‖ξ(t)‖2
L2(Ω) +

α

2

∫ t

0

|||ξ(ϑ)|||
2
dϑ(39)

≤ Ch2µ−2 C̃

α

(
‖u‖2

L2(0,T ;Hµ(Ω)) + ‖∂u/∂t‖2
L2(0,T ;Hµ(Ω))

)

× exp

((
4 + C(1 + CDCL)2

4α

)
t

)
, t ∈ [0, T ].

Finally, relation eh = ξ + η, the triangle inequality, estimate (39) and estimates from
[7, Lemma 6] yield the sought result (15).

We observe that estimate (15) is suboptimal in the L∞(0, T, L2(Ω))-norm, namely
O(hµ−1), but optimal in the L2(0, T, H1(Ω))-seminorm, namely O(hµ−1). Moreover,
for not sufficiently regular solution s ≤ p + 1 the order of convergence is given by the
regularity of u (the value s).

5. Numerical example. In this section we verify the a priori error estimates
(15). We consider the 2D viscous Burgers equation

∂u

∂t
+

2∑

s=1

u
∂u

∂xs
= div(IK(u)∇u) + g in Ω × (0, T ),(40)

where matrix K(w) is chosen in the form K(w) = ε(2 + arctan(w))II. Obviously,
fs(u) = u2/2 for s = 1, 2. It is possible to show that the problem (40) satisfies
assumptions (A1) with CU = ε(2+ π

2 ), CL = 1.0 and α = ε(2− π
2 ) . We set ε = 0.002,

Ω = (0, 1)2, T = 10 and define the function g and the initial and boundary conditions
in such a way that the exact solution has the form

u(x1, x2, t) =
(
1 − e−10t

)
û(x1, x2),(41)

û(x1, x2) = 2rαx1x2(1 − x1)(1 − x2) = rα+2 sin(2ϕ)(1 − x1)(1 − x2),(42)

where (r, ϕ) (r = (x2
1 + x2

2)
1/2) are the polar coordinates and α ∈ IR is a constant.

For t = T = 10 the solution u differs very little from the “steady state” solution û.
The function û is equal to zero on ∂Ω and its regularity depends on the value of α,
namely (cf. [3]) û ∈ Hβ(Ω) ∀β ∈ (0, α + 3), where Hβ(Ω) denotes (in general) the
Sobolev-Slobodetskii space of functions with ”noninteger derivatives”.

In the presented numerical tests we use the values α = 2 and α = −3/2. The value
α = 2 gives function û sufficiently regular (∈ Hβ(Ω) for β < 5), whereas the value
α = −3/2 gives û ∈ Hβ(Ω), β < 3/2. Numerical experiments are carried out with the
use of P 1, P 2, P 3 and P 4 polynomial approximations on 6 triangular meshes having
128, 288, 512, 1152, 2048 and 4608 elements for SIPG, NIPG and IIPG methods.

Figures 1 - 4 show computational errors in the L2(Ω)-norm and in the H1-
seminorm at time t = T = 10 and indicate the corresponding experimental orders
of convergence (EOC) for α = 2 and α = −3/2 using SIPG, NIPG and IIPG meth-
ods. We observe that

• regular exact solution (case α = 2) Whereas SIPG method gives optimal
order of convergence O(hp+1) for p = 1, 2, 3, 4, the NIPG and IIPG methods
give optimal order of convergence O(hp+1) for p = 1 and p = 3 (even degrees)
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Fig. 1. Computational error and EOC in the L2-norm for the SIPG (left), NIPG (middle),
IIPG (right) method, the regular solution (α = 2)
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Fig. 2. Computational error and EOC in the H1-semi-norm for the SIPG (left), NIPG (mid-
dle), IIPG (right) method, the regular solution (α = 2)

and suboptimal O(hp) for p = 2 and p = 4 (odd degrees). Moreover, all
IPG techniques produce optimal order of convergence in the H1-seminorm
(O(hp)).

• singular exact solution (case α = −3/2) The experimental order of con-
vergence in the L2-norm is equal to 3/2 and it is equal to 1/2 in the H1-
seminorm. This is in agreement with theoretical results.
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