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A 3D DISCRETE DUALITY FINITE VOLUME METHOD FOR
NONLINEAR ELLIPTIC EQUATIONS*

YVES COUDIERE! AND FLORENCE HUBERTY

Abstract. Discrete Duality Finite Volume (DDFV) schemes have recently been developed in
2D to approximate on general meshes nonlinear diffusion problems. We propose in this paper a 3D
extension of such schemes. The construction of this scheme is investigated. The main properties of
the scheme, as well-posedness, error estimates, are also stated.
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1. Introduction.

1.1. Nonlinear elliptic equations. In this paper, we are interested in the
study of a finite volume approximation of solutions to the nonlinear diffusion problem:

—div(p(z,Vu(z))) = f(2), inQ, u=0, ondQ, (1.1)
where € is a bounded polyhedral domain in R3. Consider p €]1,00[ and p’ = 1%.
The flux ¢ : @ xR? — R3 in equation (1.1) is supposed to be a Caratheodory function
which is strictly monotonic with respect to & € R3:

(p(2,&) —w(z,m), & —n) >0, for all £ #£n, for a.e. z€ Q. (1.2)

We also assume that there exist Cy,Cy > 0, by € L'(Q), by € LP'(2) such that

(0(2,€),€) > CL[€]P — b1(2), for all € € R3, a.e.z € Q, (1.3)
lo(z,6)| < Co|€|P7 + ba(2), for all € € R3, a.e.z € Q. (1.4)

These assumptions ensure that u — —div(¢(-, Vu)) is a Leray-Lions operator, and
in particular the mapping G € (LP(Q))? — o(-, G(-)) € (LP'(Q))? is continuous and
Leray Lions [8] proved that

THEOREM 1.1. Under assumptions (1.2), (1.3) and (1.4), for any source term
f e W= (Q), the problem (1.1) has a unique solution u € Wy (Q).

The homogeneous Dirichlet equation is addressed here for sake of simplicity in
the exposition of the scheme. The non homogeneous case can be treated similarly.

1.2. The discrete duality finite volume approaches in 3D. The 2D DDFV
method relies on the diamond formula to compute gradients of the unknown w« from
finite differences in two independent directions, involving four values of u (See [0, 4,

]). Hence, two finite volumes meshes are needed. They intersect through diamond
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cells, on which the gradient vectors are computed. Naturally the diamond cells are
quadrilateral.

Three different methods have been proposed in the linear case p(z,£) = G(2)¢
(G(x) a symmetric uniformly elliptic matrix). In any case, an additional mesh of dual
control volumes is built around the vertexes of the primal mesh and the gradient is
piecewise constant on some diamond cells that recover the faces of both the primal
and dual control volumes. This approximate gradient yields a natural numerical flux
on the faces of the control volumes. The scheme is obtained by integrating eq. (1.1)
on both the primal and dual control volumes.

In [1, 9, 3], each diamond cell is composed of a pair of pyramids having as base
an interface of the primal mesh and vertexes the two neighboring centers. In [9, 3] a
gradient is built from the vertex values of each diamond cell under the condition that
the interfaces of the primal mesh are either triangles or quadrangles. This includes
locally refined meshes. In [I] the construction is restricted to the case where the
primal mesh is a tetraedrization of €2 and verifies an orthogonality constrain. The
construction of the dual control volumes is specific to each method. Unlike in the 2D
version, the primal and the dual meshes play a different role: in [9] the domain 2 is
recovered twice by the dual mesh and in [1] the orthogonality condition means that
the dual mesh is the Voronoi mesh associated to the vertexes of the primal mesh.

In [7], diamond cells are constructed in a different way: choosing a point in each
face of the mesh, the diamond cell is made of two tetrahedral cells that have a common
triangular base with vertexes the endpoints of one edge of the face and the center
of the face; and the two neighboring centers as additional vertexes. Two auxiliary
unknowns, at the centers of the face and of the edge, are introduced to reconstruct
the gradient. With this two additional points, the diamond cell now has 6 vertexes,
defining 3 independent directions: between the two new points, between the two
neighboring centers and between the to endpoints of the edge. It can be constructed
a gradient from the 3 finite differences in these directions. But it remains the auxiliary
unknowns to eliminate. F. Hermeline suggests several possibilities to eliminate them.
The derived schemes are in general non symmetric. Their convergence seems to be
difficult to prove.

Our 3D generalization of the DDFV approach is based on the idea that three
finite differences in independent directions are needed to construct a gradient. The
diamond mesh constructed in [7] gives naturally these three independent directions.
According to our method, the additional unknowns are computed by integrating the
equation on a third family of control volumes associated to the new unknowns at the
faces and at the edges of the primal mesh. Like in the 2D case, the three meshes play
a symmetric role, resulting in a scheme that is quite simple to implement.

Hence, our innovative scheme is based on a three meshes finite volume formula-
tion. The diamond cells have 6 vertexes organized in 3 pairs, defining 3 independent
directions in R3. The approximate gradient is easily obtained by the 3 corresponding
finite differences. The scheme is naturally symmetric and easy to implement.

This paper specifies the construction of this 3D DDFV scheme for a nonlinear
elliptic equation and states the main properties of this scheme, including some error
estimates.

1.3. Outline. The meshes involved in the construction of the scheme are de-
scribed in section 2. Some discrete divergence div? and gradient V7 operators are
defined in section 3, that are proved to verify a discrete duality property similar to
the Green formula. The approximation scheme for nonlinear elliptic equation (1.1)
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reads
—divT (o (VT uT)) = /7.

The main properties of our scheme, well-posedness, a priori estimates and some error
estimates, are inherited from the discrete duality property and assumptions (1.2),
(1.3) and (1.4), as exposed in section 4.

2. Construction of the Meshes. Consider a usual finite volume mesh M
called the primary mesh. We construct two additional finite volumes meshes, with
control volumes respectively around the vertexes and the faces and edges of the pri-
mary mesh. They are denoted by N and FE. The diamond cells D are defined in
order to contain exactly one interface of each of the three finite volumes meshes, so
that three finite differences are available inside D to construct the discrete gradient of
U.

The mesh 7 is the triple (M, N, FE) of meshes on Q, defined below (see Figures
2.1 and 2.2). We refer as ¢ € 7 for any of the volumes in M UN U FE.

2.1. The primary mesh. The mesh M is a set of open disjoint polyhedral
control volumes K C € such that UK = Q. The interfaces K N L of these control
volumes'! are denoted by F = KN T as well as the remaining boundary faces K =
0K N 0N2. Theses faces are polygons; they are called the faces of M. The vertexes of
theses faces F are denoted by A and called the vertexes of M, while the edges of these
faces are called the edges of M and denoted by E.

We associate to each cell K a point xx € K, to each face F a point zy € F and
finally to each edge E a point x € E. They are for example the isobarycenters of the
K, F, E.

For each face ¥ C 0f), we introduce a degenerate boundary control volume K
reduced to the face F', with center zx = x;. The set of boundary control volume is
denoted by OM.

DEFINITION 2.1. We defined the relation < between respectively vertexes and
edges, edges and faces, faces and control volumes as “belongs to the boundary to”. In
other words

A<E<F<K means ACOE, ECOIF, FCOIK.

This relation is useful to describe for instance the subset of the edges that are con-
nected to a given node, or the subset of the edges that are boundaries of a face,
etc.

2.2. The node mesh. A control volume denoted by P, is associated to each
vertex A of M located inside the domain . It is uniquely defined by its boundary
OP, and by A € P,. The node mesh N is the set of all these control volumes :

A<E<F=<K

N = {PA such that P, = U  xpzrrk, A vertex of M, A € Q} .

We set ON the set of control volumes around the vertexes A € 9. The specific
description of these volumes is not needed here since only homogeneous Dirichlet
boundary condition is considered.

Lwhen they have a non zero d — 1 dimensional measure
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(a) Primal and dual meshes (b) Primal and node meshes (c) Primal and diamond cells

(d) XY view (e) XZ view (f) YZ view

FIGURE 2.1. Ezample mesh with hexahedrons.
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FIGURE 2.2. Ezample mesh with tetrahedrons.

2.3. The face mesh. A control volume is associated to each center xy of the
faces FF C Q of M and to each center x of the edges E C Q of M, respectively
denoted by P and Py and such that xp € P and zy € P;. The face mesh FE is the
set of all these control volumes. It is split into the sets F and £ of the control volumes
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associated to the faces and edges defined by:

A<E<F=<K

F = {PF such that 0P, = U  Azgexyk, F face of M, F C Q} ,

E= {PE such that 0P, = U  Azgpxy, E edge of M, E C Q}

A<EXF<K
with
Zgp = Oz + (1 — O)zp  for some fixed 6 €]0, 1[. (2.1)

The set FE of control volumes around the faces F C 02 and edges E C 01 is used
to impose the homogeneous Dirichlet boundary condition.

2.4. The diamond cells. Consider an edge E of a face F: E < F. The edge E
has two endpoints A, B that are vertexes of M and is consequently associated to two
control volumes in AUAN, while the face F is an interface between two control volumes
K and L in M U OM. They are exactly defined by the relation A,B < E < F < K, L.
Finally the control volumes P; and P in FE U JFE also have an interface for E < F.
Consequently, for E < F the diamond D associated to (E, F) is the polyhedron defined
by:

D = D(E, F) = hull(A, zy, B, ) U hull(A, z, B, z)

where hull(-) denotes the convex hull of a set of points. The set of diamond cells,
called the diamond mesh D, is also defined by

D= {D such that 0D = U  Azprk, E < F} .

A<E<F=<K

We associate to each diamond cell a point x, € D called “center”.

A diamond cell D = D(E, F) is uniquely defined by the data of (E,F) such that
E < F. Unless specified explicitly, the diamond cell associated to E < F is simply
denoted by D, and its vertexes by xx, x, A, B and xy, zy, supposed to be order in such
a way that

Agp :=det(B — A, zp — 2, , — x) > 0.

With this orientation the measure of D is |D| = %AEF and the subsets of the interfaces
between pairs control volumes of the three meshes M, N, F€ included in the diamond
cell D are as follows:
e The intersection K N LN D is composed of the two triangles (A, zy, zr) and
(B, zg, 2r) and the vector Ny, = 5(B — A) X (2p — ) = [ - 7ucr ds where
Ny, stands for the unit normal to K N L N D oriented from K to L;
e The intersection P, N P; ND is composed of the two triangles (g, g, k) and
(zp, Tg, ) and the vector N, = %(xp —xp) X (T, —x) = fPAmPBmD Ny ds
where n, 5 stands for the unit normal to P, N P, N D oriented from A to B;
e The intersection P; N P. N D is composed of the four triangles (zy, A, zyy),
(zk, B, Ter), (21, B, Ter) and (x, A, xgr) and the vector Ny = %(xE — xg) X
(B—A) = prmme ng r ds where ny » stands for the unit normal to ;NP ND
oriented from E to F.
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Note that
1
Ny (2, —2x) = Nap - (B—A) = Ngg - (2 — ) = §AEF = 3|D|. (2.2)

Remark that zge defined in eq. (2.1) is a natural choice for the center z;, of the
diamond cell D.

3. The discrete spaces and operators.

3.1. The discrete spaces. Consider the data (u™, u", u”¢) of three functions
piecewise constant respectively on the K € M, P, € N and Py € FE:

uM = Z Uk XK UN = Z UsX A, u”t = ZUFXPF + ZUXPE'

KEM AeN FEF EEE

The sets of functions piecewise constant on the K € M, P, € N and Py € FE are
respectively denoted by XM, X and X7¢. The finite volume unknown is generally
a element of the space X = XM x XN x XF€.

The finite volume unknown is supplemented with boundary values

6uT = ((uK)K€8M7 (UA)AEQQa (UF)FCOQa (UE)ECBQ)

that define a linear space 0X. For homogeneous Dirichlet boundary conditions, it is
set 6u? = 0 and the construction of the scheme and proofs are carried out simply in
X.

REMARK 1. For non homogeneous Dirichlet conditions, su” # 0, the unknown
belongs to an affine subspace of X x 0X, the inner product and subsequent properties
are handled in X x 0X, while the discrete problem is posed in X. The proofs and
scheme becomes more technical while the difficulties are the same as the one encoun-
tered for homogeneous conditions.

For Neumann boundary conditions, it must be defined the control volumes asso-
ciated to boundary nodes, edges and faces, which is again an additional technicality.

The space X is supplied with the natural inner product

1
(uTﬂ)T)X _ - </ ’U,M’UM+ ’LLNUN+/ u]:éfv]:g)
3 Q Q Q
1
=3 (Z wev K[+ D waoa| P+ > weve| Pl + Y quF|PF> . (3.0)
KEM P.eN P& PeF

A linear space of vector fields will be associated to the finite volumes gradient. It
is the space Q of functions piecewise constant on the D € D with value in R3:

PeQeP=) &xv, YDED, & eR
peD

Like for elements v € X, an element (P € Q may also be denoted by the sequence
of its degrees of freedom: ¢P = (£,)pep. It is endowed with the natural inner product

D Dy _ D D _ . ) )
(€°.n >Q—/ﬂfs P =3 & ol (3.2)

DED
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3.2. The discrete gradient. Given u? = (uM,uN,ufg) € X, its gradient is
the element V7 u? = (Vyu? )pep in Q defined by

1
VpDeD, Vyul = ﬁ ((up, — ug) Ny + (ug — us)Nap + (up — ug) Ngp) - (3.3)

Unlike the discrete unknown, the discrete gradient is defined up to the boundary
with this relation, assuming that the Dirichlet condition is imposed on the boundary:
up =y, = 0if F C I, uy =0 (resp. uz = 0) if A € IQ (resp. B € 0N) and
up =u, = ug = 0 if E C 0N

By construction, for each b € D, the vector Vyu? is the unique vector of R? such
that

VDuT~(xL — xx) = Uy — Ug, VDuT~(B —A) = U — Uy, VDuT'(acF — Tp) = Up — Up,

because of the relation (2.2).

3.3. The discrete divergence. Given (P € XP,| its discrete divergence is the
element div? ¢2 = (divM €2, divY €2, div7 e €P) in X defined by

divMeP = (divi €P)err,  divV €P = (diva €P)uen,
diV]:g £D = {(diVE fD)Ee& (diVF §D)FE.7:}

with, for any K, A, E, F

| K| divy fD = Z &pNiw,  |Paldivy §D = Z EpNag, (3.4)
DEDg DED,
Poldivie€” = & Ner, [Pl dive €7 = > & (—Nux), (3.5)
DEDg DEDy

where the subsets of D are defined by bx = {D(E,F) : E < F < K}, D, = {D(E,F) :
A < E <F}, D = {D(E,F) : E < F} and D = {D(E,F) : E < F}. Remark that we
have for all c € T

|o| dive €P = /60 P (x)ne(z)do(z), (3.6)

where n¢ is the unit normal to dC outward of C.
4. The Discrete Duality Formula and other Basic Properties.

4.1. The Discrete Duality Relationship. We first state a discrete version of
the Green formula:

, 3
(div g, ) o o + (@, V) (1rya gys = 0, Y € WP (Q), Vg € (lep (Q)) :

THEOREM 4.1 (Discrete duality). For any u? € X and ¢P € Q, the gradient
VTuT and divergence div? &P werify the discrete duality relation

(divT §D,u7)x + (€7, VTUT)Q =0.
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Proof. From the definitions (3.4) and (3.5) of the divergence and (3.1) of the inner
product in X, one have

(av”ePuT) = % (Z S & Nauc+ Y > & Nty

KEM DEDk AEN DED,
D6 (Nt YD 6 N)
FEF DEDp EE€E DEDy
1
= _g Z fD : (NKL(UL - UK) + NAB(UB - UA) + NEF(UF - UE))
pED
==Y Iolé  VouT = (67,V7uT)
DED

using also eq. (3.3) and (3.2) for the discrete gradient and the inner product in Q,
and with the homogeneous Dirichlet condition. O

4.2. The Inequality of Poincaré. The discrete space X is analog to VVO1 P(Q)
and then it is expected that V747 = 0 = u7 = 0 and that a discrete inequality of
Poincaré holds.

THEOREM 4.2 (Inequality of Poincaré). There exists a constant C' = C(Reg”)
depending only on RegT such that

vul € X, |[u™M| e + |uN || oe + [[u”E] e < CIVT 0T || L.

Proof. The proof relies on the remark that for any diamond D € D,

2 1
Vou” |* p| = w<$chT*D5uDT
Ny, | N |? Ny |2
> A |D] <(UL—UK)2 3|]I;L| +(UA—UB)2 3|ADB| +(UE—UF)2 3|]1:;‘

where dup = ((un, — uk) Niw, (us — Ua)Nag, (up — ug)Ngp) and A, > 0 is the smallest
eigenvalue of the Gram matrix

C _(NKL N N><N N NEF>T
"7 \ Nl INasl” [Neel ) \[Niwl” [Naal” [N

This eigenvalue is naturally uniformly bounded below under the geometrical assump-
tion the diamond cells are non-degenerate.The inequality of Poincaré is derived from
the 3 usual discrete inequalities of Poincaré in the spaces XM, XV and X7¢ [5, 2].
]

5. The Finite Volume Scheme.

5.1. Formulation of the scheme. The Discrete Duality Finite Volume scheme
is obtained by integrating equation (1.1) on all the control volumes of the three meshes,
KEM,P,eN,P,e& and P, € F [0, 4, 2]. The exact solution u verifies for all
ceT:

— /BC ©(s,Vu(s)) - neds = /Cf(m)dx- (5.1)
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For any D € D, consider the spatial approximation ¢y, : R? — R? of the flux ¢ defined
by

VD e D, VEER?, (&) = ] / 2,€)dz. (5.2)

The flux ¢(-, Vu(+)) is approximated by the function o7 (VZu7?) = (pp(Vpu?))pen
in Q where VZu7 has been defined in section 3.2. With this approximation of the
flux, and using eq. (5.1), the DDFV scheme reads

—div? (pr(VTuT)) =xTFf (5.3)

where the discrete divergence div7 is defined in section 3.3 and the projection 77 f =
{(fK)K€M7 (fA)AeMa (fEa fF)EEE,Fe]-'} € X is defined by

VK € M, szﬁ/f(x)dx, vaeN, fAzﬁ f(z)dz
VE € £, fh:|PE| Pﬁf()xv VF € F, fr—|PF| pr()

5.2. A word on Practical Implementation. Note that the implementation
of such a scheme does not require the construction of the node mesh A and the face
mesh F. If the primal mesh is given with the format

A<E<F<K

that is a control volume is defined by its faces, a face by its edges and an edge by its
vertexes, it is easy to construct a diamond cell structure that contains the reference
to its vertexes A, B, xy, Ty, Ty, Ty, the values Ny, Nag, Ngr and the measures of the
8 tetrahedral cells that compose the diamond cell: (2, 2z, A, Tr),(Tpr, Tk, A, Tg),
The system involved in the resolution of the scheme, can be easily implemented by
going through this diamond cell structure.

6. Convergence and error estimates. In this section, the nonlinear system
of equations (5.3) is proved to be well-posed; uniform a priori estimates are found on
its solutions; and finally error estimates are given.

THEOREM 6.1 (A priori estimate and existence of a solution to (5.3)).

Assume that the fluz ¢ satisfies assumptions (1.2), (1.3) and (1.4). For any
fe LPI(Q) and any mesh T on ), the finite volume scheme (5.3) admits a unique
solution u?7 € X and there exists a uniform constant C' > 0 depending only on Cy

and RegT, such that
([rvmare)" <c(igr + i) (6.1)

Proof. The a priori estimate is a consequence of theorems 4.1 and 4.2 and of
assumption 1.3. A solution of the discrete problem is found as a Brouwer fixed point
of the mapping u? — — diVT(cpT(uT)) — 77 f. Uniqueness is recovered from thm 4.1
and assumption (1.2). O

REMARK 2. In the case where the flux ¢ derives from a convex potential ®:

©(2,8) = Ve®(2,6) VE € R?, for ae. 2 € Q, and ®(2,0) =0 for a.e. € Q (6.2)
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the solution u” of the scheme (5.3) is also the unique minimizer of the discrete energy
J7T associated to the scheme by J7 (u”) = [, ®(z,VTuT) — [LuT =T f.

The scheme is well-posed, and the discrete solution might be proved to converge
under assumptions (1.2), (1.3) and (1.4) only. Anyway, in order to compute some
error estimates, in the case p > 2, the following additional assumptions are needed:
there exists constants Cs, Cy,Cs > 0, by € L7-2 () and a function bs € LP (Q) such
that for all (£,1) € R? x R? and almost every z € €,

(p(2,6) = w(2,m),§ —n) > C3]§ —nl?, (6.3)
0(2,€) = (2, )] < Ca (ba(z) + [E[P72 + [n]P~2) |€ = n], (6.4)

and for all € R® and almost every z € Q,
F.0) < Cu bs(e) + 1P, (6:5)

Our main result is the following.

THEOREM 6.2. Assume that the fluz ¢ satisfies assumptions (1.3), (1.4), (6.3),
(6.4) and (6.5). Forp > 2 consider f € L’ (Q) and assume that the solution u to
(1.1) belongs to W24(Q) N Wol’p(Q), with ¢ =p for p>2 and q¢ > 2 forp=2.

For any mesh T on ) there exists a constant C > 0 depending on the norm
llullwze, the regularity parameter Reg? | the data f, (bi)1<i<e and (Cy)1<i<s, such
that

lu—u™|ze + lu— N e + Ju — €| + |Vu — VT uT || p < Chit, (6.6)

where uT = (UM, uN,uFE) € X is the solution to eq. (5.3).

Proof. The proof is long and technical. It involves the consistency of the discrete
gradient, the computation of error estimates between the discrete and exact flux inside
the diamond cells, and all the assumptions on the flux function . O
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