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OPTIMAL ERROR ESTIMATES IN THE DG METHOD FOR
NONLINEAR CONVECTION-DIFFUSION PROBLEMS∗

VÁCLAV KUČERA†

Abstract. This paper is concerned with the analysis of the discontinuous Galerkin finite element
method (DGFEM) applied to the space semidiscretization of a nonstationary convection-diffusion
problem with nonlinear convection and nonlinear diffusion. Optimal estimates in the L

∞(L2)-norm
are derived for the symmetric interior penalty (SIPG) scheme in two dimensions. The error analysis
is carried out for nonconforming triangular meshes under the assumption that the exact solution of
the problem and the solution of a linearised elliptic dual problem are sufficiently regular.
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1. Introduction. A natural generalization of the finite volume and finite ele-
ment methods is the discontinuous Galerkin finite element method (DGFEM). This
method uses advantages of FV as well as FE methods: it is based on piecewise polyno-
mial but discontinuous approximations, where boundary fluxes are evaluated with the
aid of a numerical flux. The use of discontinuous functions allows a precise capturing
of discontinuities and steep gradients, while the use of higher degree polynomials en-
sures a higher order of approximation in regions, where the solution is smooth. Such
properties are desirable in specific applications, among them the solution of com-
pressible inviscid and viscous flows governed by the Navier-Stokes equations (cf. [2],
[9]). This system of equations, when written in conservative form contain nonlinear
convective as well as viscous (diffusive) terms. Therefore a theoretical analysis of the
DGFEM applied to such problems is a very important topic.

In [3], [4] and [5] the order of convergence of the DGFEM is analyzed for a model
scalar equation with linear diffusion. The presented paper generalizes results from [4],
where a nonlinear convection-diffusion problem with linear diffusion is treated and
results from [8], where L∞(L2)-suboptimal error estimates are derived in the case of
nonlinear diffusion. In this work we prove L∞(L2)-optimal error estimates in the case
of nonlinear convection as well as diffusion using the Aubin-Nitsche duality technique.
Triangular elements are used and hanging nodes are allowed in the presented proof.
The use of a linearised elliptic dual problem limits the result to Dirichlet problems on
a convex domain. This work represents an overview of the paper [11], where all the
proofs are carried out in detail.

2. Continuous problem. Let Ω ⊂ IR2 be a bounded open convex polygonal
domain with Lipschitz-continuous boundary ∂Ω and T > 0. Let QT := Ω × (0, T ).
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We treat the following nonlinear problem:

∂u

∂t
+

2
∑

s=1

∂fs(u)

∂xs
− div

(

β(u)∇u
)

= g in QT , (2.1)

u|∂Ω×(0,T ) = uD, (2.2)

u(x, 0) = u0(x), x ∈ Ω, (2.3)

where β ∈ C2(IR) ∩W 2,∞(IR) is bounded from below and Lipschitz continuous:

β : IR → [β0, β1], 0 < β0 < β1 <∞, (2.4)

|β(u1) − β(u2)| ≤ L|u1 − u2|, ∀u1, u2 ∈ IR. (2.5)

Condition (2.5) implies |β′| < L. Let g : QT → IR, uD : ∂Ω × (0, T ) → IR and
u0 : Ω → IR be given functions, and f1, f2 ∈ C1(IR) be prescribed Lipschitz-continuous
fluxes. Without loss of generality let f1(0) = f2(0) = 0.

We shall use standard notation of function spaces. Let G ⊂ IR2 be a bounded
domain with a Lipschitz-continuous boundary ∂G. By G we denote the closure of G.
Let k ∈ {0, 1, 2, . . .} and p ∈ [1,∞]. We use the well-known Lebesgue and Sobolev
spaces Lp(G), Lp(∂G), W k,p(G), Hk(G) = W k,2(G), W k,p(∂G). By H1

0 (G) we
denote the space formed by all functions v ∈ H1(G) with zero traces on ∂G, i.e.
v|∂G = 0. Further, we use the Bochner spaces Lp(0, T ;X) of functions defined in (0, T )
with values in a Banach space X and the spaces Ck([0, T ];X) of k-times continuously
differentiable mappings of the interval [0, T ] with values in X (see e.g. [12]). The
symbols ‖·‖X and | · |X will denote a norm and a seminorm in a space X , respectively.
By (·, ·) we denote the standard L2(Ω)−scalar product.

3. Discretization. Let Th be a partition of the closure Ω of the domain Ω into
a finite number of closed triangles with mutually disjoint interiors. We shall call Th a
triangulation of Ω. We do not require the standard conforming properties of Th used
in the finite element method. This means that we admit the so-called hanging nodes.
We shall use the following notation. By ∂K we denote the boundary of an element
K ∈ Th and set hK = diam(K), h = maxK∈Th

hK . By ρK we denote the radius of
the largest circle inscribed into K and by |K| we denote the area of K.

Let K,K ′ ∈ Th. We say that K and K ′ are neighbours, if the set ∂K ∩ ∂K ′

has positive length. We say that Γ ⊂ K is a face (or edge in IR2) of K, if it is a
maximal connected open subset either of ∂K ∩∂K ′, where K ′ is a neighbour of K, or
of ∂K ∩∂Ω. By Fh we denote the system of all faces of all elements K ∈ Th. Further,
we define the set of all inner faces by

FI
h = {Γ ∈ Fh; Γ ⊂ Ω}

and the set of all boundary faces by

FB
h = {Γ ∈ Fh; Γ ⊂ ∂Ω} .

Obviously, Fh = FI
h ∪ FB

h .
For each Γ ∈ Fh we define a unit normal vector nΓ. We assume that for Γ ∈ FB

h

the normal nΓ has the same orientation as the outer normal to ∂Ω. For each face
Γ ∈ FI

h the orientation of nΓ is arbitrary but fixed. Finally, by d(Γ) we denote the
length of Γ ∈ Fh.
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3.1. Spaces of discontinuous functions. Over a triangulation Th we define
the broken Sobolev spaces

Hk(Ω, Th) = {v; v|K ∈ Hk(K), ∀K ∈ Th}

equipped with the seminorm

|v|Hk(Ω,Th) =

(

∑

K∈Th

|v|2Hk(K)

)1/2

.

For each face Γ ∈ FI
h there exist two neighbours K

(L)
Γ , K

(R)
Γ ∈ Th such that Γ ⊂

K
(L)
Γ ∩ K

(R)
Γ . We use the convention that nΓ is the outer normal to the element

K
(L)
Γ and the inner normal to the element K

(R)
Γ . For v ∈ H1(Ω, Th) and Γ ∈ FI

h we
introduce the following notation:

v|
(L)
Γ = the trace of v|

K
(L)
Γ

on Γ, v|
(R)
Γ = the trace of v|

K
(R)
Γ

on Γ,

〈v〉Γ =
1

2

(

v|
(L)
Γ + v|

(R)
Γ

)

, [v]Γ = v|
(L)
Γ − v|

(R)
Γ .

The value [v]Γ depends on the orientation of nΓ, but the values 〈v〉Γ and [v]ΓnΓ are
independent of this orientation.

Now, let Γ ∈ FB
h and K

(L)
Γ ∈ Th be such an element that Γ ⊂ ∂K

(L)
Γ ∩ ∂Ω. For

v ∈ H1(Ω, Th) we set

vΓ = v|
(L)
Γ = v|

(R)
Γ = the trace of v|

K
(L)
Γ

on Γ.

If [·]Γ and 〈·〉Γ appear in an integral of the form
∫

Γ
. . . dS, we omit the subscript

Γ and write simply [·] and 〈·〉. For simplicity we shall use the following notation:
∫

FI
h

. . . dS =
∑

Γ∈FI
h

∫

Γ

. . . dS

and similarly for Fh and FB
h .

Let p ≥ 1 be an integer. The approximate solution will be sought in the space of
discontinuous piecewise polynomial functions

Sh = {v; v|K ∈ P p(K), ∀K ∈ Th},

where P p(K) denotes the space of all polynomials on K of degree ≤ p.

3.2. Discontinuous Galerkin space semidiscretization. We define the fol-
lowing forms defined for u, v, ϕ ∈ H2(Ω, Th), which define the SIPG (Symmetric
Interior Penalty Galerkin) version of the DG approximation.
Symmetric diffusion form:

ah(u, v, ϕ) =
∑

K∈Th

∫

K

β(u)∇v · ∇ϕdx

−

∫

FI
h

〈β(u)∇v〉 · n[ϕ] dS −

∫

FI
h

〈β(u)∇ϕ〉 · n[v] dS

−

∫

FB
h

β(u)∇v · nϕdS −

∫

FB
h

β(u)∇ϕ · nv dS.
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Further we define the interior and boundary penalty jump terms:

Jh(u, ϕ) =

∫

FI
h

σ[u][ϕ] dS +

∫

FB
h

σuϕdS (3.1)

and the symmetric right-hand side form:

lh(u, ϕ)(t) =

∫

Ω

g(t)ϕdx −

∫

FB
h

β(u)∇ϕ · nuD(t) dS +

∫

FB
h

σuD(t)ϕdS. (3.2)

The parameter σ in (3.1) and (3.2) is constant on every edge and defined by

σ|Γ =
CW

d(Γ)
, ∀ Γ ∈ Fh, (3.3)

where CW > 0 is a constant, which must be chosen large enough to ensure coercivity
of the diffusion form – cf. Lemma 5.1.

Finally we define the convective form:

bh(u, ϕ) = −
∑

K∈Th

∫

K

2
∑

s=1

fs(u)
∂ϕ

∂xs
dx+

∫

Fh

H(u(L), u(R),n)[ϕ] dS.

The form bh approximates convective terms with the aid of a numerical fluxH(u, v,n).
We assume that H has the following properties:

Assumptions (H):
(H1) H(u, v,n) is defined in IR2 × B1, where B1 = {n ∈ IR2; |n| = 1}, and is

Lipschitz-continuous with respect to u, v:

|H(u, v,n)−H(u∗, v∗,n)| ≤ CL(|u−u∗|+|v−v∗|), ∀u, v, u∗, v∗ ∈ IR, n ∈ B1.

(H2) H(u, v,n) is consistent:

H(u, u,n) =

d
∑

s=1

fs(u)ns, ∀u ∈ IR, n = (n1, n2) ∈ B1.

(H3) H(u, v,n) is conservative:

H(u, v,n) = −H(v, u,−n), ∀u, v ∈ IR, n ∈ B1.

In virtue of assumptions (H1) and (H2), we have 2CL ≥ Lf , where Lf is the Lipschitz-
continuity constant of the functions fs, s = 1, 2.

Definition 3.1. We say that uh is a DGFE solution of the convection-diffusion
problem (2.1) - (2.3), if

a) uh ∈ C1([0, T ];Sh),

b)
d

dt

(

uh(t), ϕh
)

+ bh
(

uh(t), ϕh
)

+ β0Jh
(

uh(t), ϕh
)

+ ah
(

uh(t), uh(t), ϕh
)

= lh
(

uh(t), ϕh
)

(t), ∀ϕh ∈ Sh, ∀t ∈ (0, T ),

c) uh(0) = u0
h,

(3.4)

where u0
h denotes an Sh approximation of the initial condition u0.

We can show that a sufficiently regular exact solution u of problem (2.1) satisfies

d

dt

(

u, ϕh
)

+ bh
(

u, ϕh
)

+ β0Jh
(

u, ϕh
)

+ ah
(

u, u, ϕh
)

= lh
(

u, ϕh
)

, ∀ϕh ∈ Sh, (3.5)

which implies the Galerkin orthogonality property of the error.
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4. Some necessary results and assumptions.

4.1. Regularity of the exact solution. We assume that the weak solution u
is sufficiently regular, namely

∂u

∂t
∈ L2

(

[0, T ];Hp+1(Ω)
)

, (4.1)

where p ≥ 1 denotes the given degree of approximation. It is possible to show that, un-
der these conditions, u satisfies equation (2.1) pointwise and u ∈ C

(

[0, T ];Hp+1(Ω)
)

.
To treat the nonlinear diffusion terms, we need additional regularity assumptions

on the solution u: there exists a constant CR <∞ such that

‖∇u(t)‖L∞(Ω) ≤ CR, for all t ∈ (0, T ),

‖ut(t)‖L∞(Ω) =

∥

∥

∥

∥

∂u

∂t
(t)

∥

∥

∥

∥

L∞(Ω)

≤ CR, for a.a. t ∈ (0, T ),

‖∇ut(t)‖L∞(Ω) ≤ CR, for a.a. t ∈ (0, T ).

4.2. Geometry of the mesh. Let us consider a system {Th}h∈(0,h0), h0 > 0,

of partitions of the domain Ω into a finite number of closed triangles K with mutu-
ally disjoint interiors. Let us assume that the system {Th}h∈(0,h0) has the following
properties:

Assumptions (A):
(A1) The system {Th}h∈(0,h0) is regular: there exists a constant C1 > 0 such that

hK

ρK
≤ C1, ∀K ∈ Th ∀h ∈ (0, h0).

(A2) There exists a constant C2 > 0 such that

hK ≤ C2 d(Γ), ∀K ∈ Th, ∀Γ ⊂ ∂K, Γ ∈ Fh ∀h ∈ (0, h0).

(A3) There exists a constant C3 > 0 such that

hp ≤ C3hK ∀K ∈ Th, ∀h ∈ (0, h0).

Let us note that we do not require the usual conforming properties from the finite
element method, particularly, hanging nodes are allowed. In the case of piecewise
linear elements (i.e. p = 1), condition (A3) reduces to the standard inverse assumption
of [1] and becomes weaker with growing p.

4.3. Some auxiliary results. Throughout this work we denote by C a generic
constant independent of h. The derived error estimates rely on the following results:

Lemma 4.1 (Multiplicative trace inequality). There exists a constant CM > 0
independent of h,K such that for all K ∈ Th, v ∈ H1(K) and h ∈ (0, h0)

||v||2L2(∂K) ≤ CM
(

||v||L2(K)|v|H1(K) + h−1
K ||v||2L2(K)

)

.

Lemma 4.2 (Inverse inequalities). There exists a constant CI > 0 independent
of h,K such that for all K ∈ Th and v ∈ P p(K)

|v|H1(K) ≤ CIh
−1
K ||v||L2(K),

‖v‖L∞(K) ≤ CIh
−1
K ‖v‖L2(K).



OPTIMAL ERROR ESTIMATES IN THE DG METHOD 241

The proof of Lemma 4.1 can be found in [3]. Lemma 4.2 is proved in e.g. [1].

In the error estimates of the following sections, we will apply the following version of
Gronwall’s lemma:

Lemma 4.3. Let y, q ∈ C([0, T ]), y, q ≥ 0 in [0, T ], Z, R ∈ IR, R ≥ 0 and

y(t) + q(t) ≤ Z +R

∫ t

0

y(s) dS, t ∈ [0, T ].

Then

y(t) + q(t) ≤ Z exp(Rt), t ∈ [0, T ].

5. Properties of the diffusion terms. Throughout the following analysis we
shall assume that the constant CW from (3.3) satisfies

CW ≥ 4

(

β1

β0

)2

CM (1 + CI), (5.1)

where CM and CI are constants from Lemma 4.1 and 4.2, respectively.
Let us define the form

Ah(u, v, w) = ah(u, v, w) + β0Jh(v, w), ∀u, v, w ∈ H2(Ω, Th),

which is linear with respect to the second and third argument and nonlinear with
respect to the first argument. We define the following norm in H1(Ω, Th):

‖w‖DG =

(

1

2

(

|w|2H1(Ω,Th) + Jh(w,w)
)

)1/2

.

The form Ah has the following properties proven in [11]:
Lemma 5.1 (Coercivity and boundedness of Ah). Let w : Ω → IR be an arbitrary

measurable function defined almost everywhere in Ω. Under assumption (5.1) on the
constant CW , we have

β0‖ϕh‖
2
DG ≤ Ah(w,ϕh, ϕh), ∀ϕh ∈ Sh, h ∈ (0, h0),

Ah(w, vh, ϕh) ≤ C‖vh‖DG‖ϕ‖DG, ∀vh, ϕh ∈ Sh, h ∈ (0, h0).

For each h ∈ (0, h0) and t ∈ [0, T ] we define the function u∗(t) (= u∗h(t)) as the
“Ah-projection” of u(t) on Sh, i. e. a function satisfying the conditions

u∗(t) ∈ Sh, Ah
(

u(t), u∗(t), ϕh
)

= Ah
(

u(t), u(t), ϕh
)

∀ϕh ∈ Sh. (5.2)

For simplicity of notation, we shall omit the argument t, whenever the role of t is not
crucial. The existence of u∗ is a consequence of the Lax-Milgram theorem, by the
coercivity and boundedness (Lemma 5.1) of the form Ah on the space Sh.

In [11] we derive estimates for the functions χ = u− u∗ and χt = ∂χ
∂t .

Lemma 5.2. There exists a constant C > 0 independent of h, such that

‖χ(t)‖DG ≤ C hp|u(t)|Hp+1(Ω),

‖χt(t)‖DG ≤ C hp|ut(t)|Hp+1(Ω).
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for all h ∈ (0, h0) and for a.a. t ∈ (0, T ).

Dual problem
In what follows, we shall consider the linearised elliptic dual problem: Given z ∈
L2(Ω), find ψ(t) such that for all t ∈ (0, T )

−div
(

β(u(t))∇ψ(t)
)

= z in Ω,

ψ|∂Ω = 0.
(5.3)

The weak formulation of (5.3) reads: Find ψ(t) ∈ H1
0 (Ω) such that

(

β(u(t))∇ψ(t), ∇v
)

= (z, v), ∀ v ∈ H1
0 (Ω).

In [11] we analyze the regularity of problem (5.3):
Lemma 5.3. Problem (5.3) has a unique weak solution ψ(t). Moreover, ψ(t) ∈

H2(Ω) for t ∈ (0, T ) and ψt(t) = ∂ψ(t)
∂t ∈ H2(Ω) for a.a. t ∈ (0, T ). Furthermore,

there exists a constant C > 0 independent of z such that

‖ψ(t)‖H2(Ω) ≤ C‖z‖L2(Ω), t ∈ (0, T ),

‖ψt(t)‖H2(Ω) ≤ C‖z‖L2(Ω), a.a. t ∈ (0, T ).

Let us note that H2(Ω) →֒ C(Ω). Let ψh (= ψh(t)) be the piecewise linear L2-
projection of the function ψ, i.e. ψ|K ∈ P 1(K) and

(

ψ − ψh, ϕh
)

L2(K)
= 0, ∀ϕh ∈ P 1(K), ∀K ∈ Th.

Standard approximation results give us

Lemma 5.4. There exists a constant independent of h, such that for all t ∈ (0, T )

‖ψ − ψh‖DG ≤ C h|ψ|H2(Ω).

Now we use the dual problem (5.3) to obtain L2-optimal error estimates for χ and χt.

Lemma 5.5. There exists a constant C > 0 such that for all h ∈ (0, h0) and
t ∈ (0, T )

‖χ‖L2(Ω) ≤ Chp+1|u|Hp+1(Ω). (5.4)

‖χt(t)‖L2(Ω) ≤ Chp+1|ut(t)|Hp+1(Ω). (5.5)

Proof. We have

‖χ‖L2(Ω) = sup
z∈L2(Ω)

(χ, z)

‖z‖L2(Ω)
.

The continuity of functions from the space H2(Ω) yields

[ψ]Γ = 0, ∀Γ ∈ FI
h . (5.6)
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Due to (5.3) and (5.6), for a fixed z ∈ L2(Ω) we have by applying Green’s theorem

(χ, z) =

∫

Ω

zχ dx = −

∫

Ω

div
(

β(u)∇ψ
)

χ dx

=
∑

K∈Th

∫

K

β(u)∇ψ · ∇χ dx−

∫

FI
h

〈β(u)∇ψ〉 · n [χ] dS −

∫

FB
h

β(u)∇ψ · nχ dS

= Ah(u, ψ, χ).

Further, the symmetry of Ah and (5.2) give

Ah(u, ψh, χ) = Ah(u, χ, ψh) = Ah(u, u− u∗, ψh) = 0. (5.7)

This and Lemmas 5.1 and 5.4 imply that for a.a. t ∈ (0, T )

(χ, z) = Ah(u, ψ − ψh, χ) ≤ C
(

‖ψ − ψh‖DG + h|ψ − ψh|H2(Ω,Th)

)

‖χ‖DG

≤ Ch|ψ|H2(Ω)h
p|u|Hp+1(Ω) ≤ Chp+1‖z‖L2(Ω)|u|Hp+1(Ω).

Hence,

‖χ‖L2(Ω) = sup
z∈L2(Ω)

(χ, z)

‖z‖L2(Ω)
≤ C hp+1|u|Hp+1(Ω),

which completes the proof of (5.4). Similarly it is possible to obtain (5.5).
Now we state an important result from [11]. In the case of linear diffusion, the

terms we estimate in (5.8) would be equal to zero. However in our case, these terms
must be carefully estimated to obtain the optimal error estimates. The proof of
Lemma 5.6 requires additional auxiliary results and the nonstandard condition (A3)

Lemma 5.6. Let ζ := u∗ − uh ∈ Sh. There exists a constant C > 0 such that for
all h ∈ (0, h0) and a.a. t ∈ (0, T )

Ah
(

u, u∗, ζ
)

−Ah
(

uh, u
∗, ζ
)

− lh(u, ζ) + lh(uh, ζ)

≤ Ch2(p+1)|u|2Hp+1(Ω) + C‖ζ‖2
L2(Ω) +

β0

4
‖ζ‖2

DG.
(5.8)

6. Properties of the convective term. Under assumptions (H) and (A) the
convective form bh is Lipschitz continuous in the following sense (cf. [11]):

Lemma 6.1. Let u be the solution of the continuous problem (2.1), uh the solution
of the discrete problem (3.4), u∗ be defined by (5.2), and ζ (= ζh) = u∗ − uh ∈ Sh.
Then there exists a constant C > 0, independent of h ∈ (0, h0), such that

|bh(u, ζ) − bh(uh, ζ)| ≤
β0

4
‖ζ‖2

DG +
C

β0

(

h2(p+1)|u|2Hp+1(Ω) + ‖ζ‖2
L2(Ω)

)

.

7. Error estimates. We state the main result:
Theorem 7.1 (Main theorem). Let assumptions (H) and (A) be satisfied and let

the constant CW be chosen in such a way that (5.1) holds. Let u be the exact solution
of problem (2.1) satisfying the regularity condition (4.1) and let uh be the approximate
solution defined by (3.4). Then the error eh = u− uh satisfies the estimate

‖eh‖L∞(0,T ;L2(Ω)) ≤ Chp+1,
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with a constant C > 0 independent of h.
Proof. Let u∗ be the Ah projection defined by (5.2) and let χ and ζ be as in

Lemmas 5.2 – 6.1, i. e. χ = u − u∗, ζ = u∗ − uh. Then eh = u − uh = χ + ζ. Let us
subtract (3.4, b) from (3.5), substitute ζ ∈ Sh for ϕh and use the relation

(

∂ζ(t)

∂t
, ζ(t)

)

=
1

2

d

dt
‖ζ(t)‖2

L2(Ω).

Then we get

1

2

d

dt
‖ζ‖2

L2(Ω) +Ah
(

u, u, ζ
)

−Ah
(

uh, uh, ζ
)

=
[

bh
(

uh, ζ
)

− bh
(

u, ζ
)]

−
(

χt, ζ
)

+ lh
(

u, ζ
)

− lh
(

uh, ζ
)

.

(7.1)

The convective terms can be estimated by Lemma 6.1. For the second right-hand side
term in (7.1), by the Cauchy and Young’s inequalities and Lemma 5.5, we have

|(χt, ζ)| ≤
1

2

(

‖χt‖
2
L2(Ω) + ‖ζ‖2

L2(Ω)

)

≤
1

2

(

C h2(p+1)|ut|
2
Hp+1(Ω) + ‖ζ‖2

L2(Ω)

)

.

Further, we treat the diffusion terms in (7.1):

Ah
(

u, u, ζ
)

−Ah
(

uh, uh, ζ
)

= Ah
(

u, χ, ζ
)

+Ah
(

u, u∗, ζ
)

−Ah
(

uh, u
∗, ζ
)

+Ah
(

uh, ζ, ζ
)

≥ Ah
(

u, u∗, ζ
)

−Ah
(

uh, u
∗, ζ
)

+ β0‖ζ‖DG,

(7.2)

due to the coercivity of Ah – Lemma 5.1 – and the definition of u∗, cf. (5.2). Hence,
by combining (7.1), (7.2) with Lemma 5.6 we obtain a.a. t ∈ (0, T )

d

dt
‖ζ‖2

L2(Ω) + β0‖ζ‖
2
DG ≤ C h2(p+1)

(

|u|2Hp+1(Ω) + |ut|
2
Hp+1(Ω)

)

+ C

(

1 +
1

β0

)

‖ζ‖2
L2(Ω).

By integration from 0 to t ∈ [0, T ] we get

‖ζ(t)‖2
L2(Ω) + β0

∫ t

0

‖ζ(ϑ)‖2
DG dϑ

≤ C h2(p+1)

(
∫ t

0

|u(ϑ)|2Hp+1(Ω) dϑ+

∫ t

0

|ut(ϑ)|2Hp+1(Ω) dϑ

)

+ C

(

1 +
1

β0

)
∫ t

0

‖ζ(ϑ)‖2
L2(Ω) dϑ+ C h2(p+1)|u0|2Hp+1(Ω),

since it is possible to prove

‖ζ(0)‖2
L2(Ω) ≤ C h2(p+1)|u0|2Hp+1(Ω).

Now we apply Gronwall’s Lemma 4.3, which yields

‖ζ(t)‖2
L2(Ω) + β0

∫ t

0

‖ζ(ϑ)‖2
DG dϑ ≤ C h2(p+1)N(u) exp

(

C̃

(

1 +
1

β0

)

t

)

, (7.3)

where

N(u) = ‖u‖2
L2(0,T ;Hp+1(Ω)) + ‖ut‖

2
L2(0,T ;Hp+1(Ω)) + |u0|2Hp+1(Ω) <∞.

(C and C̃ are constants independent of t and h). Since eh = χ+ ζ, it is sufficient now
to combine (7.3) with the estimate of ‖χ(t)‖L2(Ω) from Lemma 5.5.
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8. Conclusion. This paper represents an overview of the results obtained in
[11]. We are concerned with the analysis of the discontinuous Galerkin space semidis-
cretization of a nonstationary convection-diffusion problem with nonlinear diffusion
and nonlinear convection, equipped with Dirichlet boundary conditions and an ini-
tial condition. We have proven optimal error estimates of order O(hp+1) in the
L∞(0, T ;L2(Ω))-norm for the SIPG method under the assumptions that the piecewise
polynomial approximation of degree p is used, the time derivative of the exact solution
is sufficiently regular and the solution of a linearised elliptic dual problem possesses a
sufficiently regular solution. This is true under additional conditions on the diffusive
nonlinearity β(·) and the exact solution u, provided the polygonal domain Ω is convex.

The assumption of symmetry of the discretization of the diffusion terms is crucial
in the presented proof. Namely, it enables us to exchange arguments in (5.7). This is
the reason why we are unable to prove optimal error estimates for the nonsymmetric
and incomplete variants of the DG scheme (cf. [3]) using the presented technique.

There are several open problems connected with the analysis of optimal error
estimates of the DGFEM for convection-diffusion problems:

• Derivation of optimal error estimates in the case of a weaker regularity of
the exact solution of the considered convection-diffusion problem and of the
dual problem (the case of a polygonal nonconvex domain Ω and/or Neumann
boundary conditions).

• The extension of the derived estimates to three spatial dimensions.
• The investigation of optimal error estimates for other variants of the DGFEM

for the diffusion terms, such as the nonsymmetric and incomplete interior
penalty Galerkin methods (NIPG and IIPG), where the presented technique
cannot be applied.
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