
Proceedings of ALGORITMY 2009
pp. 143–152

FULLY DISCRETE APPROXIMATION OF A THREE COMPONENT

CAHN-HILLIARD MODEL.

FRANCK BOYER∗ AND SEBASTIAN MINJEAUD†

Abstract. In this paper, we investigate numerical schemes for solving a three component Cahn-
Hilliard model. The space discretization is performed by using a Galerkin formulation and the finite
element method. For the time discretization, the main difficulty is to write a scheme ensuring, at the
discrete level, the decrease of the energy. We study three different schemes and propose existence
and convergence theorems. Theoretical results are illustrated by the simulations of a spreading lens
between two stratified phases.
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1. Introduction. Multiphase flows are involved in many industrial applications.
For instance, in nuclear safety [11], during a hypothetical major accident in a reactor,
the degradation of the core may produce multicomponent flows where interfaces un-
dergo extreme topological changes, e.g. break-up and coalescence. Because of their
ability to capture interfaces implicitly, diffuse interface models are attractive for the
numerical simulation of such phenomena. They consist in assuming that the interfaces
between phases in the system have a small but positive thickness. Each phase i is
represented by a smooth function ci called the order parameter. The evolution of the
system is then driven by the gradient of the total free energy, which is a sum of two
terms: the bulk free energy term with a “multiple-well” shape and the capillary term
depending on the gradients of the order parameters and accounting for the energy
of the interfaces, that is the surface tension. For two phase flows, there are many
studies in the literature but generalizations of diffuse interface models to any number
of components were only recently introduced and studied [1, 2, 3, 4, 7, 8, 9].

In this paper we investigate numerical schemes for solving the three component
Cahn-Hilliard model fully derived and studied in [4]. We simply recall its main prop-
erties in Section 2. Thanks to the relevant choice of the free energy, one of the key
features of this model is its exact coincidence with the diphasic Cahn-Hilliard model
when only two phases are present in the mixture. Furthermore, it is able to account
for some total spreading situations (see Section 5.1).

The space discretization is performed by using the finite element method. For the
time discretization, the main difficulty is to write a scheme ensuring, at the discrete
level, the decrease of the energy which is crucial to establish the existence and the
convergence of the approximate solution. In some physical situations, the implicit
Euler time discretization does not satisfy an energy inequality and the corresponding
numerical solvers do not converge. To tackle this issue, semi-implicit schemes are
proposed and studied in Section 3.

In Section 4, we state a convergence theorem. This result enables to get a proof

∗Université Paul Cézanne, LATP (UMR CNRS 6632), FST Saint-Jérôme, Case Cour A, Avenue
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(different from [4]) of the existence of a weak solution of the Cahn-Hilliard model,
thanks to numerical schemes. Note that more general boundary conditions are con-
sidered since the proof is here available for Dirichlet boundary conditions on the order
parameters. Finally, in Section 5, the three schemes are numerically compared on the
spreading of a lens between two stratified phases.

2. Ternary Cahn-Hilliard model. We consider the following ternary Cahn-
Hilliard model:







∂ci

∂t
= ∇ ·

(
M0(c)

Σi

∇µi

)

, for i = 1, 2, 3,

µi = fF
i (c) −

3

4
εΣi∆ci , for i = 1, 2, 3,

(2.1)

on R+×Ω, where Ω is a regular bounded domain of Rd with d = 2 or 3. The unknowns
are the three pairs of order parameters and chemical potentials (ci, µi), i = 1, 2, 3.
The function fF

i is defined by

fF
i (c) =

4ΣT

ε

∑

j 6=i

(
1

Σj

(∂iF (c) − ∂jF (c))

)

,

where
3

ΣT

=
1

Σ1
+

1

Σ2
+

1

Σ3
. Note that the model (2.1) ensures that, at any time

t ∈ R+, and for almost every x ∈ Ω, the vector c(t, x) = (c1(t, x), c2(t, x), c3(t, x))
belongs to the hyperplane S of R3 defined by

S =
{
(c1, c2, c3) ∈ R3; c1 + c2 + c3 = 1

}
,

provided that the initial condition (at time t = 0) lies in S for almost every points of
Ω. Hence, one of the pairs of unknowns can be arbitrarily eliminated from the system.
The parameter ε > 0 accounts for the interface thickness. The coefficient M0(c) is a
diffusion coefficient called mobility which may depend on c = (c1, c2, c3). We assume
that:

M0 is a Lipschitz continuous bounded function such that inf
c∈S

M0 > 0. (HM )

The triple of constant parameters Σ = (Σ1,Σ2, Σ3) is defined by Σi = σij +σik −σjk,
for all i ∈ {1, 2, 3} where σ12, σ13 and σ23 are the prescribed surface tensions between
the different phases. Following [4], the bulk energy F is chosen in the following form:

F (c) = σ12c
2
1c

2
2 + σ13c

2
1c

2
3 + σ23c

2
2c

2
3 + c1c2c3(Σ1c1 + Σ2c2 + Σ3c3)

︸ ︷︷ ︸

F0(c)

+3Λc2
1c

2
2c

2
3

︸ ︷︷ ︸

P (c)

, (2.2)

where Λ is a positive constant. It is proved in [4] that the term P is mandatory for
the system to be well-posed in total spreading situations. Note that the bulk energy
F satisfies the following general assumptions which will be useful in existence and
convergence theorems:

F is non negative, of C2 class and there exist a constant B > 0 and a real p

such that 2 6 p < +∞ if d = 2, or 2 6 p 6 6 if d = 3, and, for all c ∈ S,

|F (c)| 6 B(1 + |c|
p
), |DF (c)| 6 B(1 + |c|

p−1
),

∣
∣D2F (c)

∣
∣ 6 B(1 + |c|

p−2
).

(HF )

This model was fully derived and studied in [4]. The evolution of the order
parameters ci is driven by the minimisation of the following free energy:

F triph
Σ,ε (c1, c2, c3) =

∫

Ω

12

ε
F (c1, c2, c3) +

3

8
ε

3∑

i=1

Σi|∇ci|
2
dx.
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An important feature is that the coefficient Σi, whose opposite Si = −Σi is well
known in the physical literature [10] as the spreading coefficient of the phase i, is
not assumed to be positive. Therefore, the model (2.1) let us cope with some total
spreading situations (Section 5.1). However, as shown in [4], in order to have a well-
posed system, we need to assume that the following condition holds:

Σ1Σ2 + Σ1Σ3 + Σ2Σ3 > 0. (HΣ)

We supplement the system (2.1) with mixed Dirichlet-Neumann boundary con-
ditions for each order parameter ci and with Neumann boundary conditions for each
chemical potential µi. That is, for i = 1, 2, 3,

ci = ciD, M0∇µi · n = 0, on Γc
D and ∇ci · n = M0∇µi · n = 0, on Γc

N , (2.3)

where the boundary Γ of the domain Ω is divided into two distinct parts Γ = Γc
D ∪Γc

N

and cD = (c1D, c2D, c3D) ∈
(

H
1
2 (Γ)

)3

is given s.t. cD(x) ∈ S for a.e. x ∈ Γ.

Remark 2.1. The Neumann boundary conditions for µi ensure in particular the
conservation of the volume of the phase i. The Dirichlet boundary conditions for ci,
less classical, are used to simulate bubble-train flows (when the Cahn-Hilliard model
is coupled to the Navier-Stokes equations [4]).

Finally, we assume that, at the initial time, we have

ci(0, ·) = c0
i , (2.4)

where c0 = (c0
1, c

0
2, c

0
3) ∈

(
H1(Ω)

)3
is given s.t. c0(x) ∈ S for a.e. x ∈ Ω.

3. Numerical schemes and energy estimates. For time discretization, we
use a semi-implicit discretization with a special care for nonlinear terms. Let N ∈ N∗

and tf ∈]0,+∞[. The temporal interval [0, tf ] is uniformly discretized with a fixed

time step ∆t =
tf

N
. For n ∈ {0, . . . , N}, we define tn = n∆t.

For the space discretization, we use a Galerkin approximation and the finite ele-
ment method. Let Vc

h and Vµ
h , h > 0, be two sequences of finite element approximation

subspaces of H1(Ω). We assume that they contain constants:

1 ∈ Vc
h and 1 ∈ Vµ

h , ∀h > 0. (H1
Vh

)

Since order parameters satisfy non-homogeneous Dirichlet boundary conditions on
Γc

D, we use c0
i as a lifting of ciD in Vc, and we assume that functions c0

ih ∈ Vc
h are

given for all i ∈ {1, 2, 3}, for all h > 0 such that

c0
h(x) ∈ S, ∀h > 0, a.e. x ∈ Ω and

∣
∣c0

h − c0
∣
∣
(H1(Ω))3

−→
h→0

0.

These functions c0
ih can be obtained from c0

i by H1(Ω)-projection or, as this is the case
in practice, by finite element interpolation provided that c0

i is smooth enough. Note
that the above property is then satisfied thanks to (H1

Vh
). We define the following

spaces:

Vc
Dh,0 = {νc

h ∈ Vc
h; νc

h = 0 on Γc
D}, Vci

Dh = c0
ih + Vc

Dh,0,

Vc

Dh,S = {ch = (c1h, c2h, c3h) ∈ Vc1

Dh × Vc2

Dh × Vc3

Dh; ch(x) ∈ S for a.e. x ∈ Ω}.
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Required approximation properties can be expressed as follows:






inf
ν

µ
h∈V

µ
h

|νµ − ν
µ
h |H1(Ω)

−→
h→0

0, ∀νµ ∈ Vµ,

inf
νc

h∈Vc
Dh,0

|νc − νc
h|H1(Ω) −→

h→0
0, ∀νc ∈ Vc

D,0.
(H2

Vh
)

We assume that cn
h ∈ Vc

Dh,S is given and the scheme is then written as follows:

Problem 3.1. Find (cn+1
h ,µn+1

h ) ∈ Vc

Dh,S × (Vµ
h )

3
such that ∀νc

h ∈ Vc
Dh,0,

∀ν
µ
h ∈ Vµ

h , we have, for i = 1, 2, 3,







∫

Ω

cn+1
ih − cn

ih

∆t
ν

µ
h dx = −

∫

Ω

M0(c
n+1
h )

Σi

∇µn+1
ih · ∇ν

µ
h dx,

∫

Ω

µn+1
ih νc

h dx =

∫

Ω

DF
i (cn

h, cn+1
h )νc

h dx +

∫

Ω

3

4
Σiε∇c

n+β
ih · ∇νc

h dx,

(3.1)

where DF
i (a,b) =

4ΣT

ε

∑

j 6=i

(
1

Σj

(
dF

i (a,b) − dF
j (a,b)

)
)

, ∀(a,b) ∈ S2.

The functions dF
i represent a semi-implicit discretization of ∂ci

F . In order to
ensure consistency we assume that

dF
i (c, c) =

∂F

∂ci

(c), ∀c ∈ S. (H1
dF )

Since we have a natural splitting of F : F = F0 +P in (2.2), we choose a discretization
of the form dF

i = dF0

i + dP
i where dF0

i and dP
i are discretizations of ∂ci

F0 and ∂ci
P

respectively. The different choices of dF0

i and dP
i are given and discussed in Sections

3.2 to 3.5.
Remark 3.2. Assumption (H1

Vh
) allows to take ν

µ
h ≡ 1 in the first equation of

(3.1). This yields the phase volume conservation property at the discrete level.

3.1. Energy estimate. In this section, we give the energy estimate, at the

discrete level, which is obtained from (3.1) by using ν
µ
h = µn+1

ih and νc
h =

cn+1
ih − cn

ih

∆t
as test functions.

Proposition 3.3 (General energy estimate). Let cn
h ∈ Vc

Dh,S . We assume that

there exists a solution (cn+1
h , µn+1

h ) of Problem (3.1). Then, the following equality
holds:

F triph
Σ,ε (cn+1

h ) −F triph
Σ,ε (cn

h) + ∆t

3∑

i=1

∫

Ω

M0(c
n+1
h )

Σi

∣
∣∇µn+1

ih

∣
∣
2
dx

+
3

8
ε

∫

Ω

3∑

i=1

Σi

∣
∣∇cn+1

ih −∇cn
ih

∣
∣
2
dx =

12

ε

∫

Ω

[
F (cn+1

h ) − F (cn
h) − dF (cn

h, cn+1
h ) ·

(
cn+1

h − cn
h

)]
dx (3.2)

where dF (·, ·) is the vector (dF
i (·, ·))i=1,2,3.

The three first terms on the left hand side are exactly the discrete counterpart
of the terms involved in the continuous energy estimate. The last term on the left
hand side is a term of numerical diffusion which is very useful in the proof of the
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convergence theorem to obtain a suitable bound for the discrete time derivative of
c. Notice that the condition (HΣ) implies that the last two terms on the left hand
side are non negative [4, Prop. 2.1]. The right hand side explicitly depends on the
choice of the discretization dF (·, ·) of the nonlinear terms. To obtain a useable energy
estimate and then prove existence and convergence results, we have to control this
term.

3.2. Implicit scheme. The implicit discretization corresponds to dF0(a,b) =
∇F0(b). We do not have F0(b)−F0(a)−dF0(a,b) · (b−a) 6 0, since this inequality
would mean that F0 is convex. Nevertheless, in the case where all Σi are positive,
the following proposition gives a bound independent of cn+1 and µn+1. Note that
this bound holds for all ∆t > 0 and will be useful to prove the existence of discrete
solutions.

Proposition 3.4. Let cn
h ∈ Vc

Dh,S . We assume that Σi > 0, ∀i ∈ {1, 2, 3} and

that there exists a solution (cn+1
h , µn+1

h ) of Problem 3.1. Then, there exists a positive

constant K
Σ,cn

h

1 depending only on Σ and cn
h such that:

∫

Ω

[
F0(c

n+1
h ) − F0(c

n
h) −∇F0(c

n+1
h ) ·

(
cn+1

h − cn
h

)]
dx 6 K

Σ,cn
h

1 .

Unfortunately, this bound is not sufficient to prove convergence results. In the
following proposition, we give an energy estimate obtained by controlling the right

hand side of (3.2) by a term of the form
∫

Ω

∑3
i=1 Σi

∣
∣cn+1

ih − cn
ih

∣
∣
2
dx. Then, this term

can be bounded for ∆t small enough and under the following assumption:

Vc
h ⊂ Vµ

h . (H3
Vh

)

Proposition 3.5. Let cn
h ∈ Vc

Dh,S . We assume that Σi > 0, ∀i ∈ {1, 2, 3}, that

the conditions (HM ) and (H3
Vh

) hold and that there exists a solution (cn+1
h , µn+1

h ) of

Problem (3.1). Then, as soon as ∆t 6
ε3

24|M0|∞
, we get, for Λ = 0,

F triph
Σ,ε (cn+1

h ) −F triph
Σ,ε (cn

h) +
∆t

2

3∑

i=1

∫

Ω

M0(c
n+1
h )

Σi

∣
∣∇µn+1

ih

∣
∣
2
dx

+
3

16
ε

∫

Ω

3∑

i=1

Σi

∣
∣∇cn+1

ih −∇cn
ih

∣
∣
2
dx 6 0.

3.3. Convex-Concave scheme. The polynomial approximation of the diphasic
Cahn-Hilliard potential f(c) = c2(1−c)2 can naturally be decomposed into two parts,

a convex one and a concave one, as follows: f(x) =

(

x −
1

2

)4

︸ ︷︷ ︸

f+(x)

+
1

16

(
1 − 2(2x − 1)2

)

︸ ︷︷ ︸

f−(x)

.

Since F0(c) =
∑3

i=1 Σif(ci), for all c ∈ S, the above decomposition of f leads to a
natural decomposition of F0. However, this is a convex-concave decomposition only
in the case where all Σi are positive. This leads to the choice

dF0(a,b) = ∇F+
0 (b) + ∇F−

0 (a),

with F+
0 (c) =

3∑

i=1

Σi

2
f+(ci) and F−

0 (c) =
3∑

i=1

Σi

2
f−(ci). We get F (b) − F (a) −

dF0(a,b) · (b − a) 6 0, for all ∆t but only when all Σi are positive.



148 F. BOYER AND S. MINJEAUD

3.4. Semi implicit scheme. The convex-concave discretization and the im-
plicit discretization presented in the previous subsections do not ensure an energy
estimate when one of the Σi is negative, that is in the case of total spreading (Section
5.1). Hence, we propose a semi-implicit discretization built in order to obtain, for all

(a,b) ∈ S2, F0(b) − F0(a) −
∑3

i=1 dF0

i (a,b)(bi − ai) = 0.

For i = 1, 2, 3, we define δi = bi − ai and we try to write F0(b) − F0(a) as
a sum of terms containing δ1, δ2 or δ3 in factor. Since F0(c1, c2, c3) = σ12c

2
1c

2
2 +

σ13c
2
1c

2
3 + σ23c

2
2c

2
3 + c1c2c3 (Σ1c1 + Σ2c2 + Σ3c3), it is sufficient to separately consider

terms of the form b2
i bjbk − a2

i ajak with (i, j, k) ∈ {1, 2, 3}3. We use the identities
a2

i = b2
i −(ai +bi)δi and aj = bj −δj in order to introduce δi, δj and δk in the formula,

we obtain:

b2
i bjbk − a2

i ajak = (ai + bi)ajakδi + b2
i akδj + b2

i bjδk.

Hence, we define the following consistent approximation of the non linear terms for
each i ∈ {1, 2, 3}:

dF0

i (a,b) =
Σi

4
[bi + ai]

[
(bj + bk)2 + (aj + ak)2

]

+
Σj

4
(b2

j + a2
j )(bi + bk + ai + ak) +

Σk

4
(b2

k + a2
k)(bi + bj + ai + aj).

Thanks to Proposition 3.3, we can conclude that an energy estimate holds for all ∆t

and even if one of the Σi is negative, provided that condition (HΣ) holds.

3.5. Discretization of P . We do not have a natural convex-concave decompo-
sition for this term. Hence, we use the same kind of calculation as in the previous
subsection. We define

dP
i (a,b) = 2Λbi

[

a2
ja

2
k +

1

2
b2
ja

2
k +

1

2
a2

jb
2
k + b2

jb
2
k

]

.

Thus, we get a consistent approximation satisfying for any (a,b) ∈ S2,

P (b) − P (a) − dP
1 (a,b)δ1 − dP

2 (a,b)δ2 − dP
3 (a,b)δ3 6 0.

4. Existence and convergence. This section is devoted to presenting existence
and convergence theorems for the discrete solution.

4.1. Existence. Now we state general assumptions on the discretization of non
linear terms dF : R3 × R3 → R3:

dF is of C1class and there exist a constant B > 0 and a real p such that

2 ≤ p < +∞ if d = 2, or p = 6 if d = 3, and for all i ∈ {1, 2, 3},
∣
∣dF

i (a,b)
∣
∣ 6 B

(

1 + |a|
p−1

+ |b|
p−1

)

, ∀(a,b) ∈ S2,

∣
∣D

(
dF

i (a, ·)
)
(b)

∣
∣ 6 B

(

1 + |a|
p−2

+ |b|
p−2

)

, ∀(a,b) ∈ S2.

(H2
dF )

Note that these conditions are satisfied by all the schemes presented in the previ-
ous section. The existence of the solution of discrete Problem (3.1) is based on the
topological degree lemma using the discrete energy estimate (3.2).
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Theorem 4.1 (Existence of a discrete solution). Let cn
h ∈ Vc

Dh be given. Assume
that properties (HΣ), (HM ), (HF ), (H2

dF ), (H1
Vh

) hold and that there exists a constant

K
Σ,cn

h

1 (depending possibly on cn
h) such that, for all ch ∈ Vc

Dh,
∫

Ω

[
F (ch) − F (cn

h) − dF (cn
h, ch) · (ch − cn

h)
]
dx 6 K

Σ,cn
h

1 . (4.1)

Then, there exists at least one solution (cn+1
h , µn+1

h ) ∈ Vc

Dh × (Vµ
h )3 of Problem (3.1).

4.2. Convergence. For each N ∈ N, we introduce piecewise linear functions
defined on [0, tf ], as follows:

cN
ih(t, ·) =

tn+1 − t

∆t
cn
ih(·) +

t − tn

∆t
cn+1
ih (·), µN

ih(t, ·) = µn+1
ih (·), if t ∈]tn, tn+1[.

For the proof of the convergence Theorem, we need to assume that the finite element
approximation spaces satisfy:

There exists a positive constant C independent of h such that :

∀νµ ∈ Vµ,
∣
∣
∣Π

V
µ
h

0 (νµ)
∣
∣
∣
H1(Ω)

6 C|νµ|H1(Ω),

where Π
V

µ
h

0 denote the L2(Ω)-projection on Vµ
h .

(H4
Vh

)

This property is satisfied e.g. by Lagrange finite element approximation spaces ob-
tained from quasi-uniform meshes.

Theorem 4.2. Assume that properties (HΣ), (HM ), (HF ), (H2
dF ), (H1

Vh
),

(H4
Vh

), (4.1) hold and that there exists a constant C > 0 such that, for all n ∈ N,

F triph
Σ,ε (cn+1

h ) −F triph
Σ,ε (cn

h) + C

[

∆t

3∑

i=1

∫

Ω

M0(c
n+1
h )

Σi

∣
∣∇µn+1

ih

∣
∣
2
dx

+
3

8
ε

∫

Ω

3∑

i=1

Σi

∣
∣∇cn+1

ih −∇cn
ih

∣
∣
2
dx

]

6 0. (4.2)

Then, there exists h0 > 0 and positive constants Kε
1 , Kε

2 , independent of ∆t and
h such that, for all h 6 h0, we have

sup
n6N

|cn
h|(H1(Ω))3 +

N−1∑

n=0

∆t

3∑

i=1

∣
∣µn+1

ih

∣
∣
2

H1(Ω)
6 Kε

1 ,

∆t

N−1∑

n=0

∆t

3∑

i=1

∣
∣
∣
∣

cn+1
ih − cn

ih

∆t

∣
∣
∣
∣

2

H1(Ω)

+
N−1∑

n=0

∆t

3∑

i=1

∣
∣
∣
∣

cn+1
ih − cn

ih

∆t

∣
∣
∣
∣

2

(H1(Ω))′
6 Kε

2 .

The bounds given in theorem 4.2 enable to prove the following convergence result
by using compactness properties.

Theorem 4.3. Assume that conditions (HΣ), (HM ), (HF ), (H1
dF ), (H2

dF ),
(H1

Vh
), (H2

Vh
), (H4

Vh
), (4.1) and (4.2) hold. Consider Problem (2.1) together with

the initial condition (2.4) and boundary conditions (2.3). Then, there exists a weak
solution (c,µ) on [0, tf [ such that

c ∈ L∞(0, tf ; (H1(Ω))3) ∩ C0([0, tf [; (Lq(Ω))3), for all q < 6,

µ ∈ L2(0, tf ; (H1(Ω))3),

c(t, x) ∈ S, for a.e. (t, x) ∈ [0, tf [×Ω.
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Furthermore, for all sequences (hK)K∈N∗ such that hK −−−−−→
K→+∞

0, the sequences

(cN
hK

)(N,K)∈(N∗)2 and (µN
hK

)(N,K)∈(N∗)2 , defined by (3.1), satisfy, up to a subsequence,
the following convergence properties as min(N,K) −→ +∞ :

cN
hK

→ c in C0(0, tf , (Lq)3) strong , for all q < 6,

µ
N
hK

⇀ µ in L2(0, tf , (H1)3) weak .

Remark 4.4. Under an additional assumption on the Hessian of the Cahn-
Hilliard potential F , it is shown in [4] that the model (2.1) has a unique weak solution.
In this case, we can conclude that the convergence in the above theorem holds for the
entire sequences (cN

hK
, µN

hK
).

Remark 4.5. Assumptions (4.1) and (4.2) are always satisfied for the semi-
implicit scheme provided that (HΣ) holds. Furthermore, these assumptions hold for
the convex-concave and implicit schemes when all the Σi, i = 1, 2, 3, are positive.

5. Numerical experiments. In this section, we illustrate the properties of the
three schemes with the spreading of a liquid lens between two stratified phases in
two dimensions. We use the following values for the parameters: Ω = [−0.4, 0.4] ×
[−0.3, 0.3], tf = 5, ε = 10−2 and a constant mobility M0 = 10−4. The initial data c0

is given by c0
1(x) = 1

2 [1 + tanh(2
ε

min(|x|, x2))], c0
2(x) = 1

2 [1− tanh(2
ε

max(−|x|, x2))]
and c0

3(x) = 1− c1(x)− c2(x) where x = (x1, x2) ∈ Ω. This corresponds to an initial
spherical captive bubble of phase 3 between the two stratified phases 1 and 2. We use
the same space discretization for all the simulations: Q1 Lagrange finite element on
square local adaptive refined meshes [5] (four cells in the interfaces).

5.1. Partial spreading. In this subsection, we take σ12 = 1, σ13 = 0.8 and
σ23 = 0.4. In this case, all the Σi, i = 1, 2, 3, are positive. We take Λ = 0, so that the
Cahn-Hilliard potential is F = F0.
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Fig. 5.1. Time evolution of energy in a partial spreading situation

In Figure 5.1, we show the discrete energy F triph
Σ,ε (cn

h) as a function of time
tn ∈ [0, tf ]. For each of the three schemes, we performed three simulations with



NUMERICAL SCHEME FOR A TERNARY CAHN-HILLIARD MODEL 151

∆t = 10−1, 10−2 and 5.10−3. The nine results are presented in two ways: Figures
5.1(a), 5.1(b) and 5.1(c) compare the decrease of the discrete energy for the different
time steps, using the same scheme, whereas Figures 5.1(d), 5.1(e) and 5.1(f) show a
comparison between the three schemes, using the same time step. Since no analytic
solution of the system (2.1) is available, the exact profile of the energy decrease is not
known. However, in each of the three figures 5.1(a), 5.1(b) and 5.1(c), the sequence
of curves tends to a limit shape when the time step decreases. For the impicit scheme
(Fig. 5.1(c)), the decrease of the energy is the same for the three considered time
steps. This is the reason why we consider the discrete solution obtained with the
implicit scheme as a reference solution. Thus, Figures 5.1(d), 5.1(e) and 5.1(f) show
that semi-implicit scheme gives significantly sharper result than the convex-concave
one.

Convex/Concave

Semi-implicit

Implicit

∆t = 10−1 ∆t = 10−2 ∆t = 5.10−3

Fig. 5.2. Interfaces position at time tf = 5, partial spreading situation

Figure 5.2 shows the influence of the truncation error on the bubble form at the
simulation final time tf . With the implicit scheme, the same form is obtained for
the three time steps. For large time step, the convex-concave scheme do not give
the bubble form which is expected. This phenomenon is reduced by the use of the
semi-implicit scheme.

5.2. Total spreading. In this subsection, we take σ12 = 1, σ13 = 1 and σ23 = 3.
In this case, Σ1 is negative but the condition (HΣ) holds. It corresponds to the case
of the extraction of the bubble (Figure 5.4): at the steady state the bubble is entirely
within one of the other phases. We take Λ = 7. In Figures 5.3 and 5.4, we present
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Fig. 5.3. Time evolution of energy for the semi-implicit scheme in a total spreading situation

the results obtained thanks to the semi-implicit scheme for ∆t = 10−2, 5.10−3 and
10−3. For theses time steps, the Newton iteration at the first time step does not
converge if we use the convex-concave or the implicit scheme. Implicit scheme enables
to perform simulations only for ∆t 6 10−4. For the semi-implicit scheme, such time
step are not required since the limit profile of the energy decrease is achieved from
∆t = 5.10−3 (Figure 5.3) and the final bubble shapes (Figure 5.4) are similar for the
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Semi-implicit

∆t = 10−2 ∆t = 5.10−3 ∆t = 10−3

Fig. 5.4. Interfaces position at time tf = 5, total spreading situation

three considered time step. Hence, the semi-implicit scheme can be used to perform
simulations with ∆t = 5.10−3 avoiding the further computational cost due to smaller
time steps.

6. Conclusion. We propose here a full discretization of the ternary Cahn-Hilliard
model taken from [4]. Three time schemes are compared. At the theoretical level, for
the implicit scheme and the convex-concave one, we are able to show the convergence
of the discrete solution only in the case of partial spreading (all Σi > 0). The semi-
implicit scheme enables to show the convergence even in the case of total spreading
(provided that the condition (HΣ) holds). In practice, for partial spreading situation,
the implicit scheme is the more accurate and the semi-implicit one enables to reduce
the truncation error compared with the convex-concave one. For total spreading sit-
uations, we observe in some numerical computations that the implicit scheme can be
ill-posed if the time step is not small enough whereas we can prove that the semi-
implicit scheme is well-posed. Using the implicit scheme requires smaller time step,
thus leading to a further computational cost. The complete proofs of all the results
in this paper and further numerical experiments are presented in [6].

REFERENCES

[1] J. W. Barrett and J. F. Blowey. An improved error bound for a finite element approximation of
a model for phase separation of a multi-component alloy. IMA J. Numer. Anal., 19(1):147–
168, 1999.

[2] J. W. Barrett, J. F. Blowey, and H. Garcke. On fully practical finite element approximations
of degenerate Cahn-Hilliard systems. Math. Model. Numer. Anal., 35(4):713–748, 2001.

[3] J. F. Blowey, M. I. M. Copetti, and C. M. Elliott. Numerical analysis of a model for phase
separation of a multi-component alloy. IMA J. Numer. Anal., 16(1):111–139, 1996.

[4] F. Boyer and C. Lapuerta. Study of a three component Cahn-Hilliard flow model. M2AN,
40(4):653–687, 2006.

[5] F. Boyer, C. Lapuerta, S. Minjeaud and B. Piar. A local adaptive refinement method with
multigrid preconditionning illustrated by multiphase flows simulations. to appear in ESAIM

proceedings, 2008.
[6] F. Boyer and S. Minjeaud. Numerical schemes for a three component Cahn-Hilliard model. in

preparation, 2008.
[7] H. Garcke, B. Nestler, and B. Stoth. A multiphase field concept: numerical simulations of

moving phase boundaries and multiple junctions. SIAM J. Appl. Math., 60(1):295–315,
2000.

[8] J. Kim, K. Kang, and J. Lowengrub. Conservative multigrid methods for ternary Cahn-Hilliard
systems. Commun. Math. Sci., 2(1):53–77, 2004.

[9] J. Kim and J. Lowengrub. Phase field modeling and simulation of three-phase flows. Interfaces

Free Bound., 7(4):435–466, 2005.
[10] J.S. Rowlinson and B. Widom. Molecular theory of capillarity. Clarendon Press, 1982.
[11] J.M. Seiler and K. Froment. Material effects on multiphase phenomena in late phases of severe

accidents of nuclear reactors. Multiphase Science and Technologie, 12(2):117-257, 2000.


