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SECOND ORDER NUMERICAL SOLUTION FOR OPTIMAL

CONTROL OF MONODOMAIN MODEL IN CARDIAC

ELECTROPHYSIOLOGY

CHAMAKURI NAGAIAH, KARL KUNISCH ∗ AND GERNOT PLANK †

Abstract. In this article, second order numerical methods for optimal control of the mon-
odomain equations in cardiac electrophysiology are presented. The mono- and bidomain equations
are well established as a major building block for describing the the wave propagation of the action
potential in the human heart. The mathematical model equations consist of a non-linear parabolic
partial differential equation of reaction-diffusion type, coupled with ordinary differential equations
describing the interaction with the ionic current variables. Optimal control problems suggest them-
selves quite naturally for this important class of modeling problems. Specifically we present an
optimal control formulation for the monodomain equations with an extra-cellular current as the con-
trol variable which must be determined in such a way that excitations of the transmembrane voltage
are damped in an optimal manner. A nonlinear conjugate gradient method and a Newton method
are compared for solving the optimization problem.
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1. Introduction. Modeling the bioelectrical activity of the action potential in
the cardiac domain and the corresponding numerical realization have received a sig-
nificant amount of attention in the last decade. Previous studies focused on important
issues such as wave propagation of the action potential, development of spiral waves
and effects of strong electrical shocks such as cardiac arrhythmias. A well established
mathematical model is the bidomain model which consisting of a system of reaction-
diffusion equations coupled with stiff ordinary differential equations. In the numerical
simulations there are many important factors which put a high demand on the com-
puting time such as different length and time scales of the reaction terms, strong
nonlinearities caused by ionic currents, anisotropy related to the fiber orientation,
and rapid changes of the potentials. We have chosen the finite element method for
the spatial and higher order linearly implicit Runge-Kutta time stepping methods for
the temporal discretization.

Due to cardiac arrhythmia the heart beat may be slow or fast and regular or
irregular. For the optimal control of cardiac arrhythmia system, it is essential to
determine the control response of an electrical field, which can be realized by an
implanted defibrillator, which is able to drive the system from a arrhythmia pattern
to a uniform pattern. Also, it is important to determine the optimal transmembrane
current density in such a way that it dampens the gradients of the electrical voltage
in the system. The present article is devoted to the numerical solution of the optimal
control for monodomain equations.

The optimal control approach is based on minimizing a properly chosen cost
functional J(Vm, Ie) depending on the extracellular current Ie as input and on the
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transmembrane potential Vm as one of the state variables.
The organization of this article as follows: in the next section the governing

equations for the action potential and the behavior of the ionic current variables
using ionic models are described. In section 3 the control problem is posed for the
monodomain equations and the optimality system is derived. Section 4 contains
the description of the numerical approach to solve the primal and the adjoint state
equations and the optimization problem. Numerical results for two test cases are
presented in section 5. Finally concluding remarks are given.

2. The monodomain equations. The most complete description of cardiac
electricity is given by the bidomain equations. The bidomain model consists of the
equations for the extracellular potential and the transmembrane potential. We refer
to [12, 4] for more detailed derivation of bidomain model and further discussions.
Moreover, the numerical simulation of bidomain equations are very expensive com-
pared to the monodomain models because they require the solution of a system of
linear equations at each time step. Moreover, to solve accurately the complete cardiac
domain requires a fine numerical discretization. In such cases monodomain models
are alternative to reduce the computational time which are more comparable with
bidomain models, see for more details Potse et.al. [13]. Also in [10] Nielsen et.al. for-
mulated a parameter estimation problem for the monodomain equation. Its objective
is to approximate the bidomain - by a monodomain equation by appropriate fitting
of the scalar coefficient in the latter.

We set Qc = Ωc × [0, tf ] where Ωc denotes the cardiac tissue sample domain.

∇ · σ̄i∇Vm = β

(

Cm

∂Vm

∂t
+ Iion(Vm, v) − Ie

)

in Qc(2.1)

∂v

∂t
= g(Vm, v) in Qc(2.2)

where Vm : Qc → R is the transmembrane voltage, v : Qc → Rn represents the
ionic current variables, σ̄i : Ωc → Rd×d is the intracellular conductivity tensors, β is
the surface to volume ratio of the cardiac cells, Ie is an extracellular current density
stimulus, Cm is the capacitance per unit area, and Iion is the current density flowing
through the ionic channels. Eq. (2.1) is a parabolic equation and Eq. (2.2) is a set of
ordinary differential equations which can be solved independently for each node. The
transmembrane potential is defined by Vm = φi − φe, where φi and φe : Qc → R are
the intracellular and extracellular potentials.

Here the initial and boundary conditions are chosen as

σ̄i∇Vm · η = 0 on ∂Qc(2.3)

v(0) = v0 and Vm(0) = V0 in Ωc ,(2.4)

where ∂Qc = ∂Ωc × [0, tf ].

Ionic model. The ionic activity is modeled by nonlinear ordinary differential
equations. We refer to [14, 1, 8] for cell membrane models. For the present paper we
use the modified Fitzhugh-Nagumo (FHN) model based on the work of Rogers and
McCulloch and the simulation parameters are taken from Colli Franzone et.al [3].

Iion(Vm, v) = GVm(1 −
Vm

vth

)(1 −
Vm

vp

) + η1Vmv .(2.5)

g(Vm, v) = η2(
Vm

vp

− η3v) .(2.6)
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where G, η1, η2, η3 are positive real coefficients, vth is a threshold potential and vp the
peak potential.

3. Optimal control problem . Let J denote the cost functional and consider
the following PDE constrained optimal control problem,







min J(Vm, Ie) ,

e(Vm, v, Ie) = 0 in Qc ,
(3.1)

where Vm and v denote the state variables, Ie denotes the control variable and the
coupled PDE and ODE, Eqs (2.1-2.2) is expressed as e(Vm, v, Ie), with e : V ×Y ×U →
W . Here V = H1(Ωc), Y = U = L2(Ωc), W = H1(Ωc)

∗ and the Ωc is an open
bounded set in Rn.

As a cost functional we choose by

J(Vm, Ie) = min
1

2

∫ T

0

(∫

Ωobs

|Vm|2dΩobs + α

∫

Ωcon

|Ie|
2dΩcon

)

dt ,(3.2)

where α is the weight of the cost of the control, Ωobs is the observation domain and
Ωcon is the control domain.

The Lagrangian related to the optimal control problem is given by

L(Vm, v, Ie, p, q) = J(Vm, Ie)

+

∫ T

0

∫

Ωc

(

∇ · σ̄i∇Vm − β

(

Cm

∂Vm

∂t
+ Iion(Vm, v) − Ie

))

p dΩcdt

+

∫ T

0

∫

Ωc

(

∂v

∂t
− g(Vm, v)

)

q dΩcdt(3.3)

The first order optimality system is given by the Karusch-Kuhn-Tucker (KKT)
conditions which result from equating the partial derivatives of L with respect to Vm

and v in direction of δx and δy equal to zero:

LVm
: Vm + ∇ · σ̄i∇p + β(Cmpt − (Iion)Vm

p) − gVm
q = 0 ,(3.4)

Lv : −β(Iion)vp − qt − gT
v (Vm, v)q = 0 ,(3.5)

where (Iion)Vm
is the derivative of (Iion)(Vm, v) w.r.t Vm and gT

v (Vm, v) is derivative
of the g(Vm, v) w.r.t v.

Terminal conditions: p(T ) = 0 , q(T ) = 0 .(3.6)

Optimality conditions: LIe
: αIe + βp = 0 , on Ωcon .(3.7)

Boundary conditions: σ̄i∇p · η = 0 on ∂Qc .(3.8)

Therefore, to solve (3.1) numerically we need to address the primal equations (2.1-
2.2), the adjoint equations (3.4-3.5) the optimality and terminal conditions (3.6-3.7)
together with initial and boundary conditions.

3.1. Numerical approach. The optimality system (2.1-2.2) and (3.4-3.5) is
approximated by using a finite element method for the space discretization and linearly
implicit Runge-Kutta methods for the time discretization.
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3.2. Space discretization using FEM. In this subsection we give the brief
introduction of a finite element method to solve the monodomain model equations. We
will first consider a so-called semi-discrete analogue of the full system where we have
discretized in space using the standard finite element method with piecewise bilinear
continuous elements. Let Vh ⊂ V be finite dimensional subspace and approximate
the solution using the basis functions {wi}

N
i=1. Finally, we get a system of ordinary

differential equations in matrix form:

−AiVm = β

(

CmM
∂Vm

∂t
+ Iion(Vm,v) − Ie

)

,(3.9)

∂v

∂t
= g(Vm,v) ,(3.10)

Vm(0) = 0 , v(0) = 0 .(3.11)

where Ai is the stiffness matrix and M is the mass matrix.
Here Iion and Ie are vectors defined by Iion(Vm,v) = {〈Iion, wj〉}

N
j=1 and Ie =

{〈Ie, wj〉}
N
j=1 respectively.

Space discretization of dual problem. We follow the analogous derivation
like the primal problem and finally we obtain the system of ordinary differential
equations in the following form.

MVm − Aip = −β

(

CmM
∂p

∂t
− M(Iion)Vm

p

)

+ MqgVm
,(3.12)

∂q

∂t
= −gT

v (Vm, v)q − β(Iion)vp ,(3.13)

p(T ) = 0 , q(T ) = 0 .(3.14)

While solving the primal and dual problem, we first approximate the ODE system
solution at current time step, which gives the ionic current variable update, and then
stick this solution in the PDE. Finally, the PDE solution is approximated at the
current time step using the current update for the ionic current variable. For more
details we refer to our forth coming paper [9].

3.3. Time discretization using linearly implicit RK methods. In this sub-
section we give a brief introduction to the time discretization for solving the ordinary
differential equation system which arises from the space discretization of the primal
and dual equations. The ordinary differential equation system, acquired from the
semi discretization in space is solved numerically with the finite difference method.
We can write the ODE system in the following form:

M
∂u

∂t
= F(u), u(t0) = u0.(3.15)

To solve this system, we partition the time [0, T ] into discrete steps 0 = t0, t1, . . . , tn =
T , which that are not necessarily equidistant. The notation for time step is τ i =
ti+1 − ti and ui is the numerical solution at time ti. For the time discretization
we used a linearly implicit Runge-Kutta methods, especially Rosenbrock methods.
Rosenbrock methods belong to a large class of methods which try to avoid nonlinear
systems and replace them by a sequence of linear systems. For our computations
we used the ROS2 method which has two internal stages to solve in each iteration,
see [7] for more details. After the time discretization one ends up with system of
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linear equations. For solving the linear system the BiCGSTAB method with ILU
preconditioning is used in our computations.

In the optimization algorithm, the nonlinear conjugate gradient method and New-
ton’s method are adopted to solve the optimality system, see [11] for more details. A
more in depth description will be found in [9, 6]. The numerical realization has been
carried out using the public domain package DUNE [2].

4. Second order methods. Aiming for a second order optimization algorithm,
it is clear that due to problem size it is unfeasible to construct the true Hessian of the
cost functional of the optimal control problem. Alternatives, based on model reduction
or reduced storage techniques are conceivable. Here we explain the computation of
the action of the “Hessian of reduced cost”, which is a useful technique to solve the
system without storing the Hessian in Newton’s method. In our computations we use
such techniques to solve efficiently the optimal control problems.

First we give a brief introduction of the main ingredients which are important to
compute the action of the Hessian of the reduced cost. We denote X = V × Y and
u = (Vm, v) for (Vm, v) ∈ V × Y . The non linear mapping e : X × U → W can be
written in the following form,

e(Vm, v, Ie) =





∇ · (σ̄i∇Vm) − β(Cm
∂Vm

∂t
+ Iion(Vm, v) − Ie)

∂v
∂t

− g(Vm, v)



(4.1)

We refer to Hinze and Kunisch [5] for the formalism to compute the reduced Hessian
of Ĵ(Ie) = J(Vm(Ie), Ie), where it is derived in the context of optimal control of the
Navier-Stokes equations.

Newton’s method. The linearisation of e, Iion and g, integrated with homoge-
neous initial and boundary conditions are given by :

eu(δVm, δv) =

(

∇ · (σ̄i∇δVm) − β (CmδVmt
+ ∇Iion(δVm, δv))

δvt −∇g(δVm, δv)

)

(4.2)

where

(Iion)Vm
(δVm, v) = GδVm

[

(1 −
Vm

vth

)(1 −
Vm

vp

) −
Vm

vth

(1 −
Vm

vp

) −
Vm

vp

(1 −
Vm

vth

)

]

+η1δVmv

(Iion)v(Vm, δv) = η1Vmδv ,

gVm
(δVm, v) = η2

δVm

vp

, gv(Vm, δv) = −η2η3δv(4.3)

Now the matrix operator T (x)δI is computed as

T (x)δI =





−[∇e(Vm, v, Ie)]
−1

(

βδIe

0

)

IdIe



 =:





(

δVm

δv

)

IdIe



(4.4)

where ∇ = ∇Vm,v. The form of the second derivative of L is found to be

∇2
(Vm,v,Ie)L(Vl, vl, δI) =





(

−∆Vl − β(Iion)VmVm
(Vl)q − βη1vlq

−βη1Vlq

)

αδI




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=:





(

z1

z2

)

αδI



(4.5)

where (Iion)VmVm
(Vl) = 6G

VmVl

vthvp

− 2GVl(
1

vp

+
1

vth

) .(4.6)

Finally, the computation of the action of Hessian can be expressed as

(T ∗∇2LT )δI = −e∗Ie
(e−1

(Vm,v))
∗

(

z1

z2

)

+ αδI(4.7)

= −βw1 + αδI(4.8)

and the Newton system becomes

(T ∗∇2LT )δI = −Ĵ
′

(In
e ) .(4.9)

where Ĵ
′

(In
e ) is the gradient of the reduced cost functional J(Vm(Ie), Ie). To solve

(4.9) numerically an iterative algorithm like a CG method is used. To carry out a
Newton step (without line search) the following algorithm is used. Here we summarize
the basic steps to compute the action of Hessian, see [6] for more details.

1. Compute the Ĵ
′

(In) obtained by one solve of the primal and dual equations.
2. Iteratively solve (4.9). In each step the action of Ĵ

′

(In) on a direction δIn

has to be evaluated by means of
(a) solve the linearized primal equation for Vl, vl using δIk

j .
(b) evaluate the (z1, z2) from eq. (4.5).
(c) solve the adjoint equation with (z1, z2) as r.h.s from eq. (4.7).
(d) finally compute the action of Ĵ

′′

(Ik) on δIk
j using eq. (4.8)

In practice the algorithm is combined with a line search strategy.

5. Numerical results. In this section we present the numerical results based
on the first order method, namely on a nonlinear conjugate gradient method, and a
second order method, Newton’s method. The numerical results are shown for two
test cases in solving short time horizon problems. The first one involves a tracking
type cost functional and serves as a partial validation for the numerical procedure
that we follow. The second one shows the capability of dampening an excitation wave
of the transmembrane potential by properly applying an extracellular potential. The
domain Ωc = [0, 1]× [0, 1] and various relevant subdomains are depicted in Figure 5.1.
Here Ωc denotes the computational domain, the observation domain is Ωobs = Ωc\Ωf ,
the excitation domain is Ωexi and the control domain is Ωcon.

For the computations a uniform rectangular mesh and equidistant time steps are
used. The computational mesh comprises of 2500 nodal points and 2401 quadrilateral
elements. In all simulations the weight of the cost of the control (α) is fixed at
α = 10−3 and the iterations were terminated when the following condition is satisfied:

‖∇Jk‖∞ ≤ 10−3(1 + |Jk|) .

If this condition is not met within a 1000 iterations, then we terminate the optimiza-
tion loop.

Parameters used in the simulation. σil = 0.174, σit = 0.019, σel = 0.625,
σet = 0.236 mS/cm, G = 1.5 mS/cm2, vth = 13 mV, vp = 100 mV , η1 =
4.4 mS/cm2, η2 = 0.012, η3 = 1, β = 1000 cm−1, Cm = 10−3 mF/cm2.



208 Ch. NAGAIAH, K. KUNISCH, G. PLANK

control control
excitation

Ωcon Ωcon
Ωexi

Ωc

Ωf Ωf

Ωobs = Ωc\Ωf

Fig. 5.1. Control and excitation region at the cardiac domain

Test case 1. In this case the tracking type cost functional

J(Vm, Ie) = min
1

2

∫ T

0

(∫

Ωobs

|Vm − Vd|
2dΩobs + α

∫

Ωcon

|Ie|
2dΩcon

)

dt,(5.1)

where Vd is the given desired state. Note that (5.1) represents the regularized least
squares formulation of recovering the ”true” Ie from data Vd. Regularization, i.e.
α > 0, is required since the mapping Ie → Vm cannot be expected to have a continuous
inverse. Using an initialization (Ie)0 for NCG and Newton’s methods different from
the ”true” Ie we expect to recover Ie up to the effect due to the regularization term.

The desired trajectory (Vd) of the transmembrane voltage solution is computed
as the solution to Eq. (2.1) using the excitation of the wave front at the excitation
domain and turning on the extracellular current variable at the control domain in the
model equations. Throughout this test case we use as initial conditions:

Vd(0) =

{

105.0 in Ωexi

0 otherwise

v(0) = 0 in Ωc.(5.2)

Ie =

{

15 in Ωcon × [0, T ]
0 otherwise.

(5.3)

For globalization, first experiments were based on a strong Wolfe conditions with
back tracking. However, in many cases it turned out to be computationally less
efficient than the use of a fixed step length. It is chosen to be 0.3 for all results
presented for Test case 1.

The algorithm is initialized by (Ie)0 = 0.75 ∈ Ωcon and (Ie)0 = 0 ∈ Ωc\Ωcon. The
continuous L2 norm of the gradient of the cost functional and the minimum value
of the cost functional are depicted in Figure 5.2 and the corresponding minimum
values of

∫

|Vm − Vd|
2dxdt and

∫

|Ie|
2dxdt are depicted in Figure 5.3 for different

methods. For all methods the norm of the gradient decreases much more rapidly at
the beginning than towards the end. In this case the NCG method with switching to
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Fig. 5.2. The norm of the gradient and minimum value of the cost functional are shown on

left and right respectively for T = 1 msec of simulation time.
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Fig. 5.3. The minimum value of
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|Ie|2dxdt is at left and right respectively

for T = 1 msec of simulation time.

Newton method takes 375.711 sec of CPU time and 67 optimization iterations (first
50 optimization iterations for the NCG method and subsequently 17 optimization
iterations all together for the Newton’s method). We observed that the switching from
NCG to Newton’s method takes less CPU time than the NCG and Newton’s methods.
The Newton’s method takes 1.093 times the CPU time and the NCG method takes
1.7137 times the CPU time of the switching method. The Newton’s method requires
26 optimization iterations and the NCG method takes 291 optimization iterations.

Test case 2. In this case the cost functional is minimized with respect to the
transmembrane voltage in the observation domain and the extracellular current den-
sity as control variable in the control domain:

J(Vm, Ie) = min
1

2

∫ T

0

(∫

Ωobs

|Vm|2 dΩobs + α

∫

Ωco‘n

|Ie|
2 dΩcon

)

dt(5.4)

The initial solution is considered for Test case 2 as follows:

Vm(0) =

{

105.0 in Ωexi

0 otherwise

v(0) = 0 in Ωc . (Ie)0 = 0 in Ωcon × [0, T ] .
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For this simulation the step length is chosen to be 0.8 for all methods. The control
variable on the control domain is initialized by (Ie)0 = 0 in Ωcon × [0, T ]. Further
Ie is set 0 on Ωc\Ωcon × [0, T ]. The continuous L2 norm of the gradient and the
minimum value of the cost functional for T = 1 msec of simulation time are presented
in Figure 5.4. On this short time interval the control is not sufficient to dampen
out the excitation wave. The norm of the gradient decreases much more rapidly at
the beginning of the iterations than towards the end. The corresponding minimum
values of

∫

|Vm|2dxdt and
∫

|Ie|
2dxdt are depicted in Figure 5.5. In this simulation

the Newton method takes 113 iterations to converge the prescribed tolerance in the
optimization algorithm. While switching from NCG to Newton’s methods takes 160
iterations and NCG method takes 641 iterations. The Newton’s method takes fewer
iterations than the other two methods. The NCG method takes 1351 sec of CPU time.
The Newton’s method is 1.059 times slower and the switching method is 1.143 slower
than the NCG method for this particular case. The convergence factor for the Newton
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Fig. 5.4. The norm of the gradient and minimum value of the cost functional are shown on

left and right respectively for T = 1 msec of simulation time.

0 100 200 300 400 500 600 700
20

25

3 0

3 5

40

45

50

55

60

65

optimization iterations

m
in

 ∫|
V

m
|2

 

 

N C G

N C G − Newton

Newton

0 100 200 300 400 500 600 700
0.5

0.6

0.7

0.8

0. 9

1

1.1

1.2

1. 3

optimization iterations

m
in

 ∫ |I
e
|2

 

 

N C G

N C G − Newton

Newton
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method is smaller than the NCG method. To further improve the convergence factor
for the Newton method the globalization strategy must be improved.

6. Conclusions. In this current article, second order methods for optimal con-
trol of the action potential in cardiac electrophysiology based on the monodomain
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equation were discussed and numerical results for two selected test cases were pre-
sented. While the first test case provides validation of the numerical results, the
second addresses the dampening of a wave front by properly applying extracellular
currents. The second order methods are faster to converge to the solutions. Specifi-
cally, for this problem both the NCG and the Newton method are suitable for short
time horizons. For long time horizons, the Newton method shows a clear improve-
ment in convergence over the NCG method, see [6] for more details. Also, switching
from NCG to Newton method also shows good improvement for some particular sim-
ulations. These results motivate us to continue our investigations for the bidomain
model. The computational results, with extracellular control dampening the complete
wave propagation of the transmembrane potential, suggest to strive for more insight
into longer time horizons, with complete simulations of several heart beats, with more
realistic geometries and finer meshes.
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