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ALGORITHM FOR TOPOLOGICAL CHANGES OF

PARAMETRICALLY DESCRIBED CURVES

PETR PAUŠ∗ AND MICHAL BENEŠ∗

Abstract. This contribution presents an algorithm for topological changes of curves solved by
a parametric method. The algorithm improves standard parametric method and allows merging and
splitting closed and open curves. The algorithm is mainly designed to allow for topological changes
which may occur during dislocation dynamics. We consider a family of closed or open smooth curves
Γ(t) : S → R

2, t ≧ 0. The curves are driven by the normal velocity v which is the function of
curvature κ and the position vector x ∈ Γ(t). In this case the equation is defined as: v = −κ + F .
The motion law is treated using direct approach solved by backward Euler semi-implicit scheme.
Numerical stability is improved by tangential redistribution of curve points which allows long time
computations and better accuracy.
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1. Introduction. The evolving curves can be mathematically described in sev-
eral ways. One possibility is to use the level-set method [1, 2, 3, 13], where the curve
is defined by the zero level of some surface function. One can also use the phase-field
method [4]. Finally, it is possible to use the direct (parametric) method [5, 6] where
the curve is parametrized in usual way. Parametric method is accurate and fast but
the main disadvantage is that it does not allow topological changes of curves, i.e.
merging or dividing. If we want to allow for such changes, we have to implement a
particular algorithm for such situation. We restrict ourselves to the initial condition
in the form of one or more disjoint non-selfintersecting curves.

2. Parametric description. When using the parametric approach, the planar
curve Γ(t) is described by a smooth time-dependent vector function

X : S × I → R
2,

where S = [0, 1] is a fixed interval for the curve parameter and I = [0, T ] is the time
interval. The curve Γ(t) is then given as the set

Γ(t) = {X(u, t) = (X1(u, t), X2(u, t)), u ∈ S}.

The curve evolve according to the equation of motion

v = −κ + F, (2.1)

where v is the normal velocity of the curve evolution, κ is the curvature, and F is the
forcing term.

The evolution law (2.1) is transformed into the parametric form. The unit tangen-

tial vector ~T is defined as ~T = ∂uX/|∂uX |. The unit normal vector ~N is perpendicular

to the tangential vector and ~N · ~T = 0 holds. In case of closed curve, ~N is the outer
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vector to the interior of the curve. In case of open curve, ~N has a selected, pre-defined
direction (e.g., upwards). The orientation of curves is clockwise.

The curvature κ is defined as

−κ =
∂uX⊥

|∂uX |
·

∂uuX

|∂uX |2
= ~N ·

∂uuX

|∂uX |2
,

where X⊥ is a vector perpendicular to X . The normal velocity v is defined as the
time derivative of X projected into the normal direction,

v = ∂tX ·
∂uX⊥

|∂uX |
.

The equation (2.1) can now be written as

∂tX ·
∂uX⊥

|∂uX |
=

∂uuX

|∂uX |2
·
∂uX⊥

|∂uX |
+ F,

which holds provided

∂tX =
∂uuX

|∂uX |2
+ F (u, t)

∂uX⊥

|∂uX |
. (2.2)

This equation is accompanied by the periodic boundary conditions for closed curves,
or by fixed-end boundary condition for open curves, and by initial condition. These
conditions are considered similarly as in [5].

The solution of (2.2) exhibits a natural redistribution property which is useful
for short-time curve evolution [7, 9]. The value of tangential force contained in the
second derivative term is given by

α0 =
∂uuX · ∂uX

|∂uX |3
.

For long time computations with time and space variable external force F (X, t), the
algorithm for curvature adjusted tangential velocity is used. This algorithm moves
points along the curve according to the curvature, i.e., areas with higher curvature
contain more points than areas with lower curvature. To incorporate a tangential
redistribution, a tangential term α has to be added to the equation (2.2).

∂tX =
∂uuX

|∂uX |2
− α

∂uX

|∂uX |
+ F (u, t)

∂uX⊥

|∂uX |
. (2.3)

This improves numerical stability and also accuracy of computation. The term α is
chosen in such a way that it vanishes at the curve end points. Details of definition of
α are described in [8].

3. Numerical scheme. For numerical approximation we consider a regularized
form of (2.3) which reads as

∂tX =
∂uuX

Q(∂uX)2
− α

∂uX

Q(∂uX)
+ F (u, t)

∂uX⊥

Q(∂uX)
, (3.1)
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where Q(x1, x2) =
√

x2
1 + x2

2 + ε2 is a regularization term and ε a small parameter.
We use backward Euler semi-implicit scheme for the numerical solution of the dif-
ferential equation (2.3). The first derivative is discretized by backward difference as
follows

∂uX |u=jh ≈

[

X1
j − X1

j−1

h
,
X2

j − X2
j−1

h

]

,

and the second derivative as

∂uuX |u=jh ≈

[

X1
j+1 − 2X1

j + X1
j−1

h2
,
X2

j+1 − 2X2
j + X2

j−1

h2

]

.

The approximation of the first derivative is denoted as Xū,j and the second derivative
as Xūu,j .

The semi-implicit scheme for equation (2.3) has the following form

Xk+1
j − τ

Xk+1
ūu,j

Q2(Xk
ū,j)

+ ταj

Xk+1
ū,j

Q(Xk
ū,j)

= Xk
j + τF (Xk

j , kτ)
X⊥k

ū,j

Q(Xk
ū,j)

,

j = 1, · · · , m − 1, k = 0, · · · , NT − 1, (3.2)

where Q(x1, x2) is a regularization term, X⊥

ū,j is a vector perpendicular to Xū,j , and αj

is redistribution coeficient. The term ε serves as a regularization to avoid singularities
when the curvature tends to infinity.

Xk
j ≈ X(jh, kτ), τ is a time step and NT is the number of time steps. The matrix

of the system (3.2) for one component of Xk+1 has the following tridiagonal structure:















1 + 2t
h2Q2 − tα

hQ
−t

h2Q2 0 · · ·

−t
h2Q2 + tα

hQ

. . .
. . .

. . .

0
. . .

...
. . .















.

The scheme (3.2) is solved for each k by means of the matrix factorization.

4. Topological changes. The algorithm we present is not supposed to be uni-
versal for every situation and possibility. Main purpose is to simulate topological
changes that can happen during dislocation dynamics (see [10]), i.e., topological
changes such as merging or splitting of curves, closing of open curves, etc. As
the initial condition, we consider only curves which do not intersect itself and do not
touch each other. The orientation of curves is clockwise. That is The parametric
approach does not handle them intrinsically, and we therefore need an additional al-
gorithm allowing for such changes of discretized curves. The algorithm is designed for
topological changes of curves which touch only in one point. More complex changes
may be accomplished by multiple application of the algorithm in one timestep. We
will describe it later.

Let us consider two closed or open curve parametrizations discretized as X =
{x1, x2, · · · , xn} and Y = {y1, y2, · · · , ym} in R

2. Curves evolve independently ac-
cording to the equation (2.3). The algorithm for merging two curves is as follows:
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1. Compute the distance between X and Y and find one point from each curve
where the minimum is reached. Let us denote the distance as d, the point
from X as xmax and from Y as ymax.

2. Check if the distance d between curves is smaller than a given tolerance δ. If
not, compute new timestep and go to 1.

3. Create new empty curve Z. We must take into account the type of merged
curves. Merging two closed curves will produce one closed curve. Merging
one open and one closed curve will produce one open curve and merging two
open curves will produce two open curves.

4. Copy points from X from the begining (i.e., from x1) up to xmax to Z.
5. Copy points from Y from ymax up to the end (i.e., up to ym) to Z.
6. Copy points from Y from the begining (i.e., from y1) up to ymax to Z.
7. Copy points from X from xmax up to the end (i.e., up to xn) to Z.
8. Delete X and Y .
9. Compute a new timestep for Z and go to 1.

We also consider that one curve can intersect itself and thus split itself into 2
parts. Let us consider a closed or open curve discretized as X = {x1, x2, · · · , xn}.
The curve evolves independently according to the equation (2.3). The algorithm for
splitting into two curves is as follows:

1. Compute the distance between points in X and find two points where the
minimum was reached. Let us denote the distance as d, and the points as
xmax1 and xmax2. We do not consider several points in the neighbourhood
of each point when measuring the distance to avoid finding minimal distance
for two neighbor points. The number has to be computed according to the
value of a given tolerance δ (see the next step). We recommend to omit all
points with the distance smaller than at least 4δ.

2. Check if the distance d between points is smaller than a given tolerance δ. If
not, compute new timestep and go to 1.

3. Create two new empty curves Xnew1 and Xnew2. If X is an open curve, Xnew1

will be open and Xnew2 closed curve. If X is a closed curve then Xnew1 and
Xnew2 will be closed curves.

4. Copy points from X from the begining (i.e., from x1) up to xmax1 to Xnew1.
5. Copy points from X from xmax1 up to xmax2 to Xnew2.
6. Copy points from X from xmax2 up to the end (i.e., up to xn) to Xnew1.
7. Delete X .
8. Compute new timestep for Xnew1 and Xnew2 and go to 1.

The points xmax1, xmax2, xmax, and ymax are omited during copying. It is
important to copy all points in the same order as source curves to avoid problems
with the direction of normal vector. The orientation and normal vector of the new
curve are the same as for the original curve. Therefore, it may happen that the normal
vector direction will be inward for the new curve.

The algorithm can handle the evolution of more than two curves. At each timestep
it performs the procedure described above for each pair of curves which allows it to
merge or divide more curves at a single timestep or to merge or divide one curve
more times in a single timestep. Let us consider r open or closed parametrized curves
X1, X2, · · · , Xr. Multiple curves can be treated as follows:

1. For k = 1 to r − 1 do:
2. For l = k + 1 to r do:
3. Perform the merging algorithm described above for Xk and Xl without
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computing a new timestep.
4. If curves were merged, go to 1, else continue the FOR loops.
5. For k = 1 to r do:
6. Perform the algorithm for dividing curves on Xk without computing a

new timestep.
7. If a curve was divided, go to 5, else continue the FOR loop.
8. Compute a new timestep for all curves.

The algorithm has a few drawbacks. If the parameter δ is small (i.e., we need
a higher accuracy of merging or splitting), the curve must have fine discretization
which causes higher computation times. For a small δ, the algorithm also needs a
small timestep, otherwise curves may cross each other without merging or splitting.
Recommended value of δ is about 10−4 or 10−5.
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Fig. 5.1: Merging of two circles, F = 2.5, t ∈ (0, 1.25), δ = 5 · 10−4

5. Results of numerical simulation. The algorithm described above was im-
plemented and tested in various situations. The first example shows merging of two
circles (Figure 5.1). The circles with the diameter of 1 are located at [0.4, 0.4], resp.
[-0.4, -0.4] and expand under F = 2.5. Each circle is discretized by 75 points. The
threshold δ is set to 5 · 10−4.



ALGORITHM FOR TOPOLOGICAL CHANGES OF CURVES 181

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1.5 -1 -0.5  0  0.5  1  1.5

Parametric

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1.5 -1 -0.5  0  0.5  1  1.5

Parametric

t = 0.095 t = 0.12

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1.5 -1 -0.5  0  0.5  1  1.5

Parametric

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1.5 -1 -0.5  0  0.5  1  1.5

Parametric

t = 0.145 t = 0.17

Fig. 5.2: Merging of four circles, F = 2.5, t ∈ (0, 0.17), δ = 5 · 10−4

Figure 5.2 illustrates merging of four circles. The circles with the diameters of 1
are located at [0.6, 0.6], [-0.6, -0.6], [0.6, -0.6] and [-0.6, 0.6] and expand under F = 2.5.
Each circle is discretized by 75 points. Under these settings, the curves should touch
in the same time. Since the algorithm cannot handle more than one touch point,
everything is done in steps. At first, two circles are merged, then merged with the
third one, and then with the fourth one. Merging happens always only in one point.
After merging, there is only one curve which touches itself. Now the algorithm for
dividing curve starts and splits the curve into two closed curves. As a consequence,
the normal vector of the outer curve is outward and for the inner curve inward. The
inner curve then shrinks quickly to a point. A comparison with level-set method will
be presented in [14].

Figure 5.3 illustrates merging of two circles and one open curve. The circles with
the diameters of 1 are located at [0.6, 0.6] and [-0.6, 0.6], the open curve has fixed ends
at [-1, -0.7] and [1,-0.7]. All curves expand under F = 2.5. Each curve is discretized
by 75 points. The curves merge into one open curve.

The last example (Figure 5.4) illustrates the expansion of an open curve which
at a certain time touches itself and divide into one open and one closed curve. This
computation is similar to dislocation dynamics, namely the Frank-Read source [11,
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12]. The half-circle has fixed ends at [-1, 0] and [1,0] and expands under F = 2.5.
The number of discretization points is 200. This computation requires tangential
redistribution of points because if the redistibution is not used, areas near the ends
of the curve contain very few points and the algorithm fails.

6. Conclusion. This contribution presents the algorithm for topological changes
of parametric curves. The capabilities of the algorithm are fitted for simulation of
dislocation dynamics. It is not designed to be universal. The main advantage is that
it can handle both open and closed curves with a reasonable speed of computation.
On the other hand, the algorithm needs a tangential redistribution of points and a
higher number of discretization points for good precision. The comparison with other
methods such as level set or phase field will be the subject of a future paper.
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Fig. 5.3: Merging of two circles and one open curve, F = 2.5, t ∈ (0, 0.235), δ = 5·10−4
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Fig. 5.4: Dividing an open curve, F = 2.5, t ∈ (0, 2.9), δ = 5 · 10−4


