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ANTIDISSIPATIVE NUMERICAL SCHEMES FOR THE

ANISOTROPIC DIFFUSION OPERATOR IN PROBLEMS FOR THE

ALLEN-CAHN EQUATION

PAVEL STRACHOTA∗

Abstract. This contribution discusses two attitudes to artificial dissipation reduction in numer-
ical schemes for solving initial boundary value problems for the Allen-Cahn equation with anisotropy
incorporated into the diffusion operator. In the first case, a weighted first order finite difference
scheme is used for spatial discretization of the anisotropic texture diffusion problem in 2D, designed
for vector field visualization. In the second case, a higher order finite volume scheme is used for the
texture diffusion problem in 3D, applied in a MR tractography algorithm. The anisotropy of the
diffusion is controlled by the diffusion tensor field. For both problems, comparisons with standard
low order schemes are given in the form of pictures, together with remarks on convergence analysis
results.
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1. Introduction.

The Allen-Cahn equation having its origin in phase modeling in physics [1] has
since found its application in other fields, including image processing and mathe-
matical visualization [4, 13, 12]. In particular, in order to visualize the streamlines
of a given vector or tensor field, an initial boundary value problem for the modi-
fied Allen-Cahn equation with incorporated anisotropy can be used (see [13, 12] and
[9]). Unfortunately, simple first order schemes for its numerical solution suffer from
artificial (numerical) dissipation, i.e. an error demonstrating itself as an additional
isotropic diffusion and significantly deteriorating the visualization results. In the fol-
lowing sections, we introduce two similar problems for the Allen-Cahn equation in the
context of vector and tensor field visualization. For each of them, a different approach
aimed at reduction of the artificial diffusion in the numerical solution is proposed.

2. Vector field visualization problem.

Suppose a static vector field v is defined in a rectangular domain Ω = (0, L1) ×
(0, L2). Generating a noisy texture in Ω and making it undergo an anisotropic diffusion
process with the diffusion focused in the direction v (x) at each point x ∈ Ω, the
streamlines of the vector field emerge as ”smudges”. In addition to smearing, one may
impose advection on the texture in order to interpret the flow of the fluid along the
vector field.

Formulation. Let p : J ×Ω 7→ R, p = p(t,x) be the function of texture intensity
at each point x ∈ Ω and at the time t ∈ J̄ , where J = (0, T ) is the time interval.
The initial boundary value problem for the Allen-Cahn equation with advection (see
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[11]) reads

ξ
∂p

∂t
+ ξv · ∇p = ξ∇ · T 0 (∇p) +

1

ξ
f0(p) + c0F in J × Ω, (2.1)

p|∂Ω
= 0 on J × ∂Ω, (2.2)

p|t=0
= I in Ω, (2.3)

where

f0(p) = p(1 − p)

(

p −
1

2

)

.

In (2.1), the term ∇·T 0(∇p) is the anisotropic diffusion operator focusing the diffusion
of p into the direction of the vector field. Consider a vector η = (η1, η2)T ∈ R

2

and denote the coordinates of η in the orthonormal basis ( 1

v
v, 1

v
v⊥) by η̃1, η̃2. The

operator T 0 is defined as

T 0(η) = Φ0(η)Φ0
η(η),

where

Φ0(η) =

√

α · (η̃1)
2

+ β · (η̃2)
2

, Φ0
η(η) =

(

∂η1Φ0(η)
∂η2Φ0(η)

)

. (2.4)

The coefficients α, β depend on the vector field and should be chosen such that the
absolute value of T 0 is largest in the case when the directions of v and ∇p coincide.
Our choice is

α = κ (1 + σ |v|) , β = κ, κ, σ > 0.

The term v · ∇p in (2.1) causes texture advection [3]. The polynomial f0 makes
nucleation occur during the time. In this context, nucleation is a formation of areas
where the value of p is near 0 or 1. As described for example in [2], the parameter ξ

is proportional to the diffuse interface layer between such areas. ξ is chosen such that
it is small in comparison with the dimensions of Ω. The sense of the product c0F is
related to the problem of mean curvature flow and is explained e.g. in [3]. However,
for the purpose of visualization, it is convenient to put F = 0 in most cases.

The initial condition I : Ω 7→ R is a texture containing dense impulse noise. As
the time t increases, the solution p (t, ·) reflects the gradual diffusion of the initial
image I. Both the state of p at the final time T and the entire solution evolution can
be regarded as the result.

Numerical solution. For numerical solution, we use the method of lines [10],
converting the problem (2.1-2.3) to the solution of the system of ODE in the form

dp

dt
= f(t,p). (2.5)

The spatial discretization is carried out by the finite difference method; for the tempo-
ral discretization, we employ the 4th-order Runge-Kutta-Merson solver with adaptive
time stepping. First, let us introduce the notations

h = (h1, h2), hk :=
Lk

mk
, k ∈ {1, 2} , mk ∈ N,
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xi,j = (x1
i , x

2
j ) = (i · h1, j · h2),

ωh =
{

xi,j

∣

∣i = 1, ...,m1 − 1, j = 1, ...,m2 − 1
}

,

ω̄h =
{

xi,j

∣

∣i = 0, ...,m1, j = 0, ...,m2
}

, γh = ω̄h − ωh,

Hh =
{

u
∣

∣u : ω̄h → R
}

, ui,j = u(xi,j), (2.6)

Phw = w
∣

∣

ω̄h

∈ Hh defined for any w : Ω 7→ R.

The original first order scheme. In the sense of (2.6), we introduce the following
forward and backward difference quotients substituted for the partial derivatives of
∂x1u, ∂x2u:

ux̄1,i,j =
ui,j − ui−1,j

h1
, ux1,i,j =

ui+1,j − ui,j

h1
,

ux̄2,i,j =
ui,j − ui,j−1

h2
, ux2,i,j =

ui,j+1 − ui,j

h2
.

Using the above expressions, we can continue in defining the ”single directional” dis-
crete substitutes for gradient and divergence:

∇̄hu = (ux̄1 , ux̄2) , ∇hu = (ux1 , ux2) ,

∇h · V = V 1
x1 + V 2

x2 , ∇̄h · V = V 1
x̄1 + V 2

x̄2 , V =
(

V 1, V 2
)T

.

Finally, we assemble the semi-discrete scheme of the problem (2.1-2.3) for the
unknown grid function ph : J → Hh which represents the vector of functions of time
p in (2.5):

ξ
dph

dt
+ ξPh(v) · ∇̄hph = ξ∇h · T 0(∇̄hph) +

1

ξ
f0(p

h) + c0F in J × ωh, (2.7)

ph|γh
= 0 on J × γh, (2.8)

ph(0) = PhI in ωh. (2.9)

This scheme will be referred to as the original scheme, since it has been used as the
starting point for further improvements. In most computational studies, the Dirichlet
boundary condition (2.8) has been replaced by the zero Neumann boundary condition.

Weighted numerical scheme. The scheme (2.7-2.9) is of first order in space and suf-
fers from artificial numerical isotropic diffusion, which in accordance with the Fourier
error analysis theory [7] affects structures in ph containing high frequencies. As a
result, the formation of streamlines is degraded. However, due to the asymmetry of
the scheme, the amount of additional isotropic diffusion depends on the direction of
the vector field v. This property of the scheme has been exploited to design mixed
forward/backward difference quotients approximating the gradient and the divergence
by
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∼

∇hu = (ux̄1 , ux2)
T

,
∽

∇hu = (ux1 , ux̄2)
T

,

∼

∇h · V = V 1
x̄1 + V 2

x2 ,
∽

∇h · V = V 1
x1 + V 2

x̄2 .

These expressions allow four versions of discretization of the term ∇·T 0 (∇p) in (2.1),
as listed in Figure 2.1. Two complementary scheme asymmetries are obtained, with
two perpendicular directions of v corresponding to the weakest numerical diffusion.
These directions coincide with the connecting line between the diagonal points used
in the respective scheme and can be denoted by

v− = (1,−1)
T

, v∼ = (1, 1)
T

.

Finally, all discretization versions are combined into a single scheme, weighting
them by γ1, γ2 according to the direction of the vector field:

γ1

2

(

∇h · T 0(∇̄hph) + ∇̄h · T 0(∇hph)
)

+
γ2

2

(

∽

∇h · T 0(
∼

∇hph) +
∼

∇h · T 0(
∽

∇hph)

)

.

(2.10)
The weights are chosen as projections of v into the directions v− and v∼ and nor-
malized such that γ1+γ2 = 1, i.e.

γ̃1 = (Phv) · v− = Phv1 − Phv2,

γ̃2 = (Phv) · v∼ = Phv1 + Phv2,

γ1 =
|γ̃1|

|γ̃1| + |γ̃2|
,

γ2 =
|γ̃2|

|γ̃1| + |γ̃2|
.

As a result, the weighted scheme always prefers the discretization version with the
weaker numerical diffusion. The improvement can be observed in Figures 2.2 and 2.3.
In (2.10), averaging both discretization versions corresponding to the same direction
v− (or v∼ respectively) results in a smoothing effect making the scheme more robust
with respect to discontinuities in the solution. More visualization results obtained by
the weighted scheme are shown in Figure 2.4.

Theoretical convergence results. The work [11] contains a detailed convergence
analysis of the original numerical scheme (2.7-2.9), proving the following theorem:
Theorem. Let I ∈ H1

0(Ω)∩C(Ω̄), v ∈ C(Ω̄)2. Then the solution ph of the semidiscrete
scheme (2.7-2.9) converges in L2(J ; L2(Ω)) to the unique weak solution p of the vector
field visualization problem (2.1-2.3), where p satisfies

p ∈ L2(J ; H1
0(Ω)),

∂p

∂t
∈ L2(J ; L2(Ω)).

The proof is based on interpolation theory, suitable a priori estimates and the
method of compactness.

Experimental proof of convergence. In addition to the theoretical results, the
measurement of the experimental order of convergence (EOC) has been performed
for both the original and the weighted schemes. EOC is obtained by computing the
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v
∼

=v
−

=

∇h · T
0(∇̄hp

h) ∇̄h · T
0(∇hp

h)
∼

∇h · T
0(

∽

∇hp
h)

∽

∇h · T
0(

∼

∇hp
h)

Fig. 2.1: Versions of ∇ · T 0 (∇p) discretization used for assembling the weighted scheme.

Note that the y axis is oriented as on a computer screen, i.e. the y coordinate

increases downwards.

Fig. 2.2: Visualization of the straight vector field in the direction corresponding to the

strongest artificial diffusion in the original scheme. Result obtained by the original

scheme (2.7-2.9) (left) and by the weighted scheme (right). All parameters were

identical for both computations.

solution on a sequence of gradually refining grids and is defined as

EOCi = log

(

Errori

Errori−1

)

/

log

(

‖hi‖

‖hi−1‖

)

,

where ‖h‖ = max
j

hj is the mesh size and Errori is the difference of the i-th solution

from the precise solution measured in an appropriate norm. As the precise solution
is often unknown, one may replace it by the numerical solution on a very fine mesh.
The results indicating convergence are summarized in Table 2.1 and Table 2.2.

3. Tensor field visualization problem.

Medical examination of human brain by means of Magnetic Resonance Diffusion
Tensor Imaging (MR-DTI) [5, 8] generates a tensor field D : Ω̄ 7→ R

3×3 where Ω ⊂ R
3.

In a way similar to the vector field visualization technique dealt with in the previous
sections, the tensor field can be processed using the problem for the Allen-Cahn
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Fig. 2.3: Visualization of the revolving flow. Result obtained by the original scheme (2.7-

2.9) (left) and by the weighted scheme (right). All parameters were identical for

both computations. The left image clearly indicates the direction most affected by

artificial diffusion.

1. Bénard convection 2. Point electric charge 3. Sinus waves

Fig. 2.4: Additional examples of vector field visualization, using RGB component-
wise solution. In images 2 and 3, stripe-like Dirichlet boundary conditions
together with strong advection were used.

equation described below. The resulting streamlines demonstrated in a 3D texture
can be interpreted as neural fiber tracts [14].

Formulation. Consider the time interval J , the domain Ω in the form of a block
and a symmetric positive definite diffusion tensor field D representing the input data.
The initial boundary value problem for the Allen-Cahn equation reads

ξ
∂p

∂t
= ξ∇ · D̃∇p +

1

ξ
f0(p) in J × Ω, (3.1)

∂p

∂n

∣

∣

∣

∣

∂Ω

= 0 on J × ∂Ω, (3.2)

p|t=0
= I in Ω. (3.3)

For the meaning of the symbols p, I, f0, ξ see section 2.

Numerical solution and reduction of artificial dissipation. Again, the
method of lines is utilized for the numerical solution of the problem (3.1-3.3). As in
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‖h‖ L∞(J ; L2(Ω))
error

EOC in
L∞(J ; L2(Ω))

L∞(J ; L∞(Ω))
error

EOC in
L∞(J ; L∞(Ω))

1.000E-02 2.578E-02 - 2.909E-01 -
5.000E-03 8.218E-03 1.650E+00 1.145E-01 1.345E+00
2.500E-03 2.755E-03 1.577E+00 4.659E-02 1.298E+00
1.250E-03 7.728E-04 1.834E+00 1.333E-02 1.805E+00

Table 2.1: EOC results for the original scheme (2.7-2.9).

‖h‖ L∞(J ; L2(Ω))
error

EOC in
L∞(J ; L2(Ω))

L∞(J ; L∞(Ω))
error

EOC in
L∞(J ; L∞(Ω))

1.000E-02 2.499E-02 - 2.057E-01 -
5.000E-03 7.302E-03 1.775E+00 6.335E-02 1.699E+00
2.500E-03 2.284E-03 1.677E+00 1.968E-02 1.686E+00
1.250E-03 6.455E-04 1.823E+00 6.090E-03 1.693E+00

Table 2.2: EOC results for the weighted scheme (2.10).

the previous case, the artificial diffusion resulting from spatial discretization has to
be dealt with.

The streamlines emerging in the solution are thin high frequency structures. Re-
calling the Fourier analysis [7], the number of grid points per wave (PPW ) can be
estimated for each difference operator. Depending on the spectrum of the solution,
this quantity defines the grid density necessary to produce an approximation error
below the desired level. As PPW decreases significantly with the order of the dif-
ference operator, we obtain two general possibilities of artificial diffusion reduction:
increasing the order of approximation and/or refining the grid. However, due to the
CPU and memory requirements of the computation on a 3D grid, the latter is not an
option.

Hence, a higher order scheme of the finite volume (FV) method [6] on a rectangular
structured grid has been chosen, yielding a semidiscrete scheme in the form

ξ∂tp (t) = ξ
∑

σ∈EK

FK,σ (t) +
1

ξ
f0,K (t) , (3.4)

where EK is the set of all faces of the cell K. FK,σ (t) are the respective numerical
fluxes at the time t, which contain difference quotients observing a symmetric 5-point
stencil and approximating the derivatives ∂xp, ∂yp, ∂zp at the center of the face σ.

• The difference quotient approximating the derivative in the direction perpen-
dicular to the face σ uses a non-equidistant point distribution in order to
prevent redundant interpolation (Figure 3.1a).

• The remaining derivatives are approximated using a uniform 5-point sten-
cil. The stencil points (the crosses along the dashed line in Figure 3.1b)
are interpolated from the neighboring grid nodes using 1-dimensional cubic
interpolation.

The results of the experimental convergence analysis are summarized in Table 3.1.
As for artificial diffusion, the comparison of four schemes restricted to R

2 is shown in
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h L∞(J ; L2(Ω))
error

EOC in
L∞(J ; L2(Ω))

L∞(J ; L∞(Ω))
error

EOC in
L∞(J ; L∞(Ω))

1.020E-02 1.806E-04 − 3.798E-03 −
5.102E-03 6.137E-05 1.557E+00 1.188E-03 1.675E+00
2.551E-03 1.828E-05 1.747E+00 5.256E-04 1.177E+00

Table 3.1: EOC results for the higher order FV scheme. Mesh size h =
maxK diam(K).

y

y

b

a

(i, j − 2, k)

(i, j + 2, k)

(i, j − 1, k)
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z

(i + 1, j, k) (i + 2, j, k)

x

K

σ

x

(i + 2, j, k)(i + 1, j, k)
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(i, j, k + 1)

(i, j, k)

(i, j + 1, k)
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(i, j, k − 1)

(i, j − 1, k)

Fig. 3.1: Difference quotients in derivative approximations in the FV scheme (3.4).

Figure 3.2. In both cases, the initial condition depicted on the very left underwent a
process of anisotropic diffusion directed along the axis y = x.

4. Conclusion.

In problems of vector field or tensor field visualization, we come across the ne-
cessity of reducing the level of artificial dissipation (isotropic diffusion) generated by
the numerical scheme. Two possibilities of overcoming this difficulty were described;
either a specific modification of the numerical scheme can be designed, exploiting its
properties, or a more general solution in the form of the higher order scheme can
be adopted. The presented results prove that both techniques were successful in the
context of visualization. Other preliminary results indicate that the proposed higher
order FVM scheme is still resistant to oscillations. However, more analysis is a matter
of further research, as well as the optimal choice of boundary conditions for the higher
order scheme.
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Nečas Center for Mathematical Modeling”, No. LC06052.



142 P. STRACHOTA

t = 0.0004

210 3 4

t = 0.002

t = 0.0004

210 3 4

t = 0.002

0. Initial condition

1. FV, 5-point (4th order), cubic interpolation 3. FV, 2nd order central difference

2. FV, 5-point, linear interpolation 4. Finite difference, 1st order forward-backward

Fig. 3.2: Artificial diffusion in different numerical schemes, 2 time levels.
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