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SCALE BRIDGING IN DIFFUSIVE PHASE TRANSFORMATION *

JIRT VALA t

Abstract. The physical micro- and nano-scale analysis of phase transformation of materials
consisting of a finite number of substitutional and interstitial components, based on the Onsager
extremal thermodynamic principle, leads to a system of partial differential equations of evolution
type containing certain integral term, whose form differs substantially in both phases and in the
moving phase interface of finite thickness, in whose center the ideal liquid material behaviour can
be detected. Even in the case of a model one-dimensional problem at certain fixed temperature,
unlike e. g. the classical problems of thermal transfer, no reasonable macro-scale equations, working
with “effective” material characteristics as results of some formal homogenization procedure, are
available. However, the reliable evaluation both of the velocity of phase transformation and of all
distributions of concentrations (or molar fractions) of particular components is needed. This paper
offers a possibility of an indirect effective computational prediction of such process of diffusive and
massive transformation, making use of the large database of micro-scale material properties and of
the MATLAB-supported simulations, applicable even for very complicated evaluations of chemical
potentials and diffusion factors.

Key words. Micro- and nano-scale computational modelling, non-stationary diffusive and mas-
sive phase transformation, multi-component systems, thermodynamic principles, integro-differential
problems, finite difference method, method of discretization in time, MATLAB-supported simula-
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1. Introduction. Most models of diffusional phase transformation, involving
bulk diffusion and interface migration, pay attention especially to binary (two-com-
ponent) alloys with substitutional components — cf. [3] and [10]. However, in practice
the analysis of more general alloys with a finite number of ¢ substitutional and r
interstitial components is needed. In such cases usually the interface is idealized to be
sharp (of negligible thickness), thus some artificial boundary and transfer conditions
have to be applied at the interface, as e.g. the ortho- or para-equilibrium contact
conditions for a multi-component model in [14]. However, a real migrating interface
of a finite thickness h may drag segregated impurity atoms forming concentration
profiles across the interface. Such a local diffusion process reduces the migration
velocity v due to the Gibbs energy dissipated by this process; this decelerating effect
is known as solute drag. In [15], following some ideas of [12], coming from the Onsager
extremal thermodynamic principle, formulated at the nano- or micro-scale level (the
realistic value of h is 10~%m), derived originally in [11] (for more details and various
generalizations see [9]), the steady-state diffusion of solute across the interface is driven
by the difference of chemical potentials u(c), corresponding to the vector ¢ of molar
fractions (as concentrations characteristics) related to the first ¢ — 1 substitutional
components, i.e. ¢ = (c1,...,¢q—1); in this case we can evaluate the last molar
fraction as ¢, = 1 —¢; — ... — ¢q—1. As discussed in [6], at least for the steady-
state case this approach gives identical results with the solute drag formula proposed
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in [8]. In [19] the same approach is generalized to admit the evolution of all molar
fractions in time and the presence of r interstitial components; consequently ¢ =
(€1, ,Cq—1,Cqt1, - - - Cqyr). Nevertheless, [19] shows only one practical example of
such evolution near the initial time; the algorithm suggested in this paper handles
also slow long-time redistributions.

Most multi-scale approaches try to perform the micro-scale computations at cer-
tain (sufficiently small) periodic or quasi-periodic representative volume element and
to extend the results to the macro-scale (or, step-by-step, to the meso- and macro-
scale) analysis, using some artificially homogenized (“effective”) material character-
istics. Nevertheless, the required mathematical techniques are often unfriendly to
physicists or material, civil, mechanical, etc. engineers: e.g. the existence and con-
vergence results of the two-scale homogenization for the standard problem of heat
transfer in materials with a fully periodic material structures, formulated in [1], p. 204,
and similar ones for the wave equations, for the linearized elastricity, etc., cannot be
easily extended to more general structures (the classical calculus in the Lebesque and
Sobolev spaces must be replaced by the deep results of functional analysis of Banach
algebras or by the implementation of special probabilistic measures — cf. [4] and [5]).
Moreover, the convergence analysis of numerical algorithms comes typically from the
arguments based on the generalized Cauchy-Schwarz inequality, assuming some scalar
products in Hilbert spaces (for the details see [20]), not available for general formula-
tions. Therefore it is difficult to reject some critical opinions: e.g. [2] comments the
multi-scale approach that “it begins with naive euphoria” and consequently there is
an “overreaction to ideas that are not fully developed, and this inevitably leads to a
crash”. Even the approach applied in this paper is not able to construct any macro-
scale limits directly; however, its nano- and micro-scale simulation can predict the
global behaviour of the process of phase transformation in terms of observable quan-
tities, as interface velocity and molar fractions of particular components. Some open
questions and possible generalizations will be mentioned in the concluding section.

2. Physical background. Let us start with the geometrical description of the
one-dimensional system. The evolution of ¢ — 1 + r molar fractions c is characterized
in a Cartesian coordinate x and in time ¢. The coordinate z moves from the left to the
right together with the interface of some constant thickness h (from z = 0 to x = h);
the total size of the specimen is H (in practice much greater than h), the system
is assumed to be closed (with zero boundary fluxes) on the interval (z*(t),z%(t)).
For certain material sample of length H, in addition to ¢ it is useful to introduce
diffusive fluxes ji,...,jq+r and their vector j = (ji,...,5q=1,Jg+1,---,Jq+r) Where
ji+...+Jg =0. We are allowed to study the redistribution of ¢ and j in an arbitrary
positive time ¢ with j(.) = 0 at the boundary (consisting of two points, whose distance
is H). In such system we need only to know all initial values ¢ for ¢ = 0; no additional
boundary conditions are needed. If x refers to the standard Cartesian coordinate
system and v is positive for the interface motion from the left to the right we can
localize the interface (for z) into the interval (0,h) and the exterior boundary of a
sample into two points

I’L :I'L — tU IR :acR — t’U N
(t) = 2(0) /O () ds (t) = 2"(0) /0 (<) ds

clearly x'(t) — 2% (t) = H and j(al) = j(2f) = 0 for any t. Finally we have the
first phase, denoted in all following considerations by «, for x < 0, separated from
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the second phase, denoted by ~, for > h, by the phase interface, denoted formally
by 38, for 0 <z < h.

If the dot symbol denotes the partial derivative with respect to ¢ and the prime
symbol the partial derivative with respect to « then we are able to calculate the total
time derivative of a variable u as du/dt = @ — vu’. Namely the mass conservation
law for the constant molar volume Q (Qcy,...,Qcq4r are just the concentrations of
particular components) reads

(2.1) de/dt +Qj' = ¢ —vd +Qj' =0;

the integration of (2.1) from 2% to z¥, making use of the new notation

Clart) = [ e,
then yields
(2.2) Oz = C(zh) — v(e(@®) — e(zt)) = 0.

The proper physical analysis of the diffusive and massive phase transformation
comes from the thermodynamic Onsager principle; all details can be found in [18] (for
the stationary case) and in [19] (for the non-stationary one). The total Gibbs energy
of the system (with respect to the Gibbs-Duhem condition, formulated e.g. in [13])
is given by

1"
Gzﬁ/mL cipi da

i here means the sum index from {1,...,q + r}) applied in sense of the Einstein rule
(the underline symbol will prohibit the summing without any comments). Its time
derivative can be expressed as

R
&QAL<MM+Q&>M

Each chemical potential u;(z, c) can be evaluated at every point of the specimen as

(2.3) pi(x, ¢) = w! (z)ul (c),

making use of certain continuous weight functions wf(z) with the sum index f €
{a, 8,7}, having the properties

w¥z)=1, w'(z)=0 it a2l <z<h/2,
w*(x) =0, w(z)=1 it h/2<ax<al,

w?(z) =1 —w(z) —w(z) if 2F<az<af,

and chemical potentials for particular phases u{ (¢), received from the experimental
research. Consequently, integrating by parts, we obtain

dG 2™ v [P
[ T _ !
T /mL Jipb; d Q/o cip; dz .
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The rate of dissipation @ of the total Gibbs energy can be evaluated by [17] in the
form
2z .o 2
Ji v
= < dr+ —
o= [, Gty
where
CiDi

A4 A = &
(2:4) ! RT’

D; is the tracer diffusion coefficient, R is the gas constant, T" is the absolute temper-
ature (assumed as constant here) and M is the interface mobility.
The kinetics of our closed system can be characterized by the zero variation of a

functional
dG Q@ )
P=(—+= .

Performing long computations, forcing the above mentioned constraint for substitu-
tional components by one Lagrange multiplier, from the minimization of ® we finally
receive the system of equations of evolution

(2.5) B¢ + (K +vN)e— NC = vN¢® — NQj°

where all variables are evaluated in time t except C* = C(¢t — 1), B, K and N are
square matrices of order ¢ — 1+, B full, K and N diagonal, B and K depending on
¢, N dependent on x only, €2 is the constant molar volume and

cen = [ " (e t)de.

¢ refers to molar fractions and ;¢ to diffusive fluxes at z = 0 and

q+r

Q "
— !
(2.6) v= ;1/0 cip; dz

for prescribed chemical potentials p;, decomposed by (2.3), as very complicated func-
tions of ¢. The complete (not very reader-friendly) formulae for the evaluation of B(c),

K(c) and N(z) in terms of the phase chemical potentials ,u{ and their derivatives can
be found in ([19]); the evaluation of z/ (even for the fixed T) for concrete systems
needs MAPLE-supported pre-processing.

3. Mathematical formulation and computational modelling. The result-
ing system (2.5), starting from some a priori known initial values of ¢, can be rewritten
in the form

X
(3.1) Bc’+(K+vN)chg:vNco—NQjO—NC—;
T T

7 denotes the time interval, referring to the implicit Euler method ((2.5) comes from
the limit passage 7 — 0). Let us notice that another consequence of (2.1) is

(3.2)  (CE—-C") /1 —v(cf =) = (CF - CF*) /1 —v(cF — ) = Q5°;
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upper indices £ and £ here refer (for the simplicity of notation) to the values at x’
and %, respectively. Since (3.1) can generate an iterative procedure with B, K, v
and z set by ¢ from the preceding iteration (or time step), it is important to suggest
an inexpensive solver of the system of linear algebraic equations, derived from (3.1),
using the finite difference method. Unfortunately, such system is not triangular, thus,
because of the presence of unknowns ¢® and j¢ it is not possible to express ¢ in all
nodes step-by-step; even ¢® and j° cannot be determined by (3.2) completely.

Let us notice that C' can be computed as integrals of ¢ — ¢ instead of ¢, using
arbitrary reference constant admissible molar fractions c¢*. Our problem is to find ¢
from (3.1) with v inserted from (2.6). Clearly (3.1) requires some discretization in ,
e.g. that using the finite difference technique again, whereas v from (2.6) needs the
numerical integration, e. g. by the Simpson rule, and the same is true for C' (which can
be computed from integrals of ¢ — ¢® instead of ¢, using arbitrary reference constant
admissible molar fractions ¢*). However, for simplicity we shall explain the main idea
of the computational algorithm using the original semi-discretized system (3.1).

Let ¢®¢ be some estimate of ¢® (from the preceding iteration, if not available yet

then from the previous time step). Let us consider ¢2, = &£ ¢%¢ and 58, = ¢Zvc%¢ for
some positive real 2(q — 1+ 1) factors &£ and €2; m € {1,...,q—1+r} are not sum

indices. We are allowed to seek for molar fractions ¢ in the form ¢ = ¢® + ¢ where
Cp =9 + &I El 4 ¢IET Then (3.1) degenerates to

m-m:*

_ . C
BE’+Kc+uNc—N? = FO pelpl 4 ¢fplt

with C integrated from ¢, unlike C' integrated from ¢ — ¢® in general, and with

o NI (Nf - K) e P — _NQuee .
T T
Thus we are able to solve all ¢, ¢ and ¢! separately (which is very simple) and
just at the end to calculate ¢ and ¢ (¢ — 1+ 7)-times from the system of two linear
algebraic equations

(3.3)

Cht = it + gt fr O —oiti | [l
CRI /7 — yeBl  coeqgR /7 ORI /7 — yehI ¢x

—6,%10/7 +vekO + CLX - c2 2l /7
—CRO /1 4 ychO 4 CRx /7 o oB /7 |

Now let us sketch the fully discretized algorithm, generating (in each time and
iterative step) a system of 2(¢ — 1 + r) linear algebraic equations. Using the above
explained tricks with parameters &/ and ¢, we have an inexpensive solver; this is
very useful in situations where e.g. the algebraic expressions for evaluation of pu(c)
contain thousands of instruction, preprocessed by MAPLE or toolbox symbolic from
the MATLAB software package.

We can write (3.1) in the form

i _ —NS ASCS
2 2T

(3.4) E‘gz—s + (F’ + vﬁs)
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s s—1 s—1 s s _s2 Oxs — Csfl _ As s—1
+B LN e —Nae - N 5 )~ Asc
-

- (K" +oN")
S
where an integer s refers to the s-th node in a sufficiently large interval, decomposed
to fixed subintervals (x,_1,7s) (not moving with the interface — values at x’ and
zf, in general not identical with any x,, are interpolated), Ay = z, — ,_; and all
overlined s-indexed symbols refer to averaged values on (zs_1,zs); let us notice that
c® coincides with ¢® always for some s. Clearly such scheme forces sufficiently small
A, in comparison with 7. We would like to solve ¥, ¢!, ..., c®, ... effectively, step by
step, using three versions of right-hand sides again, and complete them a posteriori,
after setting ¢! and €7 and consequently ¢® and 5°.

The reformulation of (3.3) in the notation of (3.4) is important for the program-
mer; nevertheless, here must be left to the reader. The following simulation example
makes use of this algorithm, applying the semi-empirical chemical potentials from
the Montanuniversitit Leoben (Austria) and from the Institute of Physics of Mate-
rials of the Czech Academy of Sciences in Brno. The idea of its iterative algorithm
(implemented in the MATLAB environment) can be roughly sketched as follows:

1. read initial values ¢, ¥, ® and set t =0, v = 0,

2. increment ¢ by 7, estimate ¢* = ¢* and v* = v*,

3. integrate v from c¢* (using the Simpson rule applied to 2.6), update z* and
zF,

4. evaluate (in all nodes) B(c*), K(c¢*) and N(z),

5. solve (step by step) &, & and ¢ from (3.4), simultaneously C°, C* and CZ,

6. determine parameters ¢! and ¢7 and find ¢,

7. if error of ¢ — ¢* or v — v* is not negligible, set ¢* = ¢, v* = v and go back to
3.

8. if time limit is still not reached, set ¢* = ¢, C* = C, v™* = v and go back to
2.

4. Illustrative example. For the physical interpretation of all following ma-
terial charcteristics let us refer to [18]. We have the purely substitutional three-
component Fe-Cr-Ni system; in our notation ¢ = 3 and r = 0, moreover Fe will
be dominant. The tracer diffusion coefficients from (2.4) D;, ¢ € {1,2,3}, can be
interpolated using the formula

InD; = w/InD |

thus it is sufficient to set nine values Dif . In general we have

f E! E*
Dg:D%eXp <_RT> , M = My exp <_RT .

The applied constants are for Cr (corresponding to k = 1) D$; = 0.00032 m?s~2
DJy = 0.00022 m?s~2, D}, = 0.00035 m?s~2, for Ni (k = 2) Dg, = 0.000048 m?s~2,
D5y = 0.000022 m2s~2, DI, = 0.000035 m?s~2, for Fe (k = 3) D, = 0.00016 m2s~2,
D5y = 0.00011 m2s72, D, = 0.00007 m2s~2, and for all components E* = 240000
Jmol~!, E# = 155000 Jmol~!, EY = 286000 Jmol~!, E* = 140000 Jmol™'; it
remains to set only My = 0.00041 m? s kg1

Three figures show the couples of time-variable distributions of ¢; and ¢y, cor-
responding to Cr (left graphs) and Ni (right ones). The time is varying from 0 to
70000 s; the dashed curves refer to the initial state, the curves numbered from 1 to 7
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Fic. 4.3. The time development of seemingly constant observable Cr and Ni molar fractions

(these numbers are omitted at Fig.4.1) correspond to 10000,20000, . ..70000 s. The
interface thickness is h = 0.5 nm, the computational specimen length is H = 0.1 mm.
The couple of dotted lines separate both the phases o and 3, and the phases § and
~. From the originally constant molar fractions ¢; = 0.001 and ¢z = 0.019 (conse-
quently ¢z = 0.980) in all phases, due to the phase transformation driven by changes
in chemical potentials, the time development leads to qualitatively new distributions.

Fig.4.1 presents the results of nano-scale (if classified in meters) computations
inside and very close to the interface. We can see that no simple limit passage h — 0
is available. Still other arguments for this statement can be found in [18]: e.g. even in
the (quasi-)stationary case the decrease of v with growing T' (expected by laboratory
experiments and practical observations) is not quite independent of h, thus the idea
of a sharp interface is unacceptable. Fig.4.2 documents the larger-scale behaviour
of molar fractions relatively near the interface. Fig.4.3 shows a micro- (or slightly
larger-) scale view here: nearly constant molar fractions, separated by a seemingly
sharp interface, can be observed (but not completely explained from the simplified
theory assuming a sharp interface).

5. Conclusions and generalizations. In the illustrative numerical example
we have seen the typical non-stationary behaviour of one special Fe-rich Fe-Cr-Ni
substitutional system, described by (3.1) and (2.6) (supplied by boundary and initial
conditions), with respect to the physical limitations (a finite closed system, interface
of constant thickness, substitutional components). The natural generalization of the
introduced approach leads to the two- or three-dimensional simulations. However,
such computations suffer from the lack of reasonable material data (which is a mo-
tivation for the development of advanced measurement techniques and identification
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algorithms); from other difficulties we can highlight the non-existence of integrals C,
important in our one-dimensional approach (the finite element or finite volume tech-
niques should be helpful here) and the variable position and curvature of the moving
interface; more information is included in [19], p. 85.

The created software, covering (up to now) the one-dimensional problem, has been
tested for more classes of problems of practical importance. In [18] the stationary
solver was applied to the Fe-rich Fe-Cr-Ni substitutional system with various types
of chemical potentials and values of material characteristics, which may be rather
uncertain in practice, namely in case of the interface mobility and thickness; further
numerical simulations have been done also for the similar system with the interstitial
C-component and for the binary Al-Mg system yet. We have noticed that for a fixed
interface thickness h the interface velocity v decreases with the increasing temperature
T'; finally the phase transformation stops at certain critical temperature. This critical
temperature increases with the growing interface thickness h; the limit case h — 0
returns the (less realistic) results for an idealized sharp interface. The simulation
of the massive v — « transformation shows that the existence of the solute drag in
the interface influences the contact conditions at the interface allowing the massive
transformation to occur also in the two-phase region. By choosing « and v as identical
phases and by imposing fluxes to the interface (grain boundary), diffusion induced
grain boundary motion was simulated. The interface and grain boundary Gibbs energy
were calculated; their realistic values support the responsibility of the model.

The remaining comments refer to the useful research for the near future. Both
theoretical and experimental studies conclude that that the diffusion can be charac-
terized by three attributes: a) the vacancy mechanism for “slowly” diffusing substi-
tutional components, b) the existence of certain sources or sinks of vacancies, c¢) the
“quick” motion of atoms of interstitial components. In this paper only the attributes
a) and c) have been incorporated properly; the attribute b) should be involved using
the detailed analysis [15], referring to [7]. Another important research direction is to
admit more complicated thermal processes. This forces (from the point of view of
the Onsager relation), following [16], coupling of various fluxes, namely the particle
flux due to a temperature gradient (Soret effect) and the transport of heat due to
a concentration gradient (Dufour effect). Still open questions are also in the theory
of existence of solutions (the results of [10] cannot be easily extended to non-binary
alloys), especially in the non-stationary case, and in the convergence of computational
algorithms; such proper study is needed for the complete analysis at multiple scales,
i.e. for the correct evaluation of the effect of various simplifications and homogeniza-
tion attempts, not only of that classical with h — 0.
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