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DISCRETE MAXIMUM PRINCIPLE

FOR PRISMATIC FINITE ELEMENTS∗

TOMÁŠ VEJCHODSKÝ†

Abstract. The paper deals with a diffusion-reaction problem with homogeneous Dirichlet
boundary conditions and presents conditions for the prismatic finite element meshes which guar-
antee the validity of the corresponding discrete maximum principle (DMP). These conditions are

easy to verify and they imply a sufficient and a necessary bound to the maximal angle α
(T )
max in

the triangular base T of a prism. The sufficient condition is α
(T )
max ≤ arctan

√
7 and the necessary

condition is α
(T )
max ≤ arctan

√
8. If the maximal angle is in between these two values then the other

angles in the triangle play a role.
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1. Introduction. Many physical quantities, for example temperature, concen-
tration, density, etc., are naturally nonnegative. These quantities are usually modeled
by second-order partial differential equations and the nonnegativity of their solutions
is guaranteed by the maximum principle [5, 10]. A natural question is whether an
approximate solution of the original equations satisfies the maximum principle. We
speak about the discrete maximum principles (DMP).

Especially in the context of the finite element method, the DMP is not automat-
ically satisfied. Various conditions for the validity of the DMP are studied for several
decades, see e.g. [2, 9, 14]. Sufficient conditions for DMP are often formulated as cer-
tain geometric limitations on the finite element meshes. For example, maximum angle
conditions for simplicial elements, nonnarrowness conditions for rectangular elements,
Delaunay triangulations, etc., see e.g. [1, 3, 4, 8, 12, 15].

The DMP on meshes consisting of right triangular prisms was studied very re-
cently in [6] for the elliptic problems and in [7] for the parabolic problems. In this
contribution we continue in the analysis from [6] and derive explicit angle conditions
for the DMP in the case of prismatic elements.

The paper is organized as follows. Sections 2 and 3 briefly define the model
problem, its weak formulation, and its discretization by the finite elements. The
main purpose of these sections is to introduce the notation. Section 4 describes the
prismatic finite elements and the corresponding shape functions. The global and local
(element) matrices are defined in Section 5 and their entries are computed in Section 6
for a line segment, a triangle, and a prism. An interesting tensor product structure
of these matrices is presented, too. Finally, Section 7 recalls the main result from [6]
and Section 8 presents the sufficient and the necessary angle conditions. Section 9
provides the conclusions.
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2. Model problem. Let Ω ⊂ R
d, d ≥ 1, be a domain with Lipschitz boundary.

We consider the following reaction-diffusion boundary value problem

−∆u + cu = f in Ω, u = 0 on ∂Ω, (2.1)

where ∆ denotes the Laplacian. To simplify the exposition, we consider the reaction
coefficient c ≥ 0 to be constant. This is a technical simplification only. The analysis
of the DMP for (2.1) with nonconstant c can be done equally well, see [6].

In order to disretize problem (2.1) by the finite element method, we introduce its
weak formulation: find u ∈ V such that

a(u, v) = (f, v)Ω ∀v ∈ V, (2.2)

where V = H1
0 (Ω) is the Sobolev space W 1,2

0 (Ω) of functions with zero traces on
the boundary ∂Ω, the right-hand side f is considered in L2(Ω), the bilinear form
a : V × V 7→ R and the inner product in L2(Ω) are defined as

a(u, v) = (∇u,∇v)Ω + c(u, v)Ω, u, v ∈ V,

(u, v)Ω =

∫

Ω

uv dx,

respectively, and ∇ stands for the gradient. Due to the Lax-Milgram lemma a unique
weak solution u ∈ V of (2.2) exists .

3. Finite element discretization. Let Vh ⊂ V be a finite dimensional sub-
space. Then the finite element solution uh ∈ Vh is defined by requirement

a(uh, vh) = (f, vh)Ω ∀vh ∈ Vh. (3.1)

Again the existence and uniqueness of uh ∈ Vh is guaranteed by the Lax-Milgram
lemma.

Let Φ1, Φ2, . . . ,ΦN form a basis of Vh. Then the finite element solution uh can
be expressed as

uh =
N∑

j=1

yjΦj .

The coefficients y = (y1, y2, . . . , yN )⊤ are uniquely determined by the system of linear
algebraic equations

Ay = F, (3.2)

where the finite element matrix A ∈ R
N×N and the load vector F ∈ R

N have entries

Aij = a(Φj , Φi) and Fi = (f, Φi)Ω, i, j = 1, 2, . . . , N. (3.3)

4. Prismatic finite elements. In this paper, we concentrate on the discretiza-
tion based on the right triangular prisms. Therefore, we consider the domain Ω to be
three-dimensional, d = 3. Furthermore, we assume that it can be partitioned (face-
to-face) into right triangular prisms. We denote such a partition by Th and call it
prismatic mesh or prismatic partition. Each element of Th is a right triangular prism
P = T × I, where T is a triangle and I a line segment, see Fig. 4.1. A typical domain
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Fig. 4.1. The notation for a line segment, a triangle, and a prism.

for which a prismatic partition exists is a cylindrical domain Ω = G×I where G ⊂ R
2

is a polygon and I ⊂ R a line segment. The prismatic partition Th of Ω can be then
constructed as the Cartesian product of a triangulation of G and a partition of I.
However, we remark that the domain Ω can be much more complicated. In general,
it can be a finite union of cylindrical domains.

The finite element space Vh ⊂ H1
0 (Ω) associated to Th is defined in this case as

follows:

Vh =
{

ϕ ∈ H1
0 (Ω) : ϕ(x, y, z)|P =

3∑

i=1

2∑

j=1

σijλi(x, y)ℓj(z), where P ∈ Th,

P = T × I, σij ∈ R, λi ∈ P
1(T ), ℓj ∈ P

1(I)
}

,

where P
1(T ) and P

1(I) stand for the spaces of linear functions defined in the triangle
T and in the interval I, respectively.

The dimension N of Vh is equal to the number of interior nodes in Th. The interior
nodes B1, B2, . . . , BN in Th are those vertices of prisms P ∈ Th which do not lie on
∂Ω. Each prismatic finite element basis function Φi corresponds to an interior node
Bi and it is uniquely given by the following delta property

Φi(Bj) = δij , i, j = 1, 2, . . . , N,

where δij is the Kronecker delta.

Thus, a basis function Φi restricted to a prism P = T ×I, P ∈ Th, either vanishes
(if Bi is not a vertex of P ) or it is a product of a linear function λ(x, y) on a triangle
T and a linear function ℓ(z) on a line segment I. Let us discuss this structure of basis
functions in more detail.

In general, the restriction of a finite element basis function to an element is called
the shape function. Here, we recall the standard shape functions on a line segment
I and on a triangle T , see Fig. 4.2. If I is a line segment with the end points Q0

and Q1 then there are two linear shape functions ℓ0 = ℓ0(z) and ℓ1 = ℓ1(z) such that
ℓi(Qj) = δij , i, j = 0, 1.

Similarly, in the case of the triangle T , there are three linear shape functions
λA = λA(x, y), . . . , λC = λC(x, y). These functions have the similar delta property
like the shape functions ℓ0 and ℓ1 and they coincide with the barycentric coordinates
on the triangle T .
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Fig. 4.2. The shape functions ℓ0 and ℓ1 on a line segment (left) and the shape functions λB

on a triangle (right).

5. Global and local finite element matrices. The finite element matrix A,
see (3.3), can be constructed using contributions from individual elements

Aij = a(Φj , Φi) =
∑

P∈Th

aP (Φj , Φi),

where

aP (u, v) = (∇u,∇v)P + c(u, v)P with (u, v)P =

∫

P

uv dx.

This can be written in a matrix form as

A =
∑

P∈Th

Ā(P ), (5.1)

where the local matrix (or sometimes element matrix ) Ā(P ) ∈ R
N×N has entries

Ā
(P )
ij = aP (Φj , Φi).

In the case of prismatic elements, the local N -by-N matrix Ā(P ) contains (at
most) 6 × 6 nonzero entries, hence, it can be condensed to a 6-by-6 local matrix
A(P ). The particular positions of the nonzero entries in the (rarefied) matrix Ā(P )

is determined by the topology of the mesh and by the enumeration of the nodes.
However, it is not a goal of this paper to discuss this issue.

Since the bilinear forms a and aP are composed of two terms, we split the finite
element matrix A into two contributions

A = S + cM,

where the entries of the stiffness and mass matrices S and M are Sij = (∇Φj ,∇Φi)Ω
and Mij = (Φj , Φi)Ω, i, j = 1, 2, . . . , N , respectively. Similarly, we split the local S(P )

and M(P ) matrices

Ā(P ) = S̄(P ) + cM̄(P ),

where the entries of the local stiffness and mass matrices S̄(P ) and M̄(P ) are given by

S̄
(P )
ij = (∇Φj ,∇Φi)P and M̄

(P )
ij = (Φj , Φi)P , i, j = 1, 2, . . . , N.

The same applies for the condensed local matrices: A(P ) = S(P ) + cM(P ).
In practice, the global finite element matrix A is assembled from the (condensed)

local matrices S(P ) and M(P ), see e.g. [11]. In the case of prismatic elements, the
matrices S(P ) and M(P ) can be explicitly computed from the local matrices for the
line segment element and for the triangle.
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6. Local matrices for a segment, a triangle, and a prism. First, let us
consider the line segment element I with the end points Q0 and Q1 and with the
corresponding shape functions ℓ0 and ℓ1, see Section 4. Its local stiffness and mass
matrices S(I) and M(I) are defined by the bilinear forms (u′, v′)I and (u, v)I , respec-
tively, where the primes denote the derivatives. Entries of these matrices depend
solely on the length d = |I| of I and they can be easily computed:

S(I) =
1

d

(
1 −1

−1 1

)
, M(I) =

d

6

(
2 1
1 2

)
.

Similarly, the local matrices S(T ) and M(T ) for the triangular element T are de-
fined by the bilinear forms (∇u,∇v)T and (u, v)T , respectively. Their entries depend
on the area |T | of T and on its angles α, β, γ, see Fig. 4.1. A simple calculation
reveals that

S(T ) =
1

2




cotβ + cot γ − cotγ − cotβ

− cotγ cotα + cotγ − cotα
− cotβ − cotα cotα + cotβ



 , M(T ) =
|T |
12




2 1 1
1 2 1
1 1 2



 .

Finally, it is an easy exercise to verify that the local stiffness and mass matri-
ces S(P ) and M(P ) for the prism P = T × I, see Fig. 4.1, are given by the tensor
(Kronecker) product of the local matrices for the segment and for the triangle

S(P ) =
d

6

(
2S(T ) S(T )

S(T ) 2S(T )

)
+

1

d

(
M(T ) −M(T )

−M(T ) M(T )

)
, M(P ) =

d

6

(
2M(T ) M(T )

M(T ) 2M(T )

)
,

or briefly

S(P ) = M(I) ⊗ S(T ) + S(I) ⊗ M(T ) and M(P ) = M(I) ⊗ M(T ). (6.1)

This structure enables to infer the explicit formulas for the entries of the local
matrices S(P ) and M(P ). Due to the symmetry, there only are the following four
nontrivial possibilities for the entries of S(P ) and M(P ). If

ϕA(x, y, z) = λA(x, y)ℓ0(z), ϕB(x, y, z) = λB(x, y)ℓ0(z),

ϕD(x, y, z) = λA(x, y)ℓ1(z), ϕE(x, y, z) = λB(x, y)ℓ1(z),

then
∫

P

|∇ϕA|2 dP =
d

6

(
cotβ + cot γ +

|T |
d2

)
,

∫

P

ϕ2
A dP =

d |T |
18

,

∫

P

∇ϕA · ∇ϕB dP = − d

12

(
2 cotγ − |T |

d2

)
,

∫

P

ϕAϕB dP =
d |T |
36

,

∫

P

∇ϕA · ∇ϕD dP =
d

12

(
cotβ + cot γ − 2|T |

d2

)
,

∫

P

ϕAϕD dP =
d |T |
36

,

∫

P

∇ϕA · ∇ϕE dP = − d

12

(
cot γ +

|T |
d2

)
,

∫

P

ϕAϕE dP =
d |T |
72

.

Remark 1. If Ω = G × I is a cylindrical domain, then the interesting tensor
product structure (6.1) exists on the level of global matrices as well

S = M(I) ⊗ S(G) + S(I) ⊗ M(G) and M = M(I) ⊗ M(G),



DMP FOR PRISMATIC FINITE ELEMENTS 271

where

S(I) =
∑

I∈T I
h

S̄(I), M(I) =
∑

I∈T I
h

M̄(I),

S(G) =
∑

T∈T G

h

S̄(T ), M(G) =
∑

T∈T G

h

M̄(T )

are the global stiffness and mass matrices on the partition T I
h of the segment I and

on the triangulation T G
h of the polygon G.

However, this simple structure disappears if Ω is not cylindrical, e.g., if it contains
a hole inside.

7. Discrete maximum principle. The explicit formulas for the entries of the
local stiffness and mass matrices on the prismatic element allow for an analysis of the
corresponding discrete maximum principle (DMP). The DMP mimics the well-known
maximum principle for problem (2.1). In this simple setting the maximum principle is
equivalent to the well-known conservation of nonnegativity. Problem (2.1) conserves
nonnegativity if any nonnegative right-hand side f provides a nonnegative solution u.
Therefore, we say that problem (3.1) satisfies the discrete maximum principle if the
finite element solution uh is nonnegative for all nonnegative right-hand sides f .

Unfortunately, the finite element method does not satisfy the DMP in general.
The basis functions Φ1, Φ2, . . . ,ΦN are nonnegative and therefore the load vector F

is nonnegative (all its entries are nonnegative) as well. Thus, we immediately see
that the corresponding discrete solution uh of (3.1) is nonnegative if and only if the
stiffness matrix A is nonotone, i.e. if A−1 ≥ 0, see (3.2).

Monotone matrices are difficult to handle, but their subclass, so-called M-matrices
[13], are characterized easily enough by nonpositive off-diagonal entries. Hence, we
usually try to find conditions for nonpositivity of the off-diagonal entries in the local
finite element matrices A(P ). This implies nonpositive off-diagonal entries of the
global finite element matrix A, see (5.1), and it further implies monotonicity of A

and consequently the DMP.
This approach has been widely used for various types of finite elements and for

various problems. Recently we analyzed the prismatic finite elements, see [6], and we
obtained certain sufficient conditions for the prismatic meshes. We present this result
as Theorem 7.2, below.

Definition 7.1. Let P = T × I be a prism and let α
(T )
max ≥ α

(T )
med ≥ α

(T )
min > 0

be the maximal, medium, and minimal angle of the triangular base T of the prism P ,
respectively. We define the lower and upper bounds for the altitude of the prism P as

d
(P )
L =

(
2 cotα

(T )
max

|T | − c

3

)−
1
2

, d
(P )
U =

(
c

6
+

cotα
(T )
med + cotα

(T )
min

2 |T |

)−
1
2

. (7.1)

The lower bound d
(P )
L is well defined only if

2 cotα
(T )
max

|T | − c

3
> 0.

Notice that α
(T )
med < π/2 and α

(T )
min ≤ π/3 for any triangle. Thus, d

(P )
U is always

well defined by (7.1). Without loss of generality, we assume that d
(P )
L is well defined

in what follows. Consequently, we consider α
(T )
max ≤ π/2.

Theorem 7.2. Let Th be a prismatic partition of a domain Ω. For a prism

P ∈ Th, let values d
(P )
L and d

(P )
U be defined by (7.1), and let d(P ) denote the altitude
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of the prism P . If

d
(P )
L ≤ d(P ) ≤ d

(P )
U for all P ∈ Th, (7.2)

then problem (3.1) satisfies the DMP.
Proof. See [6, Theorem 2].
The crucial condition (7.2) is easy to verify for a given prismatic partition. How-

ever, it is not immediately clear how to construct prismatic partitions which satisfy
(7.2). Condition (7.2) tells us how to choose the altitudes d(P ) of the prisms, but the

values d
(P )
L and d

(P )
U depends on the angles in the triangular base of the prism. Not

all combinations of these angles yield d
(P )
L ≤ d

(P )
U . Therefore, we formulate a suffi-

cient and a necessary conditions in terms of the maximal angle α
(T )
max in the following

section. These conditions provide a certain aid how to construct suitable prismatic
partitions satisfying (7.2).

8. Angle conditions. In [6], we formulated certain limitations to the maximal
and minimal angles in the triangular bases of prisms. These limitations are necessary
for the DMP in a cylindrical domain. In this section, we generalize this result and in
Lemmas 8.1 and 8.2 we provide a sufficient and a necessary angle condition. These
conditions are not restricted to the partition of a cylindrical domain and apply in
general.

Lemma 8.1. Let 0 < γ ≤ β ≤ α, α + β + γ = π be the angles in a triangle T . If

α ≤ arctan
√

7 ≈ 69.2952◦ (8.1)

then an altitude d = |I| of a prism P = T × I exists such that condition (7.2) with
c = 0 is satisfied.

Proof. Let us set α = α
(T )
max, β = α

(T )
med, γ = α

(T )
min and write condition (7.2)

equivalently as

c

6
|T | + cotβ + cot γ

2
≤ |T |

(d(P ))2
≤ 2 cotα − c

3
|T |. (8.2)

Since we consider c = 0, our goal is to show that

cotβ + cotγ ≤ 4 cotα. (8.3)

Substituting β = π − α − γ, applying the standard trigonometric indentity

cot(π − α − γ) =
1 − cotα cot γ

cotα + cotγ
,

and using the short-hand notation A = cotα and C = cot γ, we can rewrite (8.3)
equivalently as

4A2 + 4AC − 1 − C2 ≥ 0. (8.4)

The validity of (8.4) can be shown with the aid of three inequalities. First, we
immediately see that the assumption (8.1) is equivalent to

A ≥ 1/
√

7. (8.5)
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Second, since the smallest angle in a triangle is at most π/3 we have

C ≥ 1/
√

3 > 1/
√

7. (8.6)

Third, the upper bound (8.1) for the largest angle α yields the following lower
bound to the smallest angle γ

γ = π − α − β ≥ π − 2α.

This is equivalent to

cot γ ≤ cot(π − 2α) =
1 − cot2 α

2 cotα
.

Hence, using (8.5), we can estimate

C ≤ 1 −A2

2A ≤ 3√
7
. (8.7)

Now, the validity of (8.4) follows from (8.5), (8.6), and (8.7):

4A2 + 4AC − 1 − C2 ≥ −C2 +
4√
7
C − 3

7
=

(
C − 1√

7

)(
3√
7
− C

)
≥ 0.

Lemma 8.2. Let P = T × I be a prism and let 0 < γ ≤ β ≤ α, α + β + γ = π be
the angles in the triangular base T of P . If

α > arctan
√

8 ≈ 70.5288◦ (8.8)

then condition (7.2) is not satisfied.

Proof. Since we assume that d
(P )
L is well defined, we have α ≤ π/2. Our aim is

to prove the following inequality

cotβ + cotγ > 4 cotα. (8.9)

Indeed, if (8.9) holds then condition (7.2) cannot be satisfied for any value of c, d(P ),
and |T |, cf. (8.2). If we set β = π − α − γ, then we can express (8.9) equivalently as

4A2 + 4AC − 1 − C2 < 0, (8.10)

where we again use the short-hand notation A = cotα and C = cotγ, cf. (8.4).
To prove (8.10), we first deduce from (8.8) that A < 1/

√
8, which implies inequal-

ity (8.10) as follows

4A2 + 4AC − 1 − C2 < −C2 +
√

2C − 1

2
= −

(
C −

√
2

2

)2

≤ 0.

If the maximal angle in all triangular bases of all prisms in the partition of Ω
satisfies (8.1) then there is a chance that the altitudes of all the prisms satisfy (7.2).
On the other hand if this maximal angle is greater than arctan

√
8, see (8.8), then

condition (7.2) cannot be satisfied.
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Fig. 8.1. The graphical representation of inequalities (i) d
(P )
L

≤ d
(P )
U

, (ii) β ≤ α, and (iii)
γ ≤ β, where c = 0, and γ ≤ β ≤ α are angles in a triangle. The three curves are given by
equalities in (i)–(iii). The symbol (i), (ii), or (iii) lies always on the side of the curve, where the
corresponding inequality is satisfied. The area enclosed by these three curves represents triangles,
where (i) is satisfied. The values arctan

√
8 ≈ 70.5288◦ and arctan

√
7 ≈ 69.2952◦ are indicated in

the right panel, see Lemmas 8.1 and 8.2.

To illustrate the limitations given by (7.2) in the case c = 0, we present Fig. 8.1,
where the horizontal axis represents the smallest angle γ of a triangle (right panel) or
cot γ (left panel) and the vertical axis represents the largest angle α (right panel) or

cotα (left panel). In these axes, we illustrate conditions (i) d
(P )
L ≤ d

(P )
U , (ii) β ≤ α,

and (iii) γ ≤ β. Each point in these graphs corresponds to a pair of angles γ and
α. This pair represents a triangle if it is between curves (ii) and (iii). This triangle
satisfies condition (i) if it is above the curve (i) (left panel) or below the curve (i)
(right panel). Hence, conditions (i)–(iii) form a curvilinear triangle in both panels
and the points of this curvilinear triangle represent the triangular bases of prisms
which satisfy (7.2) for c = 0 provided their altitudes are suitably chosen.

The result in Lemma 8.1 is limited to the case c = 0. However, the bound (8.1)
with the strict inequality applies also in the case c 6= 0 in the following sense. If c 6= 0
then we may ignore this fact for a while and construct a prismatic partition (with
the help of (8.1)) such that condition (7.2) holds with strict inequalities for c = 0 for
all prisms from this prismatic partition. Then a sufficiently fine refinement of this
partition exists such that (7.2) holds for the original value of c 6= 0 and for all prisms
from the refined partition. For more details see [6].

In [7], we analyze the DMP for parabolic problems discretized by the θ-method
in time and by the prismatic finite elements in space. The conditions obtained in the
elliptic case for c 6= 0 are needed in the parabolic case, too. Consequently Lemmas 8.1
and 8.2 apply in the parabolic case as well.

9. Conclusions. We concentrate on an elliptic diffusion-reaction problem dis-
cretized by the standard lowest-order finite elements on prismatic meshes. We present
explicit formulas for the local (element) mass and stiffness matrices in Section 6 and
we show the tensor structure of the local matrices on prisms. These explicit formulas
enable to derive the crucial condition (7.2) for the validity of the DMP.

The conditions for the validity of the DMP can be weaken by the well-know mass
lumping technique. In this technique, the mass matrix M is replaced by a diagonal

lumped-mass matrix M̂, which simplifies both the practical computations and the
theoretical analysis of various aspects including the DMP. In the case of diffusion-
reaction problem, the mass lumping technique provides the DMP under the same
conditions as the standard finite element method does for the pure diffusion problem.
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However, condition (7.2) is still crucial for both standard and mass-lumped meth-
ods and it does not provide any aid in the construction of suitable prismatic partitions
for the DMP. In Lemmas 8.1 and 8.2 we provide explicit bounds on the maximal angle
in the triangular bases of the prisms from the partition. These bounds can be uti-
lized for the construction of prismatic partitions yielding the DMP for problem (3.1).
As mentioned above, these bounds apply for the case c 6= 0 and for the parabolic
problems as well, provided condition (8.1) holds with strict inequality.

Nevertheless, there is a small gap between the sufficient bound arctan
√

7 and the
necessary bound arctan

√
8. If the maximal angle lies between these two values then

condition (7.2) and hence the DMP can be satisfied, provided the other angles are
chosen in a suitable way, see Fig. 8.1.

An interesting generalization and a goal of a future research is to consider prisms
with triangular bases being non-parallel. The finite elements based on these gener-
alized prisms would be more flexible and more general geometries could be handled
with them. However, definition of finite element spaces and shape functions on gen-
eralized prisms is nontrivial as well as the subsequent analysis of properties of such a
discretization.

Let us conclude this paper with an interesting coincidence. The angle arctan
√

8 ≈
70.5288◦ obtained in Lemma 8.2 is equal to the dihedral angle between two faces of
the regular tetrahedron. It is still unknown if this is just a fortuitous coincidence or if
there is a deeper relationship between the prismatic and tetrahedral finite elements.
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