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BLOW UP VERSUS GLOBAL BOUNDEDNESS OF SOLUTIONS OF
REACTION DIFFUSION EQUATIONS WITH NONLINEAR BOUNDARY

CONDITIONS∗

JOSE M. ARRIETA† AND ANIBAL RODRIGUEZ-BERNAL‡

Abstract. In this paper we analyze the behavior of solutions of reaction-diffusion equations with
nonlinear boundary conditions of the type (1.1). We show that if f(x, u) = −β0up and g(x, u) = uq in a
neighborhood of a point x0 ∈ ΓN , then
i) for the case q > 1, if p + 1 < 2q or if p + 1 = 2q and β0 < q, then blow up in finite time at x0 occurs.
ii) for the case p > 1 if p + 1 > 2q or if p + 1 = 2q and β0 > q then any solution is globally bounded

around the point x0.
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1. Introduction. We consider the following reaction diffusion equation with nonlinear
boundary conditions in a smooth C2 domain Ω ⊂ RN ,

ut −∆u = f(x, u) in Ω

u = 0 on ΓD

∂u

∂~n
= g(x, u) on ΓN

u(0, x) = u0(x) ≥ 0 in Ω

(1.1)
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where Γ = ∂Ω = ΓD ∪ ΓN is a regular disjoint partition of the boundary of Ω and f and g
are suitably smooth functions of (x, u). The subindices D and N on Γ indicate the part of
the boundary with Dirichlet and Neumann type condition, respectively. We are interested
in nonnegative solutions of (1.1) so we will assume

f(x, 0) ≥ 0, for all x ∈ Ω, g(x, 0) ≥ 0 for all x ∈ ΓN

We want to obtain local conditions on the nonlinearities f and g, which will be imposed
in a neighborhood of a point x0 ∈ ΓN , that guarantee that either i) there exists initial
conditions with support in a neighborhood of x0 such that the “proper solution” starting at
this initial condition blows up at x0 or that ii) for all initial data u0 ∈ L∞(Ω) the “proper
solution” starting at u0 is bounded in a neighborhood of x0 for all times t ≥ 0. We refer to
[4, 8, 9] for the concept of proper solution.

Notice that if f(x, u) behaves like up locally around certain point z ∈ Ω and p > 1,
then, by comparison with the Dirichlet problem in a neighborhood of z and using that the
superlinear nonlinearity up is explosive we get that, regardless of the behavior of g, we have
initial conditions that blow-up in finite time. On the other hand, if f(x, u) behaves like −up

and g(x, u) behaves like −uq throughout the whole domain, then both nonlinearities are
dissipative and we have global exitence and boundedness of solutions. The most interesting
case is when f(x, u) is a dissipative nonlinearity of the form −β0u

p and g(x, u) is an explosive
nonlinearity of the form uq. This two mechanisms are in competition and it seems clear that
the relative size of p, q and β0 will determine the relative strength of both mechanisms.

Actually, in the pioneer work of [6] they treated the one dimensional case, say Ω = (0, 1),
with f(x, u) = −β0u

p, g(x, u) = uq and ΓD = ∅ and they already obtained that the critical
relations are p + 1 vs. 2q and if p + 1 = 2q then β0 vs. q, in the sense that if p + 1 < 2q
or p + 1 = 2q and β0 < q then blow-up is produced and if p + 1 > 2q or p + 1 = 2q and
β0 > q then the solutions are globally bounded. They also treated the very delicate case
where p + 1 = 2q and β0 = q. They actually showed that the solutions were defined for all
timet t > 0 but the phenomenon of infinite time blow-up was present.

Later on, in [13, 14], they treated the case of arbitrary dimension and obtained that if
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ΓD = ∅ and the nonlinearities f and g that behave for u large as f ∼ −β0u
p and g ∼ uq,

then blow-up is produced if p+1 < 2q or if p+1 = 2q and β0 < q. Also, they showed that if
p+ 1 > 2q or if p+ 1 = 2q and β0 is large enough, then the solutions are globally bounded.
Also, in [1] they studied the porous medium equation in any dimension and as a particular
case they considered the equation (1.1) with ΓD = ∅, f(x, u) = −β0u

p and g(x, u) = uq.
They showed that if p + 1 < 2q or p + 1 = 2q and β0 < q then blow-up is produced and if
p+ 1 > 2q of p+ 1 = 2q and β0 > q then the solutions are globally bounded.

With all these works it is clear that the critical relations that mark the line between
blow-up and boundedness are given by p + 1 vs. 2q and in case p + 1 = 2q, β0 vs. q.
These works have a common characteristic and it is that the nonlinear boundary condition
is imposed in the whole domain, ΓD = ∅ and the construction of sub or super solutions is
done for the whole domain. Hence, the balances between f and g need to hold throughout
the domain to obtain the result and both, the blow-up and the boundedness result are
global in space. In particular, none of them can treat the case as in the equation (4.1) where
p + 1 = 2q but in some part of the boundary the relation is β0 > q and in other part the
relation is β0 < q or even when ΓD 6= ∅.

In this paper we will prove that both mechanisms (dissipativeness vs. blow-up) compete
at a local level. Actually, we will show that if f(x, u) = −β0u

p and g(x, u) = uq in a
neighborhood of a point x0 ∈ ΓN , then

i) for the case q > 1, if p+ 1 < 2q or if p+ 1 = 2q and β0 < q, then blow up in finite
time at x0 occurs, see Section 2.

ii) for the case p > 1 if p + 1 > 2q or if p + 1 = 2q and β0 > q then any solution is
globally bounded around the point x0, see Section 3.

In Section 2 we analyze the first case and we refer to [3] for details. In Section 3 we
consider the case ii) and we announce the results of [2]. In Section 4 we consider several
important remarks and comments.

2. Localization of blow-up. In terms of characterizing the sizes of p, q and β0 that
will produce blow-up we have:

http://www.river-valley.com


Home Page

Title Page

Contents

JJ II

J I

Page 4 of 12

Go Back

Full Screen

Close

Quit

Proposition 2.1. Let x0 ∈ ΓN , p ≥ 1, q > 1 and let R0 > 0, M0 > 0 such that

f(x, u) ≥ −β0u
p, x ∈ B(x0, R0) ∩ Ω, u ≥M0,

g(x, u) ≥ uq, x ∈ B(x0, R0) ∩ ∂Ω, u ≥M0.
(2.1)

If one of the two following conditions holds
i) p+ 1 < 2q or
ii) p+ 1 = 2q and β0 < q,
then, there exists an initial condition 0 ≤ u0 ∈ L∞(Ω) with support in a neighborhood of x0

such that the proper minimal solution of (1.1) starting at u0 blows up in finite time at the
point x0.

Proof. Let us provide a proof of ii). Actually this case is more critical than i).
In order to simplify, consider that x0 = 0 ∈ ΓN and that the outward normal vector

at x0 = 0 is given by ~n(0) = (0, . . . , 0,−1). Let R, δ > 0 be small numbers and yR =
x0+R~n(x0) = (0, . . . , 0,−R) with the property thatB(yR, R)∩Ω̄ = ∅ and thatB(yR, R+δ) ⊂
B(0, R0/2). The fact that the domain has a C2 boundary, guarantees that this construction
can be done. See Fig. 2.1.

We will construct a function z(t, x) which will be radially symmetric around yR, increas-
ing in time and that it will be a subsolution of (1.1) locally around the point x0. For this,
define for a ≥ 1, the function ψa(t) as the solution of the problem{

ψ′ = ψq,
ψ(0) = a.

(2.2)

Solving this equation, we get that ψa(t) =
E

(Ta − t)
1

q−1
for −∞ < t < Ta with E =

1

(q − 1)
1

q−1
and Ta =

1
(q − 1)aq−1

. Observe that, since a ≥ 1 and q > 1, Ta ≤ 1/(q − 1) and

that Ta → 0 as a → +∞. Notice also that ψa(t) ≤ E/(−t)1/(q−1) for any t < 0 and any
a ≥ 1.

http://www.river-valley.com


Home Page

Title Page

Contents

JJ II

J I

Page 5 of 12

Go Back

Full Screen

Close

Quit

x’

x
N

R

y
R

1Γ

Γ0

R+δ

Ω

0

Fig. 2.1. The domain Ω near x0.

We define za(t, x) = ψa(t+R−|x−yR|) for x ∈ RN \B(yR, R), 0 ≤ t < Ta, see Fig. 2.3.

Direct computations show that ∂za

∂n ≤ zq
a for x ∈ Γ1 and 0 < t < Ta and ∂za

∂t −∆za ≤
(1 + N−1

R − qzq−1
a )zq

a for x ∈ Ω ∩ B(yR, R + δ) and t ∈ (0, Ta). Notice that za is increasing
in time and that za(t, x) ≥ za(0, x) = ψa(R − |x − yR|) = ψa(−δ) = E

(Ta+δ)
1

q−1
→ +∞

as a → +∞ and δ → 0, for x ∈ Ω ∩ B(yR, R + δ). Hence, choosing a0 large enough and
δ0 small enough, we can guarantee, since β0 < q, that for a ≥ a0 and 0 < δ < δ0, that
1 + N−1

R − qzq−1
a ≤ −β0z

2q−1
a = −β0z

p
a as long as x ∈ Ω ∩B(yR, R+ δ) and 0 ≤ t < Ta.
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Ta0

a

ψ

Fig. 2.2. The solution of Equation (2.2).

Ω
Γ
0 Γ1

y
RR

z  (t,x)
a

Fig. 2.3. The function za.

In particular, we get
∂za

∂t
−∆za ≤ −β0z

p
a, x ∈ Ω ∩B(yR, R+ δ), t ∈ (0, Ta),

∂za

∂n
≤ zq

a, x ∈ Γ1 = ∂Ω ∩B(yR, R+ δ), t ∈ (0, Ta).
(2.3)
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Consider now a smooth initial condition v0 ∈ C∞(Ω) such that v0 ≡ 0 in
Ω\B(0, R0) and u0 ≥ 2E

δ
1

q−1
in Ω∩B(yR, R+δ). The solution of (1.1) starting at u0 will satisfy

that for a small time T we will have that u(x, t, v0) ≥ E

δ
1

q−1
for x ∈ Γ0 ≡ Ω∩ ∂B(yR, R+ δ),

0 ≤ t < T . By monotonicity, for any u0 ≥ v0 in Ω, we will also have that the proper solution
starting at u0 will satisfy, u(x, t, u0) ≥ E

δ
1

q−1
for x ∈ Γ0 ≡ Ω ∩ ∂B(yR, R+ δ), 0 ≤ t < T .

In particular, let us choose a > a0 with the property that 0 < Ta < T and let us choose
u0 such that u0(x) ≥ v0(x) and u0(x) ≥ ψa(−R) ≥ za(0, x) for x ∈ Ω∩B(yR, R+ δ). Hence,
for 0 ≤ t < Ta we have za(t, x) ≤ E

δ
1

q−1
≤ u(x, t, u0) for x ∈ Γ0 and za(0, x) ≤ u0(x) for

x ∈ Ω ∩B(yR, R+ δ). That is, za satisfies,



∂za

∂t
−∆za ≤ −β0z

p
a, x ∈ Ω ∩B(yR, R+ δ), t ∈ (0, Ta),

∂za

∂n
≤ zq

a, x ∈ Γ1 = ∂Ω ∩B(yR, R+ δ), t ∈ (0, Ta),

za(t, x) ≤ u(x, t, u0), x ∈ Γ0, t ∈ (0, Ta),

za(0, x) ≤ u0, x ∈ Ω ∩B(yR, R+ δ),

(2.4)

which implies that za(t, x) ≤ u(t, x, u0) for all x ∈ Ω ∩ B(yR, R + δ) and t ∈ (0, Ta). The
fact that za(Ta, x) blows up at x = 0 proves the result.

Remarks. i) The time Ta does not need to be the classical blow-up time, that is, the time
T∞ for which the solution is classical for 0 < t < T∞ and such that ‖u(t, ·, u0)‖L∞(Ω) → +∞
as t↗ T∞. We just can assure that T∞ ≤ Ta.

ii) Observe that if for α ∈ (0, T − Ta) we define the function wα(t, x) = za(t − α, x)

http://www.river-valley.com
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defined for x ∈ Ω∩B(yR, R+ δ) and t ∈ (α, Ta +α), then, we easily obtain that wα satisfies

∂wα

∂t
−∆wα ≤ −β0w

p
α, x ∈ Ω ∩B(yR, R+ δ), t ∈ (α, Ta + α),

∂wα

∂n
≤ wq

α, x ∈ Γ1 = ∂Ω ∩B(yR, R+ δ), t ∈ (α, α+ Ta),

wα(t, x) ≤ u(x, t, u0), x ∈ Γ0, t ∈ (α, α+ Ta),

wα(α, x) ≤ u0, x ∈ Ω ∩B(yR, R+ δ).

(2.5)

The third inequality is obtained since for x ∈ Γ0 we have wα(t, x) ≤ E

δ
1

q−1
≤ u(x, t, u0)

From (2.5) we obtain that wα(t, x) = za(t−α, x) ≤ u(t, x, u0) for all α ∈ (0, T−Ta). This
implies that for t ∈ (Ta, T ) we have za(Ta, x) ≤ u(t, x, u0) which means that the solution u
is “pinned” to the value ∞ during the time Ta ≤ t ≤ T .

iii) With some extra effort, see [3] for details, it is possible to show that the construction
of Proposition 2.1 can be performed in a neighborhood of x0 ∈ ∂Ω. As a matter of fact
the parameters, R, δ, a0, δ0, and the initial condition u0 can be chosen the same for a small
neighborhood ∂Ω∩B(x0, η) for η > 0 small. This means that the proper solution u(t, x, u0)
will blow up, not only at x0 but at B(x0, η

′) ∩ ∂Ω for some small η′ > 0, and it will remain
“pinned” to the value ∞ for a period of time Ta ≤ t ≤ T .

3. Localization of global boundedness. In this section we present the results of [2]
that, roughly speaking, say that if the complementary conditions of Proposition 2.1 hold,
also near a point x0 ∈ ∂Ω, then the proper solution is bounded globally in time around this
point x0. As a matter of fact, we have

Proposition 3.1. Let x0 ∈ ΓN , p > 1, q ≥ 1 and let R0 > 0, M0 > 0 such that

f(x, u) ≤ −β0u
p, x ∈ B(x0, R0) ∩ Ω, u ≥M0,

g(x, u) ≤ uq, x ∈ B(x0, R0) ∩ ∂Ω, u ≥M0.
(3.1)

http://www.river-valley.com
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If one of the two following conditions holds
i) p+ 1 > 2q and β0 > 0 or
ii) p+ 1 = 2q and β0 > q,

then, for any initial condition 0 ≤ u0 ∈ L∞(Ω) the proper solution of (1.1) starting at u0 is
bounded in a neighborhood of x0 in Ω̄, for all t > 0. That is, there exist δ,M > 0 such that

sup
0≤t<∞, x∈B(x0,δ)∩Ω̄

u(t, x, u0) ≤M. (3.2)

To prove the result, we construct appropriate super solutions locally around the point
x0 ∈ ΓN . As a matter of fact we extensively use the singular solutions of the following
elliptic problem {

−∆z + βzp = 0 in B(0, R),

z(R) = +∞,
(3.3)

and the fact that the asymptotics of this radial solution as r → R is well understood, see
[5, 12].

We refer to [2] for details on the proof of this result.

4. Concluding Remarks. We present in this section several important comments and
remarks.

i) Both results are local in nature: if the conditions of Proposition 2.1 (resp. Propo-
sition 3.1) hold in a neighborhood of certain point x0 ∈ ∂Ω, then, independently
of the behavior of the nonlinearities outside this neighborhood, we will have that
blow-up (resp. global boundedness of solutions) occurs in the neighborhood of x0.
In particular, from the control theory point of view it turns out that it is impossible
to prevent blow-up (resp. to produce blow-up) in a neighborhood of a point of the
boundary of the domain by modifying the equation somehow away from this point.

ii) With an appropriate rescaling it is not difficult to see that if the local conditions
of the nonlinearities f and g in Proposition 2.1 and Proposition 3.1 are of the

http://www.river-valley.com
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Fig. 4.1. The domain of the example.
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sis. Departamento de Matemática Aplicada, Universidad Complutense de Madrid. (2005)

Fig. 4.1. The domain of the example.

type f(x, u) ∼ −β0u
p, g(x, u) ∼ α0u

q, for x ∈ B(x0, R0) ∩ ∂Ω,u ≥ M0, then, the
condition β0 < q (resp. β0 > q) should be changed to β0 > qα2

0, (resp. β0 < qα2
0).

iii) It is important to mention that the balances obtained for p, q and β0 are independent
of the dimension of the space and even of the geometry of the domain.

iv) As an example, consider for instance the problem

ut −∆u = −β(x)up in Ω,

∂u

∂~n
= α(x)uq on ∂Ω,

u(0, x) = u0(x) ≥ 0 in Ω,

(4.1)

with β and α continuous functions, β(x) > 0 in Ω̄ and α(x) > 0 in ∂Ω, see Fig. 4.1.
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Then if p + 1 = 2q > 2 and x0 ∈ ∂Ω with β(x0)
α(x0)2

< q then from [3], there are initial

conditions where blow up is produced near x0, while if β(x0)
α(x0)2

> q, then from Theorem 2.1
above, for any initial condition u0 ∈ L∞(Ω) the proper minimal solution is bounded near
x0. Hence, we have the situation as in Fig. 4.1
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