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NUMERICAL MODELING OF THE SIMULTANEOUS HEAT
AND MOISTURE TRANSFER

JOSEF DAĹıK∗ AND JIŘ́ı SVOBODA†

Abstract. An original model for the simultaneous transfer of heat and moisture (water in the forms of
ice, liquid and vapour) in porous media has been presented in Daĺık, Svoboda [1]. In this paper, we briefly
describe the model and then present its numerical implementation as well as results of numerical simulation
of the process in a brick.

Key words. simultaneous heat and moisture transport in porous media, non–stationary system of
non–linear partial differential equations, numerical modeling in a brick
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1. Introduction. The modeling of the process of heat and moisture transfer in porous
materials is of essential importance in civil engineering. The most commonly used materials
have porous structure and understanding of this process is decisive for the control of durabil-
ity of building constructions. There exists a lot of reasons why to search after mathematical
models enabling simulations of this process under various conditions which can appear in
natural and technical systems. The theoretical basis for this modeling has been developed
intensively during the last years. Lots of technical papers and in the last years also mono-
graphs are devoted to this problem. One of the first and most comprehensive monographs
dealing with these processes and their interaction with other processes, especially with soil
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consolidation, is Lewis, Schrefler [5].
In Section 2, we briefly describe the model and its basic properties. In the following

Section 3 we describe the used numerical method and finally, in Section 4, we present results
of a numerical simulation.

2. The model. We work with two independent variables x ∈ Ω ⊂ Rn, n = 1, 2, 3,
t ∈ (0, tmax) and as state variables we use the effective stress

S(x, t) = h(x)g − σ(x, t)
%(x, t)

[m2s−2]

and absolute temperature T (x, t) [K] with

h [m] the height above a chosen fixed level ,
g [m s−2] the gravitational constant ,
σ [Nm−2] the hydrostatic pressure,

% [kg m−3] the density of condensed water .

The model consists of the following two differential equations

Ṁ −∇(a11∇S + a12∇T ) = 0, (2.1)
Ḣ − ∇(a21∇S + a22∇T ) = 0, (2.2)

the initial conditions

S(x, 0) = S0(x), T (x, 0) = T0(x), x ∈ Ω (2.3)

and the boundary conditions

− ai1
∂S

∂~n
− ai2

∂T

∂~n
= gi(x, t, S, T ), x ∈ ∂Ω, t ∈ (0, tmax), (2.4)
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which prescribe the intensity of flow of moisture for i = 1 and of heat for i = 2. The dots
over M, H mean complete time-derivatives, ~n is the outer unit normal vector to the domain
Ω,

M = u +
(

ε− u

%

)
ϕc0 [kg m−3]

is the moisture in 1 m3,

u [kg m−3] is the amount of condensed water in 1 m3

ε [−] is the porosity
ϕc0 [kg m−3] is the amount of vapour in 1 m3,

and

H = hm%m + hsu(1− χ) + hluχ + hv

(
ε− u

%

)
ϕc0 [J kg−3]

is the enthalpy in 1 m3 with

hm = cmτ, hs = csτ, hl = Lsl + clτ,

hv = Lsl + clτb + Llv + cv(τ − τb) [J kg−1].

The above–used symbols have the following meanings
%m [kgm−3] the mass of the porous material per unit volume,
cm [J kg−1K−1] the heat capacity of the porous material,
cs [J kg−1K−1] the heat capacity of the solid,
cl [J kg−1K−1] the heat capacity of the liquid,
cv [J kg−1K−1] the heat capacity of the vapour,
τb [0C] the temperature of boiling of water,
Lsl [J kg−1] the latent heat of melting at τ = 0 0C and
Llv [J kg−1] the latent heat of evaporation at τ = τb

0C
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and hm, hs, hl, hv, respectively, means the amount of the enthalpy in 1 kg of porous
material, ice, liquid, vapour, respectively. Furthermore,

a11 = ξ + D a12 =
D Llv

T
a21 = hlξ + hvD a22 = λ + hva12

and ξ, D, λ mean the conductivity of condensed water, diffusivity of vapour, conductivity of
heat, consecutively. We have found the following formulas for these material characteristics
for brick :

ξ = 1.23 · 10−2

(
u

%

)2

exp
(
−1883.1

T

)
[kg m−3s],

D = 5.05 · 10−5T−0.19

(
1− u

ε%

)
exp

(
− σ

461.9%T
− 5205

T

)
[kg m−3s],

λ = 0.45 + (0.185 + 0.0013T )
u

%
[Jm−1s−1K−1].

As it is apparent from the above descriptions, the properties of the model depend on the
function u = u(S, T ), called a sorption isotherme, essentially. The amount u of condensed
water in 1 m3 of a porous material is a result of an experiment organized as follows. A
completely dry specimen of the porous material is included into a space with constant tem-
perature and constant air humidity. See Fig. 2.1. The specimen sucks moisture from the
surrounding air and accumulates it in its pores. The end of this process can be identified by
the stop of increase of weight of the specimen. It is interesting to note that, if the experiment
starts with the specimen filled by water, the final amount of condensed water in its porous
structure will be greater than for the dry specimen. This is a consequence of some special
microscopic behaviour of the porous structure, as explained in [1]. The sorption isotherme
depends on the temperature only weakly, but it is typical that, as a function of σ, it has
a hysteresis. A schematic plot of the function u for fixed temperature illustrating these
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Heat and moisture transfer in porous media 3
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Figure 1 : Schematic experiment

with constant temperature and constant air humidity. See Fig. 1. The specimen
sucks moisture from the surrounding air and accumulates it in its pores. The end of
this process can be identified by the stop of increase of weight of the specimen. It is
interesting to note that, if the experiment starts with the specimen filled by water,
the final amount of condensed water in its porous structure will be greater than for
the dry specimen. This is a consequence of some special microscopic behaviour of
the porous structure, as explained in [1]. The sorption isotherme depends on the
temperature only weakly, but it is typical that, as a function of σ, it has a hysteresis.
A schematic plot of the function u for fixed temperature illustrating these properties
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ϕ = exp
(
− σ

461.9%T
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ε%

drying

wetting

Figure 2 : Typical drying and wetting isothermes for porous materials

Fig. 2.1. Schematic experiment.

properties can be found in Fig. 2.2. The hysteresis is the smaller, the more homogeneous
the porous structure is. These properties of the sorption isothermes are the main reason,
why the process of heat and moisture transfer in porous media is strongly non-linear and
irreversible.

3. Numerical simulation of the heat and moisture transfer. There exists an
extensive amount of various programming systems modeling the process of heat and moisture
transport. A systematic development of differential equations for this and similar processes
can be found in Lewis, Schrefler [5]. It is applicable to the extension of this model by
mechanical deformation of the porous skeleton and by any other related processes. But there
exists a theoretical analysis neither of basic properties of the models nor of numerical methods
for their approximate solutions. The problem is strongly non-linear and non-potential, so
that standard mathematical tools for the existence of exact solution in any sense cannot be
used. Certain abstract sufficient conditions for existence of a week solution of problems of this
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kind have been formulated in Vala [4], but it is not known whether the above problem does
really satisfy these conditions. Other technique, used in Daĺık, Daněček, Št’astńık [2], could
possibly give us local existence of the classical solution under rather strong non–realistic
smoothness conditions.

In our treatment, we describe a combination of the implicit Euler method for the dis-
cretization in time and of the standard finite difference method for the discretization in
space. If we put

X(x, t) =
(

S
T

)
, G(x, t,X) =

(
g1

g2

)
, O =

(
0
0

)
,

http://www.river-valley.com
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E(X) =

 ∂M
∂S

∂M
∂T

∂H
∂S

∂H
∂T

 and A(X) =
(

a11 a12

a21 a22

)

then we obtain the following forms of the system of equations (2.1), (2.2) and of the boundary
conditions (2.4)

E(X) Ẋ −∇ (A(X)∇X) = O,

−A(X)
∂X

∂~n
= G(x, t, X).

3.1. Discretization in time. Let us choose a natural number r and put k = tmax/r,
tj = j k for j = 0, 1, . . . , r. Instead of S(x, t), T (x, t), we find functions S0(x), S1(x), . . . , Sr(x)
and T 0(x), T 1(x), . . . , T r(x) such that the vector-function X0(x) = (S0(x), T 0(x))> is equal
to (S0(x), T0(x))> and for j = 1, . . . , r, the vector-functions Xj(x) =

(
Sj(x), T j(x)

)> are
approximations of the exact solutions X(x, tj) of the problem (2.1)–(2.4) satisfying the fol-
lowing non-linear boundary–value problem (3.1), (3.2).

E(Xj) Xj −∇
(
kA(Xj)∇Xj

)
= E(Xj) Xj−1 for x ∈ Ω, (3.1)

−A(Xj)
∂Xj

∂~n
= G(x, tj , X

j) for x ∈ ∂Ω. (3.2)

For a fixed j, we assume that Xj−1 is known and we solve the problem (3.1), (3.2) by putting
Y0 = Xj−1 and, consecutively for i = 1, 2, . . . , by computing Yi as a solution of the linear
boundary-value problem

E(Yi−1)Yi −∇ (kA(Yi−1)∇Yi) = E(Yi−1) Y0, (3.3)

http://www.river-valley.com
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−A(Yi−1)
∂Yi

∂~n
= G(x, tj , Yi−1) (3.4)

and we put Xj = Yi whenever a certain norm ‖Yi− Yi−1‖ is less than a given small positive
number.

3.2. Discretization in space. We describe the discretization with respect to the spa-
tial variable x of the problem (3.3), (3.4) for a fixed index i by the standard finite differ-
ence method in the case n = 1 only. In this case, we denote the interval Ω by (a, b), put
E(x) = E(Yi−1), A(x) = A(Yi−1), y(x) = Yi, v(x) = E(Yi−1) Y0 and g(x) = G(x, tj , Yi−1),
so that the problem (3.3), (3.4) attains the form

E(x)y − k (A(x)y′)′ = v(x), (3.5)

A(a)y′(a) = g(a), −A(b)y′(b) = g(b). (3.6)

For a natural number m, let a = x0 < x1 < · · · < xm = b be a uniform mesh with
discretization step h = b−a

m . By means of the standard finite-difference approximation of the
system of equations (3.5), we obtain the linear equations

− kA(xj−1)yj−1 +
(
2kA(xj) + E(xj)h2

)
yj − kA(xj+1)yj+1 = h2v(xj) (3.7)

for j = 1, . . . ,m−1 and discretization of the boundary conditions (3.6) gives us the remaining
two equations

A(a)(y1 − y0) = hg(a), A(b)(ym−1 − ym) = hg(b) (3.8)

for the unknown approximations yj of the vectors y(xj) for j = 0, . . . ,m.
A possible analysis of discrete solutions of similar non–linear problems is briefly outlined

in [5] and the tools presented in the monographs Kurpel [3], Rall [6] may appear to be
applicable successfully.
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4. Numerical experiment. We are searching for the steady state of the heat and
moisture flow in the cross–section of a wall of thickness 0.1 m made from brick with external
temperatures τa(0) = 40 0C, τa(0.1) = 20 0C, with both surfaces isolated with respect to
the flow of moisture and with constant initial temperature τ(x) = 300C and initial relative
humidity ϕ(x) = 0.7 for x ∈ (0, 0.1). Hence we use the boundary conditions

−
(

a11
∂S

∂x
+ a12

∂T

∂x

)
~n = 0 and −

(
a21

∂S

∂x
+ a22

∂T

∂x

)
~n = α(T − Ta)

in the points x = 0, x = 0.1.
The resulting values of temperature τ and effective stress S in the nodes with even

indices appear in Table 4.1. Due to our boundary conditions, the sum of flows of liquid
and vapour must equal to zero. Our approximations of flows of liquid and vapour in the first
and last intervals appear in Table 4.2 and schematic illustrations of the graphs of these
flows can be found in Fig. 4.1. These results indicate that the steady state is a dynamic one
in the following sense: Vapour flows from places of higher temperature to places of lower
temperature (in the positive direction of the x-axis) and then condensates to liquid. The
same amount of liquid flows in the opposite direction and then evaporates to vapour. In the
following Table 4.3, we compare the intensities of heat flow through the porous material
skeleton by heat conduction, transported by vapour and by liquid through the middle point
x5. We can see that the heat transported by vapour represents 1.8 % of the heat transported
through the porous material skeleton. Of course, this amount may play important role in
the thermal bilance of walls made from better insulating porous materials.
Acknowledgement. This outcome has been achieved with the financial support of the
Ministry of Education, Youth and Sports, project No. 1M680470001, within activities of the
CIDEAS research centre.
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i 0 2 4 6 8 10
τ(xi) 36.506 33.904 31.301 28.699 26.096 23.494
S(xi) 50108.4 50108.3 50108.2 50108.2 50108.1 50108.0

Table 4.1

interval [x0, x1] [x9, x10]
flow of liquid −.7973 10−6 −.3282 10−6

flow of vapour .7908 10−6 .3255 10−6

Table 4.2

medium porous material vapour liquid
heat in [J m−2s−1] 75.75 1.35 −0.066

Table 4.3

6 J. DAĹıK AND J. SVOBODA

The resulting values of temperature τ and effective stress S in the nodes with
even indices appear in Table 1. Due to our boundary conditions, the sum of flows of

i 0 2 4 6 8 10
τ(xi) 36.506 33.904 31.301 28.699 26.096 23.494
S(xi) 50108.4 50108.3 50108.2 50108.2 50108.1 50108.0

Table 1

liquid and vapour must equal to zero. Our approximations of flows of liquid and
vapour in the first and last intervals appear in Table 2 and schematic illustrations of
the graphs of these flows can be found in Fig. 3. These results indicate that the

interval [x0, x1] [x9, x10]
flow of liquid −.7973 10−6 −.3282 10−6

flow of vapour .7908 10−6 .3255 10−6

Table 2

-
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0.3 10−6

0.1 x [m]

flow of vapour [kg m−2s−1]

flow of liquid [kg m−2s−1]

Figure 3 : Steady state of flow of vapour and liquid across the brick wall

steady state is a dynamic one in the following sense : Vapour flows from places of
higher temperature to places of lower temperature (in the positive direction of the x-
axis) and then condensates to liquid. The same amount of liquid flows in the opposite
direction and then evaporates to vapour. In the following Table 3, we compare the
intensities of heat flow through the porous material skeleton by heat conduction,
transported by vapour and by liquid through the middle point x5. We can see that
the heat transported by vapour represents 1.8% of the heat transported through the

medium porous material vapour liquid
heat in [J m−2s−1] 75.75 1.35 −0.066

Table 3

porous material skeleton. Of course, this amount may play important role in the
thermal bilance of walls made from better insulating porous materials.

Acknowledgement. This outcome has been achieved with the financial support
of the Ministry of Education, Youth and Sports, project No. 1M680470001, within
activities of the CIDEAS research centre.

Fig. 4.1. Steady state of flow of vapour and liquid across the brick wall.
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