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HIGHER ORDER METHOD FOR THE NUMERICAL SOLUTION OF THE
COMPRESSIBLE EULER EQUATIONS∗

MILOSLAV FEISTAUER† AND VÁCLAV KUČERA‡

Abstract. This paper is concerned with a numerical technique for the solution of inviscid compressible
flow with a wide range of Mach numbers. It is based on the use of the discontinuous Galerkin finite element
method applied to the Euler equations written in the conservative form, a semi-implicit time discretization
and characteristics-based boundary conditions, which are transparent for acoustic phenomena. For transonic
flows, additional shock capturing terms are added in order to avoid the Gibbs phenomenon near shock waves.
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1. Introduction. In the numerical solution of compressible flow, it is necessary to
overcome a number of obstacles. Let us mention the necessity to resolve accurately shock
waves, contact discontinuities and (in viscous flow) boundary layers, wakes and their inter-
action. Some of these phenomena are connected with the simulation of high speed flow with
high Mach numbers. However, it appears that the solution of low Mach number flow is also
rather difficult. This is caused by the stiff behaviour of numerical schemes and acoustic phe-
nomena appearing in low Mach number flows at incompressible limit. In this case, standard
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finite volume schemes fail. This led to the development of special finite volume techniques
allowing the simulation of compressible flow at incompressible limit, which is based on mod-
ifications of the Euler or Navier-Stokes equations. (See, e. g. [13], [15], [18, Chapter 14], or
[14, Chapter 5].)

Here we are concerned with the development of an efficient, robust and accurate method
allowing the solution of compressible flow with a wide range of the Mach number without
any modification of the governing equations. This technique is based on the discontinuous
Galerkin finite element method (DGFEM), which can be considered as a generalization of the
finite volume as well as finite element methods, using advantages of both these techniques.
It employs piecewise polynomial approximations without any requirement on the continuity
on interfaces between neighbouring elements. (For various applications of the DGFEM
to compressible flow, see e. g. [1], [2], [3], [4], [11], [16]. Theory of the DGFEM applied
to nonlinear nonstationary convection diffusion problems can be found in [5], [6] and [8].)
The discontinuous Galerkin space semidiscretization is combined with a semi-implicit time
discretization and a special treatment of boundary conditions in inviscid convective terms.
In this way we obtain a numerical scheme requiring the solution of only one linear system
on each time level.

The computational results show that the presented method is applicable to the numerical
solution of inviscid compressible high-speed flow as well as flow with a very low Mach number
at incompressible limit.

2. Continuous problem. For simplicity of the treatment we shall consider two-dimensional
flow, but the method can be applied to 3D flow as well. The system of the Euler equations
describing 2D inviscid flow can be written in the form

∂w

∂t
+

2∑
s=1

∂fs(w)
∂xs

= 0 in QT = Ω× (0, T ), (2.1)
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where Ω ⊂ IR2 is a bounded domain occupied by gas, T > 0 is the length of a time interval,

w = (w1, . . . , w4)T = (ρ, ρv1, ρv2, E)T (2.2)

is the so-called state vector and

fs(w) = (ρvs, ρvsv1 + δs1p, ρvsv2 + δs2p, (E + p) vs)T (2.3)

are the inviscid (Euler) fluxes of the quantity w in the directions xs, s = 1, 2. We use the
following notation: ρ – density, p – pressure, E – total energy, v = (v1, v2) – velocity, δsk –
Kronecker symbol. The equation of state implies that

p = (γ − 1) (E − ρ|v|2/2). (2.4)

Here γ > 1 is the Poisson adiabatic constant. The system (2.1)–(2.4) is diagonally hyperbolic.
It is equipped with the initial condition

w(x, 0) = w0(x), x ∈ Ω, (2.5)

and the boundary conditions, which are treated in Section 4. We define the matrix

P (w,n) :=
2∑

s=1

As(w)ns, (2.6)

where n = (n1, n2) ∈ R2, n2
1 + n2

2 = 1 and

As(w) =
Dfs(w)

Dw
, s = 1, 2, (2.7)

are the Jacobi matrices of the mappings fs. It is possible to show that fs, s = 1, 2, are
homogeneous mappings of order one, which implies that

fs(w) = As(w)w, s = 1, 2. (2.8)

http://www.river-valley.com
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3. Discretization. Here we describe the construction of the discrete problem.

3.1. Space semidiscretization by the DGFEM. Let Ωh be a polygonal approxima-
tion of Ω. By Th we denote a partition of Ωh consisting of various types of convex elements
Ki ∈ Th, i ∈ I (I ⊂ Z+ = {0, 1, 2, . . .} is a suitable index set), e. g., triangles, quadrilaterals
or in general convex polygons. (Let us note that in [6] and [8] it was shown that in the
DGFEM also general nonconvex star-shaped polygonal elements can be used.) By Γij we
denote a common edge between two neighbouring elements Ki and Kj . Moreover, we set
s(i) = {j ∈ I;Kj is a neighbour of Ki}. The boundary ∂Ωh is formed by a finite number
of faces of elements Ki adjacent to ∂Ωh. We denote all these boundary faces by Sj , where
j ∈ Ib ⊂ Z− = {−1,−2, . . .}. Now we set γ(i) = {j ∈ Ib;Sj is a face of Ki ∈ Th} and
Γij = Sj for Ki ∈ Th such that Sj ⊂ ∂Ki, j ∈ Ib. For Ki not containing any boundary face
Sj we set γ(i) = ∅. Obviously, s(i)∩γ(i) = ∅ for all i ∈ I. Now, if we write S(i) = s(i)∪γ(i),
we have

∂Ki =
⋃

j∈S(i)

Γij , ∂Ki ∩ ∂Ωh =
⋃

j∈γ(i)

Γij . (3.1)

The symbol nij = ((nij)1, (nij)2) will denote the unit outer normal to ∂Ki on the face
Γij . By hKi and |Ki| we shall denote the diameter and the area, respectively, of an element
Ki ∈ Th.

The approximate solution will be sought at each time instant t as an element of the
finite-dimensional space

Sh = Sr,−1(Ωh, Th) = {v; v|K ∈ P r(K) ∀K ∈ Th}4,

where r ≥ 0 is an integer and P r(K) denotes the space of all polynomials on K of degree
≤ r. Functions v ∈ Sh are in general discontinuous on interfaces Γij .

By v|Γij
and v|Γji

we denote the values of v on Γij considered from the interior and the
exterior of Ki, respectively.

http://www.river-valley.com


Home Page

Title Page

Contents

JJ II

J I

Page 5 of 15

Go Back

Full Screen

Close

Quit

In order to derive the discrete problem, we multiply (2.1) by a test function ϕ ∈ Sh,
integrate over any element Ki, i ∈ I, apply Green’s theorem and sum over all i ∈ I. Then we
approximate fluxes through the faces Γij with the aid of a numerical flux H = H(u,w,n)
in the form∫

Γij

2∑
s=1

fs(w(t)) (nij)s ·ϕ dS ≈
∫

Γij

H(wh(t)|Γij
,wh(t)|Γji

,nij) ·ϕ dS.

If we introduce the forms

(wh,ϕh)h =
∫

Ωh

wh ·ϕh dx, b̃h(wh,ϕh) = σ1 + σ2, (3.2)

where

σ1 = −
∑

K∈Th

∫
K

2∑
s=1

fs(wh) · ∂ϕh

∂xs
dx, (3.3)

σ2 =
∑

Ki∈Th

∑
j∈S(i)

∫
Γij

H(wh|Γij
,wh|Γji

,nij) ·ϕhdS,

we can define an approximate solution of (2.1) as a function wh satisfying the conditions

a) wh ∈ C1([0, T ];Sh),

b)
d
dt

(wh(t),ϕh)h + b̃h(wh(t),ϕh) = 0, ∀ϕh ∈ Sh, ∀ t ∈ (0, T ),

c) wh(0) = Πhw0,

(3.4)

where Πhw0 is the L2-projection of w0 from the initial condition (2.5) on the space Sh. If
we set r = 0, then we obviously obtain the finite volume method.
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3.2. Time discretization. Relation (3.4), b) represents a system of ordinary differ-
ential equations which can be solved by a suitable numerical method. Usually, Runge-Kutta
schemes are applied. However, they are conditionally stable and the time step is strongly
limited by the CFL-stability condition. Therefore, we develop a semi-implicit time dis-
cretization, which is unconditionally stable and requires the solution of a linear system on
each time level. This is carried out with the aid of a suitable partial linearization of the form
b̃h. In what follows, we consider a partition 0 = t0 < t1 < t2 . . . of the time interval (0, T )
and set τk = tk+1 − tk. We use the notation wk

h for the approximation of wh(tk).
On the basis of relation (2.8) and the use of the Vijayasundaram numerical flux, similarly

as in [4], we construct the form

bh(wk
h,wk+1

h ,ϕh) = −
∑

K∈Th

∫
K

2∑
s=1

As(wk
h(x))wk+1

h (x) · ∂ϕh(x)
∂xs

dx

+
∑

Ki∈Th

∑
j∈S(i)

∫
Γij

[
P +

(
〈wk

h〉ij ,nij

)
wk+1

h |Γij
+P− (〈wk

h〉ij ,nij

)
wk+1

h |Γji

]
·ϕhdS,

(3.5)

which is linear with respect to the second and third variable. We use the notation
〈wk

h〉ij = (wh|Γij
+ wh|Γji

)/2. Further, P± = P±(w,n) represents positive/negative part
of the matrix P defined on the basis of its diagonalization (see, e. g. [10, Section 3.1]):

P = TDT−1, D = diag (λ1, . . . , λ4), (3.6)

where λ1, . . . , λ4 are the eigenvalues of P . Then we set

D± = diag (λ±1 , . . . , λ±4 ), (3.7)
P± = TD±T−1,

where λ+ = max{λ, 0} and λ− = min{λ, 0}.

http://www.river-valley.com
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On the basis of the above considerations we obtain the following semi-implicit scheme:
For each k ≥ 0 find wk+1

h such that

a) wk+1
h ∈ Sh,

b)

(
wk+1

h −wk
h

τk
,ϕh

)
h

+ bh(wk
h,wk+1

h ,ϕh) = 0, ∀ϕh ∈ Sh, k = 0, 1, . . . ,

c) w0
h = Πhw0.

(3.8)

This is a first order accurate scheme in time. It is also possible to construct a semi-implicit
two step second order time discretization (see [4]). The linear algebraic system equivalent
to (3.8), b) is solved by the GMRES method with a block diagonal preconditioning.

In order to obtain an accurate solution near curved boundaries, we use higher order
isoparametric elements as in [1] or [3].

4. Boundary conditions. If Γij ⊂ ∂Ωh, i. e. j ∈ γ(i), it is necessary to specify the
boundary state w|Γji appearing in the numerical flux H in the definition of the inviscid form
bh. The appropriate treatment of boundary conditions plays a crucial role in the solution of
low Mach number flows.

On a fixed impermeable wall we employ a standard approach using the condition v·n = 0
and extrapolating the pressure. On the inlet and outlet it is necessary to use nonreflecting
boundary conditions transparent for acoustic effects coming from inside of Ω. Therefore,
characteristics-based boundary conditions are used.

Using the rotational invariance, we transform the Euler equations to the coordinates x̃1,
parallel with the normal direction n to the boundary, and x̃2, tangential to the boundary,
neglect the influence of the states on elements that are not adjacent to Γij and linearize the

http://www.river-valley.com
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resulting system around the state qij = Q(nij)w|Γij
, where

Q(nij) =


1, 0, 0, 0
0, (nij)1, (nij)2, 0
0, −(nij)2, (nij)1, 0
0, 0, 0, 1

 (4.1)

is the rotational matrix. Then we obtain the linear system

∂q

∂t
+ A1(qij)

∂q

∂x̃1
= 0, (4.2)

for the vector-valued function q = Q(nij)w, considered in the set (−∞, 0) ×(0,∞) and
equipped with the initial and boundary conditions

q(x̃1, 0) = qij , x̃1 ∈ (−∞, 0),

q(0, t) = qji, t > 0.
(4.3)

The goal is to choose qji in such a way that this initial-boundary value problem is well posed,
i. e. has a unique solution. The method of characteristics leads to the following process:

Let us put q∗ji = Q(nij)w∗
ji, where w∗

ji is a prescribed boundary state at the inlet or
outlet. We calculate the eigenvectors rs corresponding to the eigenvalues λs, s = 1, . . . , 4,
of the matrix A1(qij), arrange them as columns in the matrix T and calculate T−1 (explicit
formulae can be found in [10, Section 3.1]). Now we set

α = T−1qij , β = T−1q∗ji. (4.4)

and define the state qji by the relations

qji :=
4∑

s=1

γsrs, γs =
{

αs, λs ≥ 0,
βs, λs < 0.

(4.5)

http://www.river-valley.com
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Finally, the sought boundary state w|Γji
is defined as

w|Γji
= wji = Q−1(nij)qji. (4.6)

5. Shock capturing. In the case of high speed flow, it is necessary to avoid the Gibbs
phenomenon manifested by spurious overshoots and undershoots in computed quantities
near discontinuities (shock waves, contact discontinuities). These phenomena do not occur
in low Mach number regimes, but in transonic flow they cause instabilities in the numerical
solution.

We avoid the Gibbs phenomenon by introducing a suitable stabilization terms, motivated
by [7] and [12]. First we introduce the discontinuity indicator g(i) proposed in [7] and defined
by

g(i) =
∫

∂Ki

[ρk
h]2 dS

/
(hKi

|Ki|3/4), Ki ∈ Th. (5.1)

By [u]|Γij = uij − uji we denote the jump on Γij of a function u ∈ Sh. Further, we define
the discrete indicator

G(i) =

{
0, g(i) < 1,

1, g(i) ≥ 1.
, Ki ∈ Th. (5.2)

Now, to the left-hand side of (3.8), b) we add the artificial viscosity form

β̃h(w,ϕ) = ν1

∑
i∈I

hKiG(i)
∫

Ki

∇w · ∇ϕ dx, (5.3)

where ν1 ≈ 1. The stabilization form β̃h is treated semi-implicitly with G(i) = Gk(i)
computed from wk

h. Therefore, we write

βh(wk
h,wk+1

h ,ϕ) = ν1

∑
i∈I

hKi
Gk(i)

∫
Ki

∇wk+1
h · ∇ϕ dx. (5.4)

http://www.river-valley.com
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This form limits the order of accuracy only on elements lying in a small neighbourhood
of a discontinuity. However, it appears that this is insufficient on strongly refined grids.
Therefore, we propose to augment the left-hand side of (3.8), b) by adding the form

J̃h(w,ϕ) = ν2

∑
i∈I

∑
j∈s(i)

1
2
(
G(i) + G(j)

) ∫
Γij

[w] · [ϕ] dS, (5.5)

where ν2 ≈ 1. In this way we penalize inter-element jumps in the vicinity of the shock wave.
This form is again treated semi-implicitly, similarly as in (5.4). We set

Jh(wk
h,wk+1

h ,ϕ) = ν2

∑
i∈I

∑
j∈s(i)

1
2
(
Gk(i) + Gk(j)

) ∫
Γij

[wk+1
h ] · [ϕ] dS. (5.6)

Thus, the resulting scheme reads:

a) wk+1
h ∈ Sh,

b)

(
wk+1

h −wk
h

τk
,ϕh

)
h

+ bh(wk
h,wk+1

h ,ϕh)

+ βh(wk
h,wk+1

h ,ϕh) + Jh(wk
h,wk+1

h ,ϕh) = 0, ∀ϕh ∈ Sh, k = 0, 1, . . . ,

c) w0
h = Πhw0.

(5.7)

This method successfully overcomes problems with the Gibbs phenomenon in the context of
the semi-implicit scheme. It is important that G(i) vanishes in regions where the solution is
regular. Therefore, the scheme does not produce any nonphysical entropy in these regions
(See Fig. 6.3).

6. Numerical examples. In order to show the robustness of the described technique
with respect to the Mach number, we present computational results obtained for two types
of compressible flow.

http://www.river-valley.com
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6.1. Low Mach number flow. First, the semi-implicit scheme (5.7) was applied to
the solution of stationary inviscid low Mach number flow past a circular cylinder with the far
field velocity parallel to the axis x1 and the Mach number M∞ = 10−4. The computational
domain has the form of a square with sides of the length equal to 20 diameters of the cylinder.
We show here details of the flow in the vicinity of the cylinder. Fig. 6.1 shows isolines of
the absolute value of the velocity for the compressible flow computed by scheme (5.7) with
piecewise quadratic elements (i. e. r = 2), on a coarse mesh formed by 361 elements and
on a fine mesh with 8790 elements, compared with the exact solution of incompressible flow
(computed by the method of complex functions – see [9, Section 2.2.35]). The steady-state
solution is obtained with the aid of the time stabilization for ”t →∞”.

6.2. Transonic flow. The performance of shock capturing terms from Section 5 is
tested on the GAMM channel with a 10% circular bump and the inlet Mach number equal
to 0.67. The method (5.7) with piecewise quadratic elements is used and time stabilization
for ”t → ∞” is applied for obtaining the steady-state solution. In this case a conspicuous
shock wave is developed. In Fig. 6.2 the density distribution along the lower wall is shown.
We see a well resolved discontinuity due to the shock wave. Moreover, we can see the so-
called Zierep singularity (a small local maximum behind the shock) proving a good quality
of the obtained numerical solution. The artificial viscosity forms βh and Jh given by (5.4)
and (5.6) eliminate the Gibbs phenomenon. Fig. 6.3 shows the entropy isolines. One can
see that the entropy is produced only on the shock wave. This is caused by the use of
the forms βh and Jh, which are active only on elements lying in a small neighbourhood of
discontinuities and do not influence the solution in areas, where the exact solution is regular.

7. Conclusion. In this paper we have presented a new method for the numerical so-
lution of the Euler equations describing inviscid compressible flow. The method allows the
simulation of compressible flow with a wide range of Mach numbers – from very small values
in the case of flows at incompressible limit, up to large Mach numbers for high speed transonic

http://www.river-valley.com
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Fig. 6.1. Velocity isolines for the approximate solution of compressible flow – coarse mesh (top left),
fine mesh (top right), compared with the exact solution of incompressible flow (bottom).

flows. Numerical experiments prove that the method is unconditionally stable. There are
several important ingredients making the method robust with respect to the Mach number,
without the necessity to modify the Euler equations:

– discontinuous Galerkin space discretization,

http://www.river-valley.com
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Fig. 6.2. Transonic flow through the GAMM channel, density distribution on the lower wall.

– semi-implicit time stepping,
– characteristic treatment of boundary conditions,
– suitable limiting of order of accuracy in the vicinity of discontinuities in order to

avoid the Gibbs phenomenon,
– the use of isoparametric finite elements at curved parts of the boundary.

Our further goal is the extension of the presented technique to compressible viscous flow
described by the full system of the compressible Navier-Stokes equations.
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