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CARATHEODORY SOLUTIONS TO QUASI-LINEAR HYPERBOLIC
SYSTEMS OF PARTIAL DIFFERENTIAL EQUATIONS
WITH STATE DEPENDENT DELAYS

AGATA COIASZEWSKA* AND JAN TUROf

Abstract. The paper (based on the article [3] under the same title) addresses the existence of a
generalized solution and continuous dependence upon initial data for hyperbolic functional differential
systems with state dependent delays. The method used in this paper is based on the bicharacteristics
theory and on the Banach fixed point theorem. The formulation includes retarded argument, integral
and hereditary Volterra terms.
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Let C(U, V) be the class of all continuous functions defined on U and taking values in
V. Let Ry = [0,+00), B = [~bo,0] x [=b,b], E, = [~bo,a] x R", where by € Ry,b € RY,
a >0, M, means the set of all n x k real matrices, and let Q = [0,a] x R™ x C(B, R¥).
Assume that

A:Q — My, A =[Aijlij=1,.. ks

P — Miyn, p = [pijli=1,.. kj=1,..n

[ — My, f=0 )"
and

Ztw) : B— R, Z,2)(Tyy) = 2(t + T, 2 4 y),
where (7,y) € B. The symbol
2¢(t@,2(1,))
means the restriction of function z to the set
[Co(t) = bo, Co(t)] X [Cult, 2, 2(2,2)) — by Gty 2, 2(2,2)) + 1],
where
C(t,z,w) = (Go(t), Gult,z,w)),  Go:[0,a] =R, ¢ :Q—R",
and this restriction is shifted to the set B. Let
P(t, 2, w) = (Yo(t), Yu(t, 2, w)),
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and
O(t, z,w) = (0o(t), 0, (t, z,w)).

We will consider the system

k n
Z Aij (t7 x, ZG(t,:E,Z(tYI))) |:th]' (t, 37) + Z Pil (tv x, Zw(t,z,Z(tYm)))Dwz Zj (ta .’IZ‘)

=1 (1)

j=1
= fi(t7x,2¢(t,z,zu,1)))7
z(t,x) = p(t,x) on Ey, @)

where ¢ is a given initial function and the symbol D; means the partial derivative %.
The function

z € C(E,,RF), c € (0,a],

is a solution of (1), (2), if
(i) derivatives D;z;, Dyz;, i =1,...,k, exist almost everywhere on [0, ¢] x R™;

(ii) z satisfies (1) almost everywhere on [0, ¢] x R™;
(iii) condition (2) holds.

We define different norms:

n
IU|| = max Z|uij|:1§i§k )

j=1
where
U€E Mysn, ui=W,...,un), i=1,...,k,
and
[nll = max {[n;] : 1 <@ <k},
where

neR" n=(,. .., M)

Let C, (B, RF) be the class of all functions w € C(B,R¥), such that

|lw|lL = sup {||w(t,r) —wEP)|[(|t =8+ |r =7t (&), (7)€ Bt #t,x # %} < +oo.
For w € C(B,R¥) we denote by ||Jw||. the supremum norm of w. We define

lwllv.L = l[wllx + [lwllz,  w € Cxr(B,R").
We write

C(B,R*;k) = {w € C(B,R") : |w|. <k},

Cor(B,RF; k) ={w e C. (B, R") : |wllsr <K}
where Kk € Ry. We put
1zle = sup{[[z(7, )| : (T,y) € (0, 2] x R"},

where z € C(E.,R¥), t € [0,¢], and ¢ € (0, a].
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We denote by J[A] the set of all functions ¢ € C(Ey, R™), such that
(i) ot z) < Xo for (¢ z) € Eop;
(i) llo(t, ) — o(t,2)[ < Mt =t + Aeflwe — 2| on  Eq,

where Ao, A1, Ao € Ry, and A= Xg+ A1 + Ao
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Let K, [d], where ¢ € J[A], and ¢ € (0, a], be the class of all functions z € C(E,,RF),

such that

(i) 2(t,x) = o(t,x) on  Ey;
(ii) for (t,z), (t,Z) € [0,¢] x R™ we have

I2(¢, )| < do,

12(t,2) = 2(8, )| < daft — B + dalx — 2],

where d; € Ry, and d; > \; for i =0,1,2, and d=dy+ dy + ds.

We denote by P the set of all nondecreasing functions v € C(Ry,R.), such that

7(0) = 0.

Assumption H[p]. Suppose that

(i) p(-,z,w) : [0,a] — Mgy, is measurable for (z,w) € R® x C(B,R¥), and
p(t,") : R" x C(B,RF) — My, is continuous for almost all t € [0, a);

(ii) there exist ap, 1 € P, such that
||p(ta x,w)|| < 0‘0(’%)
lo(t, 2, w) = p(t, 7, W)|| < ar(w) |llz — 2| + [w — o]

for (z,w), (Z,w) € R" x C(B,R¥;k), t € [0,a).

Assumption H[¢]. Suppose that

(i) ¥u(-, 2, w) : [0,a] — R™ is measurable for (z,w) € R® x C(B,R¥),
and v, (t,-) : R® x C(B,R¥) — R" is continuous for almost all ¢ € [0, a);

(i) %o € L([0,a],R), —bp < 9ho(t) —t < 0 for almost all ¢ € [0, a], and there
exists 0 € P, such that

a8, 2,0) — (2, 7, 0)| < B(s) |2 — 7] + o — ]l
for (z,w), (z,w) € R" x Cy.1,(B,R*; k) almost everywhere on [0, a].

Let ¢ € J[A], c € (0,a], and z € K, .[d]. Consider the Cauchy problem

77/(7—) = pi(Tv U(T)a Zd)(T,n(T),Z(Tm(T))))a n(t) =,

where (t,z) € [0,¢] x R™, i =1,...,k.
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Let g;[2](-,t,2) be the Carathéodory solution of (3). The function g;[z] is the i-th
bicharacteristic of system (1) corresponding to z € K .[d].

LEMMA 1 (proved in [3]). Suppose that Assumptions H|[p|, H[Y] are satisfied, and ¢, ¢ €
JIA, z € Ky.old], 2 € Kgc[d], where ¢ € (0,a], Then for i = 1,...,k bicharacteristics
9i[2](- t, @), and g;[Z](-,t,x) are defined on [0, ], and they are unique. Moreover we have
the estimates

lgil2](m 2, ) = gil2](7, £, 2) || < A(t, 7) [ao(do) [t — F] + [lz — ] (4)

)
/\p—agm
t

1(d) =1+ daB(d), &2(d) =1+ daf(d) + d343(d),

A(t7 T) = exp(al(do)ég(dﬂt — T|) .

for (t,x), (t, ) € [0,c] x R™, 7 € [0, ],

lgil2)(7, 8, 2) = gil2)(7, £, 2) || < @1 (do)ér (d)A(E, 7)

for (t,t,x) € [0,¢] x [0,c] x R™, where

Assumption H[A,0]. Suppose that
(i) A€ C(Q, Mgxr), and there is v > 0, such that det A(t, z,w) > v
for (¢t,z,w) € Q;
(ii) the following estimates hold
[A(t, 2, w)|| < ao(k)
[A(t z,w) — A(t, 2, w)|| < ar(k) [llz — 2] + [lw — @[],
for (z,w), (z,w) € R* x C(B,R¥; k) t € [0, al;
(iii) there exists 3 € P, such that
16002, w) — 00,28 < B(s) 1t~ 1+ e~ 71+ o — 0.,
for (z,w), (z,w) € R" x C, 1(B,R¥;k) t € [0,a] and

—by < B0(t) —t <0 on [0,al

Assumption H[f]. Suppose that
(i) f(,z,w) :[0,a] — R* is measurable on R” x C(B,R*), and

f(t,-) : R® x C(B,RF) — RF is continuous for almost all ¢ € [0, al;
(ii) the following estimations hold
1t 2, w)|| < ao(k),
1f (2, w) = [t 2, 0)]| < ar(r) [z = 2] + lw — @]]]

for (z,w), (z,w) € R* x C(B,R*; k), t € [0, a].
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We denote by U x V the vector

wz(wl,...,wn>,

k
w; = E Ui5Vjiy izl,...,k,
Jj=1

as follows

where U = [uijlij=1,..k € Mixk, V =[vijlij=1,..k € Mixk-
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Suppose that ¢ € J[A], ¢ € [0,qa], z € K, .[d], and g;[2] is a solution of (3). We denote

A[g7 Z](Sv t, .13) = Aij(57 gi [Z](87 t, .’13), 20(s,9; [Z](S:tvw)7Z(s,gi[z](s,t,m))))} )
i j=1,0 0k

allst) = o0 g ta)]

Zlg, z](s,t,x) = zi(s,gj[z](s,t,x))]‘ -

T
flg, 2)(s,t,x) = <fi(s,9¢[Z](sat, 93)»Zw<s,gi[z](s,t,z>,z<s,gi[z]@,t,m)))))

=1 k

[RRRE

Assumption HI[d]. Suppose that
(i) do > Ao,

(11) dl > Oéo(do)O_ll (do) [1 + Agao(do)A(C, O)] y where ¢ € (0, CL],
(111) do > Ao []. + dl(do)a()(do)].

For z € K, .[d] we define the operator
Fl2(t,2) = A7H(t 2, 20(1,0,2,.,)) {Algs 2)(0,2, 2) % 0[g](0, 8, 2) }
+ A7, x, Zg(t’w)z(t7x))) /Ot {D.Alg,2](1,t,x) * Z|g, z](7, t,x)
+ flg, 2l(m t, )} dr,
for t € [0,c] x R™, ¢ € (0,a], and

F[z](t,x) = p(t,z) on Ey.

LEMMA 2 (proved in [3]). Suppose that Assumptions H[p], H[y], H[f], H[A,?0],

are satisfied and ¢, ¢ € J[A]. Then there exists ¢ € (0,a], such that

F: K, d — K,.[d.

(6)

(7)

Hld]

THEOREM 3 (proved in [3]). Suppose that Assumptions H[p], H[¢|, H[f], H[A, 0], H[d]

are satisfied. Then for each ¢ € J[\| there exists ¢ € (0,a], such that problem (1)

, (2)

has a solution u € K, [d], and this solution is unique in the class K, [d]. If ¢ € J[A],
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and if @ is a solution of system (1) with the initial condition z(t,x) = ¢(t,x) on Ey, then
there exists M. € Ry, such that

lu—alle < Melle — |« on [0, (8)

Some special cases. Now we list below some examples of systems which can be
derived from system (1). Assume that

A:Q—>kak, A= [Aij]i,jzl ..... k>
E Q — Myxn, p = [Pijli=1,. kj=1,..n
f:fl—>ka1, f:(fla-”afk)Ta
where Q = [0,a] x R x R¥.
Case I. Consider the operators
A:Q — Mgk, A= [Aijlij=1,.. 1
p:Q — Miyn, pP= [pij]izl,...,k,jzl,...,n7
F1Q—= Mua,  f=(f.. )7,

given by formulas
A(t,z,w) = A(t, z, w(0,0)),
p(t,z,w) = plt,z,w(0,0)),  f(t,x,w) = f(t,z,w(0,0)).
Let
Y(t @, w) = P(t,2,w(0,0),  O(t,z,w) = 6(t,z,w(0,0)),

and

0(t,2,w(0,0)) = P(t, 2, w(0,0)) = (v(t), ®(t, x,)),
where v : [0,a] = R, ®:[0,a] x R™ - R", and
—bo < (t) =t <0.

Then system (1) reduces to the system

k
2 o)

- | Dyzj(t, x) +Zpil(t,x,z(v(t),(I>(t,x)))Dxlzj(t,x)] = fi(t,xz, z(y(t), D(t, x))),
1=1

where i =1,... k.

Case II. Suppose that functions A, p, f are given by following formulas
Alt.a.w) = Alta, [ wiry)dn)
B

plt,x,w) = ﬁ(tw,/Bw(Ta y)dr),
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and
ft.aw) = Fit.o. [ wirg)dr).
Put
Tyt 2, 2] = {(1,y) € R7™ 2 4ho(t) — by <7 < tho(1),
Vb, T, 2(02)) — b <y S Uit @, 28,0)) + b}
and

Dolt,z, 2] = {(r,y) € R"™: fo(t) —bo < 7 < fo(t),
9*(t,1', Z(t,x)) -b S Yy S 0*(t71'7 Z(t,x)) + b} :

Then system (1) reduces to the differential-integral system

k
S Aytte [ (ry)drdy

j=1 Tolt,z,z]
Dyz;(t,z) + Z pul(t, x, / z(1,y)dr dy) Dy, 2 (t, x)
=1 Tylt,z,z]

where i =1,...,k.
There are a lot of papers concerning the theory of solutions of equations (1) and some
particular cases of these equations for given functions A, p, f, 1, and 0 (see for example

[11-[5))-
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