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ASYMPTOTIC PROPERTIES OF A TWO-DIMENSIONAL
DIFFERENTIAL SYSTEM WITH DELAY∗

JOSEF KALAS†

Abstract. A useful method for the investigation of the asymptotic behaviour of the solutions of two-
dimensional systems of ordinary differential equations is the method of complexification. This method
was used e. g. in papers [6] and [5], where asymptotic properties of a real two-dimensional system x′ =
A(t)x + h(t, x) were studied. In the present contribution we shall examine the asymptotic nature of the
solutions of a real two-dimensional system of retarded differential equations x′(t) = A(t)x(t)+B(t)x(t− r)+
h(t, x(t), x(t− r)), where r > 0 is a constant delay, A, B and h being matrix functions and a vector function,
respectively. The method of complexification transforms this system to one equation with complex-valued
coefficients. Stability and the asymptotic properties of this equation are studied by means of a suitable
Lyapunov-Krasovskii functional and by virtue of the Ważewski topological principle. The contribution has
a character of an overview article, nevertheless several results are given in a somewhat modified and more
general form than those given in [4] and [3].

Key words. delayed differential equations, asymptotic behaviour, stability, boundedness of solutions,
two-dimensional systems, Lyapunov method, Ważewski topological principle
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1. Introduction. Consider the real two-dimensional system

x′(t) = A(t)x(t) + B(t)x(t− r) + h(t, x(t), x(t− r)), (1.1)
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where A(t) = (ajk(t)), B(t) = (bjk(t)) (j, k = 1, 2) are real square matrices and h(t, x, y) =
(h1(t, x, y), h2(t, x, y)) is a real vector function, x = (x1, x2), y = (y1, y2). It is supposed
that the functions ajk are locally absolutely continuous on [t0,∞), bjk are locally Lebesgue
integrable on [t0,∞) and the function h satisfies Carathéodory conditions on [t0,∞)× R4.

There is a lot of papers dealing with the stability and asymptotic behaviour of n-dimensional
real vector equations with delay, for references see e. g. [1] or [2]. Since the plane has special
topological properties different from those of n-dimensional space, where n ≥ 3 or n = 1,
it is interesting to study asymptotic behaviour of two-dimensional systems by using tools
which are typical and effective for two-dimensional systems. The method of complexification
allows to simplify some considerations and estimations and, combined with the technique
of Lyapunov-Krasovskii functional and Razumikhin-type version of Ważewski topological
method, it leads to new, effective and easy applicable results in the two-dimensional case.
We shall give results both for the stable and instable case of the equation (1.1). More de-
tails and further results can be found in [4] and in [3]. For a similar results dealing with
ordinary differential equations without delay, the reader is referred to [6] and [5]. Notice
that the Razumikhin-type versions of Ważewski principle for retarded functional differential
equations were formulated in papers of K. P. Rybakowski [7, 8].

2. Preliminaries. Introducing complex variables z = x1 + ix2, w = y1 + i y2, we can
rewrite the system (1.1) into an equivalent equation with complex-valued coefficients

z′(t) = a(t)z(t) + b(t)z̄(t) + A(t)z(t− r) + B(t)z̄(t− r) + g(t, z(t), z(t− r)), (2.1)

where

a(t) =
1
2
(a11(t) + a22(t)) +

i
2
(a21(t)− a12(t)),

b(t) =
1
2
(a11(t)− a22(t)) +

i
2
(a21(t) + a12(t)),

A(t) =
1
2
(b11(t) + b22(t)) +

i
2
(b21(t)− b12(t)),
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B(t) =
1
2
(b11(t)− b22(t)) +

i
2
(b21(t) + b12(t)),

g(t, z, w) = h1

(
t,

1
2
(z + z̄),

1
2 i

(z − z̄),
1
2
(w + w̄),

1
2 i

(w − w̄)
)

+ i h2

(
t,

1
2
(z + z̄),

1
2 i

(z − z̄),
1
2
(w + w̄),

1
2 i

(w − w̄)
)

.

Conversely, putting a11(t) = Re[a(t) + b(t)], a12(t) = Im[b(t) − a(t)], a21(t) = Im[a(t) +
b(t)], a22(t) = Re[a(t) − b(t)], b11(t) = Re[A(t) + B(t)], b12(t) = Im[B(t) − A(t)], b21(t) =
Im[A(t)+B(t)], b22(t) = Re[A(t)−B(t)], h1(t, x, y) = Re g(t, x1 +i x2, y1 +i y2), h2(t, x, y) =
Im g(t, x1 + ix2, y1 + i y2), A(t) = (aij(t)), B(t) = (bij(t)), the equation (2.1) can be written
in the real form (1.1).

We shall use the following notation:
R set of all real numbers,
R+ set of all positive real numbers,
R0

+ set of all non-negative real numbers,
R− set of all negative real numbers,
R0
− set of all non-positive real numbers,

C set of all complex numbers,
ACloc(I,M) class of all locally absolutely continuous functions I → M ,
Lloc(I,M) class of all locally Lebesgue integrable functions I → M ,
K(I × Ω,M) class of all functions I × Ω → M satisfying Carathéodory

conditions on I × Ω,
Re z real part of z,
Im z imaginary part of z,
z̄ complex conjugate of z.

3. Assumptions. Consider the equation

z′(t) = a(t)z(t) + b(t)z̄(t) + A(t)z(t− r) + B(t)z̄(t− r) + g(t, z(t), z(t− r)), (3.1)
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where r > 0 is a constant, a, b ∈ ACloc(J, C), A,B ∈ Lloc(J, C), g ∈ K(J × C2, C), J =
[t0,∞). Throughout the paper we shall suppose that (3.1) satisfies the uniqueness property
of solutions. We shall consider a case

lim inf
t→∞

(|a(t)| − |b(t)|) > 0.

Clearly, the last inequality is equivalent to the existence of T ≥ t0 + r and µ > 0 such that

|a(t)| > |b(t)|+ µ for t ≥ T − r. (3.2)

Define functions γ, c by

γ(t) = |a(t)|+
√
|a(t)|2 − |b(t)|2, c(t) =

ā(t)b(t)
|a(t)|

. (3.3)

As γ(t) > |a(t)| and |c(t)| = |b(t)|, the inequality

γ(t) > |c(t)|+ µ (3.4)

holds for t ≥ T − r. It can be easily verified that γ, c ∈ ACloc([T − r,∞), C).
The equation (3.1) will be studied subject to suitable subsets of the following assump-

tions:

(i) The numbers T ≥ t0 + r and µ > 0 are such that (3.2) holds.
(ii) There exist functions κ, κ, % : [T,∞) → R such that

|γ(t)g(t, z, w) + c(t)ḡ(t, z, w)| ≤ κ(t)|γ(t)z + c(t)z̄|+ κ(t)|γ(t− r)w + c(t− r)w̄|+ %(t)

for t ≥ T , z, w ∈ C, where % is continuous on [T,∞).
(iin) There exist numbers τn ≥ T , Rn ≥ 0 and functions κn, κn : [T,∞) → R such that

|γ(t)g(t, z, w) + c(t)ḡ(t, z, w)| ≤ κn(t)|γ(t)z + c(t)z̄|+ κn(t)|γ(t− r)w + c(t− r)w̄|

http://www.river-valley.com
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for t ≥ τn, |z| > Rn, |w| > Rn.
(iii) β ∈ ACloc([T,∞), R0

+) is a function satisfying

β(t) ≥ λ(t) a. e. on [T,∞), (3.5)

where λ is defined by

λ(t) = κ(t) + (|A(t)|+ |B(t)|) γ(t) + |c(t)|
γ(t− r)− |c(t− r)|

(3.6)

for t ≥ T .
(iv) β− ∈ ACloc([T,∞), R0

−) is a function satisfying

β−(t) ≤ −λ(t) a. e. on [T,∞), (3.7)

where λ is defined by (3.6) for t ≥ T .
(ivn) βn ∈ ACloc([T,∞), R0

−) is a function satisfying

βn(t) ≤ −λn(t) a. e. on [T,∞), (3.8)

where λn is defined by

λn(t) = κn(t) + (|A(t)|+ |B(t)|) γ(t) + |c(t)|
γ(t− r)− |c(t− r)|

(3.9)

for t ≥ T .
(v) Λ : [T,∞) → R is a locally Lebesgue integrable function satisfying the inequalities

β′(t) ≤ Λ(t)β(t), θ(t) ≤ Λ(t) for t ∈ [T,∞), where θ is defined by (3.10).

http://www.river-valley.com
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(vn) Λn : [T,∞) → R is a locally Lebesgue integrable function satisfying the inequalities
β′n(t) ≥ Λn(t)βn(t), Θn(t) ≥ Λn(t) for almost all t ∈ [τn,∞), where Θn is defined by (3.10).

Obviously, if A, B, κ are locally absolutely continuous on [T,∞) and λ(t) ≥ 0, the choice
β(t) = λ(t) or β−(t) = −λ(t) is admissible in (iii) or (iv), respectively. Similarly, if A, B,
κn are locally absolutely continuous on [T,∞) and λn(t) ≥ 0, the choice βn(t) = −λn(t) is
admissible in (ivn).

Throughout the paper we denote

α(t) = 1 +
∣∣∣∣ b(t)
a(t)

∣∣∣∣ sgn Re a(t),

α−(t) = 1−
∣∣∣∣ b(t)
a(t)

∣∣∣∣ sgn Re a(t),

ϑ(t) =
Re(γ(t)γ′(t)− c̄(t)c′(t)) + |γ(t)c′(t)− γ′(t)c(t)|

γ2(t)− |c(t)|2
,

ϑ−(t) =
Re(γ(t)γ′(t)− c̄(t)c′(t))− |γ(t)c′(t)− γ′(t)c(t)|

γ2(t)− |c(t)|2
,

θ(t) = α(t) Re a(t) + ϑ(t) + κ(t) + β(t),
Θ(t) = α−(t) Re a(t) + ϑ−(t)− κ(t),

Θn(t) = α−(t) Re a(t) + ϑ−(t)− κn(t) + βn(t).

(3.10)

It can be easily verified that the functions ϑ, ϑ− are locally Lebesgue integrable on [T,∞)
under the assumption (i). If β ∈ ACloc([T,∞), R+), κ ∈ Lloc([T,∞), R) and β′(t)/β(t) ≤
θ(t) for almost all t ≥ T together with the conditions (i), (ii) are fulfilled, then we can choose
Λ(t) = θ(t) for t ∈ [T,∞) in (v). If relations βn ∈ ACloc([T,∞), R−), κn ∈ Lloc([T,∞), R)
and β′n(t)/βn(t) ≤ Θn(t) for almost all t ≥ τn together with the conditions (i), (iin) are
satisfied, then we can choose Λn(t) = Θn(t) for t ∈ [T,∞) in (vn).
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4. Results.

4.1. Stable case. The results on asymptotic and stability properties of the solutions
of (3.1) were intensively studied in Kalas and Baráková [4]. Our first theorem is a simple
modification of [4, Theorem 1].

Theorem 4.1. Let the assumptions (i), (ii), (iii) and (v) be fulfilled with %(t) ≡ 0. If

lim sup
t→∞

∫ t

Λ(s) ds < ∞, (4.1)

then the trivial solution of (3.1) is stable on [T,∞); if

lim
t→∞

∫ t

Λ(s) ds = −∞, (4.2)

it is asymptotically stable on [T,∞).

Proof. The proof, based on the technique of Lyapunov-Krasovskii functional, is a small
modification of that of [4, Theorem 1].

Remark 1. If we consider an ordinary differential equation

z′ = a(t)z + b(t)z̄ + g(t, z), (4.3)

instead of the equation (3.1), then we have A(t) ≡ 0, B(t) ≡ 0. Thus we can take κ(t) ≡ 0,
λ(t) ≡ 0, β(t) ≡ 0 and Λ(t) = θ(t) = α(t)Re a(t) + ϑ(t) + κ(t) in (iii) and (v), respectively,
and we obtain [6, Theorem 1] as a consequence of Theorem 4.1.

The following remark allows to simplify the function ϑ in (3.10).

Remark 2. Since

ϑ =
Re(γγ′ − c̄c′) + |γc′ − γ′c|

γ2 − |c|2
≤ (|γ′|+ |c′|)(|γ|+ |c|)

γ2 − |c|2
=
|γ′|+ |c′|
γ − |c|

,

http://www.river-valley.com
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it follows from (3.4), that the function ϑ in (3.10) may be replaced by 1
µ (|γ′|+ |c′|).

From Theorem 4.1 we easily obtain (in the same way as in [4]) the following two
corollaries

Corollary 4.2. Let a(t) ≡ a ∈ C, b(t) ≡ b ∈ C, |a| > |b|. Assume that %0, %1 : [T,∞) → R
are such that

|g(t, z, w)| ≤ %0(t)|z|+ %1(t)|w| (4.4)

for t ≥ T , |z| < R, |w| < R and %0 is locally Lebesgue integrable on [T,∞). Let β ∈
ACloc([T,∞), R+) be such that

β(t) ≥
(
|a|+ |b|
|a| − |b|

) 1
2 (

%1(t) + |A(t)|+ |B(t)|
)

a. e. on [T,∞).

If

lim sup
t→∞

∫ t

max
(
|a| − |b|
|a|

Re a +
(
|a|+ |b|
|a| − |b|

) 1
2

%0(s) + β(s),
β′(s)
β(s)

)
ds < ∞, (4.5)

then the trivial solution of the equation (3.1) is stable; if

lim
t→∞

∫ t

max
(
|a| − |b|
|a|

Re a +
(
|a|+ |b|
|a| − |b|

) 1
2

%0(s) + β(s),
β′(s)
β(s)

)
ds = −∞, (4.6)

then the trivial solution of (3.1) is asymptotically stable.

In the next corollary, we denote

H1(t) =

√
(|a| − |b|)3
|a|+ |b|

Re a

|a|
+ |A|+ |B|+ %0(t) + %1(t),

H2(t) =

√
|a| − |b|
|a|+ |b|

%′1(t)
%1(t) + |A|+ |B|

.

http://www.river-valley.com
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Corollary 4.3. Let a(t) ≡ a ∈ C, b(t) ≡ b ∈ C, |a| > |b| and A(t) ≡ A ∈ C,
B(t) ≡ B ∈ C. Let there exist %0, %1 : [T,∞) → R, %0 being locally Lebesgue integrable and
%1 locally absolutely continuous, such that (4.4) holds for t ≥ T , |z| < R, |w| < R. Suppose
%1(t) + |A|+ |B| > 0 on [T,∞). If

lim sup
t→∞

∫ t

max(H1(s),H2(s)) ds < ∞,

then the trivial solution of the equation (3.1) is stable; if

lim
t→∞

∫ t

max(H1(s),H2(s)) ds = −∞,

then the trivial solution of (3.1) is asymptotically stable.
The next theorem gives a useful estimation for the solution z(t) of the equation (3.1).

Theorem 4.4. Let the assumptions (i), (ii), (iii) and (v) be fulfilled, and

V (t) = |γ(t)z(t) + c(t)z̄(t)|+ β(t)
∫ t

t−r

|γ(s)z(s) + c(s)z̄(s)| ds, (4.7)

where z(t) is any solution of (3.1) defined on [t1,∞), where t1 ≥ T . Then

µ|z(t)| ≤ V (s) exp
(∫ t

s

Λ(τ) dτ

)
+

∫ t

s

%(τ) exp
(∫ t

τ

Λ(σ)dσ

)
dτ (4.8)

for t ≥ s ≥ t1.

Proof. The proof of the theorem can be found in [4, Theorem 2].

Remark 3. If we consider the ordinary differential equation (4.3) instead of the equa-
tion (3.1), we can take A(t) ≡ 0, B(t) ≡ 0, κ(t) ≡ 0, λ(t) ≡ 0, β(t) ≡ 0, Λ(t) = θ(t) =
α(t) Re a(t) + ϑ(t) + κ(t) and we obtain [6, Theorem 2] as a consequence of Theorem 4.4.

http://www.river-valley.com
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Theorem 4.4 has several further consequences. Their proofs follow from those of cor-
responding corollaries in [4] and therefore the most of them are omitted.

Corollary 4.5. Let the assumptions (i), (ii), (iii) and (v) be fulfilled. Let

lim sup
t→∞

∫ t

s

%(τ) exp
(
−

∫ τ

s

Λ(σ)dσ

)
dτ < ∞.

If z(t) is any solution of (3.1) defined for t →∞, then

z(t) = O

[
exp

(∫ t

s

Λ(τ) dτ

)]
.

Corollary 4.6. Let the assumptions (i), (ii), (iii), (v) be fulfilled and let

lim sup
t→∞

Λ(t) < ∞ and %(t) = O(eηt), where η > lim sup
t→∞

Λ(t). (4.9)

If z(t) is any solution of (3.1) defined for t →∞, then z(t) = O(eηt).

Proof. In view of (4.9) , there exist L > 0, η∗ < η and s > T such that η∗ > Λ(t) and
%(t) e−ηt ≤ L for t ≥ s. From (4.8), we get

µ|z(t)| ≤ V (s) eη∗(t−s) +L

∫ t

s

eητ eη∗(t−τ) dτ

≤ V (s) eη∗(t−s) +L eη∗t(η − η∗)−1[e(η−η∗)t−e(η−η∗)s] (4.10)
≤ V (s) eη∗(t−s) +L(η − η∗)−1 eηt = O(eηt).

Remark 4. If %(t) ≡ 0, we can obtain the following statement: there exists an η0 < η such
that z(t) = o (eη0t) holds for the solution z(t).

http://www.river-valley.com
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Consider now a special case of the equation (3.1) with g(t, z, w) ≡ h(t):

z′(t) = a(t)z(t) + b(t)z̄(t) + A(t)z(t− r) + B(t)z̄(t− r) + h(t), (4.11)

where h : [t0,∞) → C is a locally Lebesgue integrable function.

Corollary 4.7. Suppose that the assumption (i) is satisfied and

lim sup
t→∞

(γ(t) + |c(t)|) < ∞. (4.12)

Let β̃ ∈ ACloc([T,∞), R+) be such that

β̃(t) ≥ (|A(t)|+ |B(t)|) γ(t) + |c(t)|
γ(t− r)− |c(t− r)|

a. e. on [T,∞). (4.13)

Assume that h is a bounded function. If

lim sup
t→∞

[α(t) Re a(t) + ϑ(t) + β̃(t)] < 0 (4.14)

and

lim sup
t→∞

β̃′(t)
β̃(t)

< 0, (4.15)

then any solution of (4.11) is bounded. If h(t) = O(eηt) for any η > 0,

lim sup
t→∞

[α(t) Re a(t) + ϑ(t) + β̃(t)] ≤ 0 and lim sup
t→∞

β̃′(t)
β̃(t)

≤ 0,

then any solution z(t) of (4.11) satisfies z(t) = o(eηt) for any η > 0.

http://www.river-valley.com
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Remark 5. If h(t) ≡ 0 in Corollary 4.7, then, with respect to Corollary 4.6 and
Remark 4, we get the following statement:

Suppose that assumptions (i) and (4.12) are satisfied and for β̃ from Corollary 4.7
the inequality (4.13) is true. If (4.14) and (4.15) hold, then there exists η0 < 0 such that
z(t) = o(eη0t) for any solution z(t) of

z′(t) = a(t)z(t) + b(t)z̄(t) + A(t)z(t− r) + B(t)z̄(t− r).

In Theorem 4.8 we give a sufficient condition ensuring that limt→∞ z(t) = 0 for any
solution z(t) of (3.1) defined for t →∞ (for the proof see [4]).

Theorem 4.8. Let the assumptions (i), (ii), (iii) and (v) be fulfilled. Let Λ(t) satisfy Λ(t) ≤ 0
a. e. on [T ∗,∞),

lim
t→∞

∫ t

Λ(s) ds = −∞ and %(t) = o(Λ(t)), (4.16)

where T ∗ ∈ [T,∞). Then any solution z(t) of (3.1) defined for t →∞ satisfies

lim
t→∞

z(t) = 0.

Remark 6. If we consider the ordinary differential equation (4.3) instead of the equa-
tion (3.1), we can take A(t) ≡ 0, B(t) ≡ 0, κ(t) ≡ 0, λ(t) ≡ 0, β(t) ≡ 0, Λ(t) = θ(t) =
α(t) Re a(t)+ϑ(t)+κ(t) and we obtain [6, Theorem 3] as a consequence of Theorem 4.8.

Theorem 4.8 yields also the consequence:

Corollary 4.9. Let the assumptions (i) and (4.12) be satisfied and β̃ : [T,∞) → R+ be
a locally absolutely continuous function satisfying (4.13). If the relations (4.14) and (4.15)
are fulfilled and h : [t0,∞) → C is a locally Lebesgue integrable function satisfying

lim
t→∞

h(t) = 0,

http://www.river-valley.com
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then

lim
t→∞

z(t) = 0

for any solution z(t) of (4.11) defined for t →∞.

4.2. Unstable case. In this case we study not only the solutions of (3.1) with the
unstable behaviour, but mainly the the existence of solutions which are bounded or tending
to the origin as t →∞.

Theorem 4.10. Let the assumptions (i), (ii0), (iv0), (v0) be fulfilled for some τ0 ≥ T .
Suppose there exist t1 ≥ τ0 and ν ∈ (−∞,∞) such that

inf
t≥t1

[∫ t

t1

Λ0(s) ds− ln(γ(t) + |c(t)|)
]
≥ ν. (4.17)

If z(t) is any solution of (3.1) satisfying

min
s∈[t1−r,t1]

|z(s)| > R0, ∆(t1) > R0 e−ν , (4.18)

where ∆(t) = (γ(t)− |c(t)|)|z(t)|+ β0(t)maxs∈[t−r,t] |z(s)|
∫ t1

t1−r
(γ(s) + |c(s)|) ds, then

|z(t)| ≥ ∆(t1)
γ(t) + |c(t)|

exp
[∫ t

t1

Λ0(s) ds

]
(4.19)

for all t ≥ t1 for which z(t) is defined.

Proof. The proof can be accomplished by the help of Lyapunov-Krasovskii functional, the
reader is referred to the proof of [3, Theorem 2] for details.

Similarly as in [3] we can obtain the following two corollaries.
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Corollary 4.11. Let the assumptions of Theorem 4.10 be fulfilled with R0 > 0. If

lim inf
t→∞

[∫ t

t1

Λ0(s) ds− ln(γ(t) + |c(t)|)
]

= ς > ν, (4.20)

then to any ε, 0 < ε < R0 eς−ν , there is a t2 ≥ t1 such that

|z(t)| > ε (4.21)

for all t ≥ t2 for which z(t) is defined.

Corollary 4.12. Let the assumptions of Theorem 4.10 be fulfilled with R0 > 0. If

lim
t→∞

[∫ t

t1

Λ0(s) ds− ln(γ(t) + |c(t)|)
]

= ∞,

then for any ε > 0 there exists a t2 ≥ t1 such that (4.21) holds for all t ≥ t2 for which z(t)
is defined.

The following theorem is a little generalization of [3, Theorem 5]. The proof of this
theorem is based on the results of K. P. Rybakowski [8] on a Ważewski topological principle
for retarded functional differential equations of Carathéodory type. The details of the proof
are similar to those of the proof of [3, Theorem 5].

Theorem 4.13. Let the conditions (i), (ii), (iv) be fulfilled and Λ̃ be a continuous function
satisfying the inequality Λ̃(t) ≤ Θ(t) a. e. on [T,∞), where Θ is defined by (3.10). If
ξ : [T − r,∞) → R is a continuous function such that

Λ̃(t) + β−(t) exp
[
−

∫ t

t−r

ξ(s) ds

]
− ξ(t) > %(t)C−1 exp

(
−

∫ t

T

ξ(s) ds

)
(4.22)
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for t ∈ [T,∞] and some constant C > 0, then there exists a t2 > T and a solution z0(t) of
(3.1) satisfying

|z0(t)| ≤
C

γ(t)− |c(t)|
exp

[∫ t

T

ξ(s) ds

]
(4.23)

for t ≥ t2.

Remark 7. If η1(t)Λ̃(t) > |β−(t)| + C−1%(t) > 0, where 0 < η1(t) ≤ 1, the functions η1, Λ̃
are continuous on [T,∞) and Λ̃(t) ≤ Θ(t) a. e. on [T,∞), then the choice ξ(t) = η1(t)Λ̃(t)+
β−(t) − C−1%(t) is possible in (4.22). Moreover, the condition |β−(t)| + C−1%(t) > 0 can
be omitted if Theorem 4.13 is used. Indeed, the identity |β−(t)| + C−1%(t) ≡ 0 implies
β−(t) ≡ 0, %(t) ≡ 0 and consequently, in view of (3.7), (3.6), (ii), we have λ(t) ≡ 0, κ(t) ≡ 0,
A(t) ≡ 0, B(t) ≡ 0, g(t, 0, 0) ≡ 0. Thus the equation (3.1) has the trivial solution z0(t) ≡ 0
in this case.

As a corollary of Theorem 4.13 we obtain sufficient conditions for the existence of a
bounded solution of (3.1) or the existence of a solution z0(t) of (3.1) satisfying limt→∞ z0(t) =
0.

Corollary 4.14. Let the assumptions of Theorem 4.13 be satisfied. If

lim sup
t→∞

[
1

γ(t)− |c(t)|
exp

(∫ t

T

ξ(s) ds

)]
< ∞,

then there is a bounded solution z0(t) of (3.1). If

lim
t→∞

[
1

γ(t)− |c(t)|
exp

(∫ t

T

ξ(s) ds

)]
= 0,

then there is a solution z0(t) of (3.1) such that

lim
t→∞

z0(t) = 0.
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The following theorem is obtained by the combination of Theorem 4.10 and Theorem 4.13
and generalizes [3, Theorem 8].

Theorem 4.15. Suppose that the hypotheses (i), (ii), (iin), (iv), (ivn), (vn) are fulfilled for
τn ≥ T and n ∈ N, where Rn > 0, infn∈N Rn = 0. Let Λ̃ be a continuous function satisfying
the inequality Λ̃(t) ≤ Θ(t) a. e. on [T,∞), where Θ is defined by (3.10). Assume that
ξ : [T − r,∞) → R is a continuous function such that

Λ̃(t) + β−(t) exp
[
−

∫ t

t−r

ξ(s) ds

]
− ξ(t) > %(t)C−1 exp

(
−

∫ t

T

ξ(s) ds

)
(4.24)

for t ∈ [T,∞) and some constant C > 0. Suppose

lim sup
t→∞

[∫ t

T

(Λn(s)− ξ(s)) ds + ln
γ(t)− |c(t)|
γ(t) + |c(t)|

]
= ∞, (4.25)

lim
t→∞

[
βn(t) max

s∈[t−r,t]

exp
[∫ s

T
ξ(σ) dσ

]
γ(s)− |c(s)|

∫ t

t−r

(γ(s) + |c(s)|) ds

]
= 0, (4.26)

inf
τn≤s≤t<∞

[∫ t

s

Λn(σ) dσ − ln(γ(t) + |c(t)|)
]
≥ ν (4.27)

for n ∈ N, where ν ∈ (−∞,∞). Then there exists a solution z0(t) of (3.1) such that

lim
t→∞

min
s∈[t−r,t]

|z0(s)| = 0. (4.28)

Proof. For the proof see [3].
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[7] K. P. Rybakowski, Ważewski principle for retarded functional differential equations, J. Differential

Equations, 36(1) (1980), 117–138.
[8] K. P. Rybakowski, A topological principle for retarded functional differential equations of Carathéodory
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