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A LIMITING CASE OF THE UNCERTAINTY PRINCIPLE

MIROSLAV KRBEC∗ AND HANS-JÜRGEN SCHMEISSER†

Abstract. We prove an imbedding inequality in the form of the uncertainty principle, independent of
the dimension.
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1. Introduction, notations. Our concern in this paper lies with the weighted in-
equality

(∫
B

f(x)2V (x) dx

)1/2

≤ c

(∫
B

|∇f(x)|2 dx

)1/2

, f ∈ W 1,2
0 (B), (1.1)
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where B is the unit ball in RN and V is a weight in B, that is, a.e. non-negative and locally
integrable function in B; this is a local version of(∫

RN

f(x)2V (x) dx

)1/2

≤ c

(∫
RN

|∇f(x)|2 dx

)1/2

, f ∈ W 1,2(RN ). (1.2)

All functions are supposed to be real-valued (complex-valued functions can be consid-
ered, too) and various constants independent of f will be denoted by the same generic symbol
c, C etc. if no misunderstanding can arise. Variants and generalizations of the above inequal-
ities have been intensively studied during last decades. They appear under various names as
the trace inequality or the uncertainty principle and they have many relevant applications
in analysis. It would be a difficult task to collect even the most important references and we
shall make no attempt to do that. We shall just recall several basic facts and explain our
motivation.

Necessary and sufficient conditions for the imbedding of W 1,p into Lq(V ) have been
studied in a number of papers, we cite at least Adams’ inequality in [1], Maz’ya’s pioneering
works using capacities, [14], [15]. For p = q = 2 and N ≥ 3, a necessary and sufficient
condition is due to Kerman and Sawyer [10] – this is connected with Sawyer’s necessary and
sufficient conditions for validity of two weight inequalities for the Riesz potentials, see [17].

Due to the nature of these two-weight conditions (which require an information on
the acting of Riesz potentials on weights in question) and of capacities, of importance are
sufficient conditions (close to necessary ones as much as possible of course) in amenable
terms of various classes and/or spaces of function. Fefferman in [6] gave the following
sufficient condition: Let us recall that the Fefferman-Phong class Fp, 1 ≤ p ≤ N/2, consists
of functions V such that

‖V ‖Fp = sup
x∈RN

r>0

r2

(
1

|B(x, r)|

∫
B(x,r)

|V (y)|p dy

)1/p

< ∞.
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Theorem 1.1 (Fefferman [6]). Let N ≥ 3, 1 < p ≤ N/2, and V ∈ Fp. Then (1.2)
holds.

Note that Chiarenza and Frasca [4] gave a very fine alternative proof with help of
properties of the maximal operator. We have Fp2 ⊂ Fp1 for 1 ≤ p1 ≤ p2 ≤ N/2, and
FN/2 = LN/2. If we restrict ourselves to balls B(x, r), 0 < r < ε0, we get the Morrey space
Lp,N−2p; recall that for 0 < λ ≤ N and 1 ≤ p < ∞, the Morrey space Lp,λ is the collection
of all V ∈ Lp

loc such that

‖V ‖Lp,λ = sup
x∈RN

0<r≤r0

r−λ/p

(∫
B(x,r)

|V (y)|p dy

)1/p

< ∞.

Inserting a ‘hat function’,

u(x) = (r − |x|)χB(0,r), x ∈ RN ,

into (1.2) we see that V ∈ L1,1 in order that (1.2) holds. Nevertheless, as is well known,
this is not sufficient for validity of (1.2). Further investigation shows that the situation near
L1,N−2 is of rather delicate nature. Various refined conditions have been considered in the
literature, see e.g. Zamboni [19], Di Fazio [5], and Kurata [12] (Stummel-Kato classes and
so on).

For N = 2 there is the sufficient condition V ∈ L log L for (1.1) due to Gossez and Loulit
in [8] and a more general condition in terms of Lorentz-Zygmund spaces and based on fine
critical imbedding theorem due to Brezis and Wainger [3], see Krbec and Schott [11]; this
is, however, strictly limited to planar domains.

We shall use the standard notation ‖ . ‖k,p for the norm in W k,p; if k = 0, then W k,p = Lp

with the norm denoted by ‖ . ‖p. If V is a weight in a domain G ⊂ RN then the weighted
Lebesgue space Lp(V ) = Lp(V,G) is defined as the space of all measurable f in G with the
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finite norm ‖f |Lp(V )‖ =
(∫

G
|f(x)|pV (x) dx

)1/p; the weighted Sobolev space W k,p(V ) =
W k,p(V,G) will then be the space of all functions with weak derivatives up to the order k
and the finite norm

∑
|α|≤k ‖Dαf |Lp(V )‖. If f is a measurable function in RN , then f∗ will

denote its non-increasing rearrangement. The symbol Lp,q will stand for the usual Lorentz
space (1 ≤ p, q ≤ ∞).

2. Weighted imbeddings. We shall discuss weighted consequences of the Sobolev
imbedding theorem and of the Gross logarithmic inequality. A very suitable auxiliary tool
for that will be the general imbedding theorem due to Ishii [9]. The Young function in the
following is an even, convex function Φ : R → [0,∞) such that Φ(0) = 0 and limt→∞ Φ(t) =
∞. If w is a weight on a measurable set G ⊂ RN , then we consider the weighted modular
ρ(f, Φ,w) =

∫
G

Φ(f(x))w(x) dx and the corresponding Luxemburg or Orlicz norm,

‖f |LΦ(w)‖ = inf{µ : ρ(f/µ, Φ,w) ≤ 1},

giving the weighted Orlicz space LΦ(w). The symbol Lp log L will denote the Orlicz space
with the generating Young function t 7→ |t|p log(e + t), t ∈ R, and Lexp tα for α > 0 will
stand for the space with the Young function t 7→ exp(|t|α) − 1, t ∈ R; for α = 1 we shall
simply write Lexp.

We state the above mentioned imbedding theorem (see [9] and [16]) in a slightly modified
form, suitable for our purposes. Note that the norm of the imbedding in the theorem is
independent of the dimension since it is a reformulation of an abstract theorem, which holds
true in general Musielak-Orlicz spaces.

Proposition 2.1 (Ishii). Let u and v be weights in a measurable set G ⊂ RN , and let
Φ and Ψ be Young functions. Then LΦ(u) ↪→ LΨ(v) if and only if there exists K > 1 such
that the function

x 7→ sup
t>0

[Ψ(t)v(x)− Φ(Kt)u(x)] , x ∈ G,

is integrable over G.
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Since we are interested in large N ’s we shall tacitly assume that N ≥ 3 in the following
to avoid unnecessary technicalities.

First of of let us briefly discuss a straightforward approach based on Sobolev imbeddings.
Invoking Theorem 1.1 we see that V ∈ LN/2 is a sufficient condition for (1.1); this is the
“worst” case possible. One can do a little bit better: Since W 1,2(B) is imbedded into the
Lorentz space L2N/(N−2),2 we have∫

B

f(x)2V (x) dx ≤
∫ |B|

0

f∗(t)2V ∗(t) dt

≤
∫ |B|

0

t(N−2)/Nf∗(t)2t2/NV ∗(t)
dt

t

≤ sup
0<s<∞

s2/NV ∗(s)
∫ |B|

0

(
t(N−2)/2Nf∗(t)

)2 dt

t
,

where we have used the Hardy-Littlewood rearrangement inequality Hence (1.1) holds if
V ∈ LN/2,∞. In particular, V ∈ Lexp t2 is sufficient for (1.1) in any RN . Nevertheless,
a dimension-free imbedding would require a detailed inspection of the behaviour of the
imbedding constants and also of the equivalence of the exponential norm of V with the
asymptotic estimates for the LN/2,∞ norms in dependence on N . We shall not pursue this
line here.

Instead, we shall employ the well-known dimension-free estimate for functions in W 1,2(RN )
due to Gross, usually called the Gross logarithmic inequality (see e.g. [13] for a detailed dis-
cussion). It can be formulated as follows:∫

RN

f(x)2 log
(

f(x)2

‖f‖22

)
dx + N‖f‖22 ≤

1
π

∫
RN

|∇f(x)|2 dx. (2.1)

If, say, ‖f |W 1,2(RN )‖ = 1/2, we obtain from (2.1) that∫
RN

f(x)2 log |f(x)| dx ≤ 1
2π

∫
RN

|∇f(x)|2 dx (2.2)

http://www.river-valley.com
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(since under our assumption log ‖f‖2 ≤ 0).
Note also that in [2] Adams considered more general and dimension dependent inequal-

ities (with norms taken with respect to the Gaussian measure exp(−|x|2) dx).

Theorem 2.2. Let N ≥ 3, and V ∈ Lexp(B). Then there exists c > 0 independent of N
such that ∫

B

f(x)2V (x) dx ≤ c‖f |W 1,2(B)‖2

for all f ∈ W 1,2
0 (B).

Proof. Let f ∈ W 1,2
0 (B), ‖f |W 1,2(B)‖ = 1/2. Since W 1,2

0 (B) is a lattice we can suppose
(considering |f | instead of f) that f ≥ 0 a.e. in B. Denote the extension of f by zero to the
whole of RN by the same symbol. Consider f̃(x) = f(x) + εh(x), where

h(x) =

{
1 if |x| ≤ 1,

|x|−α if |x| > 1,

where α > (N − 2)/2. Our first goal will be to show that∫
RN

(f(x) + εh(x))2 log(1 + f(x) + εh(x)) dx ≤ c‖f |W 1,2(B)‖2 (2.3)

with some constant c independent of the dimension and (small) ε. Then Fatou’s lemma
applied to (2.3) for ε → 0+ will give∫

B

(f(x))2 log(1 + f(x)) dx ≤ c‖f |W 1,2(B)‖2. (2.4)

The next step will be then to derive the desired weighted inequality from (2.4).

http://www.river-valley.com
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Let us turn our attention to (2.3). We have∫
RN

(f(x) + εh(x))2 log(1 + f(x) + εh(x)) dx

=
∫

f(x)≥2

(f(x) + εh(x))2 log(1 + f(x) + εh(x)) dx

+
∫

0<f(x)<2

(f(x) + εh(x))2 log(1 + f(x) + εh(x)) dx

+
∫

f≡0

(εh(x))2 log(1 + εh(x)) dx

≤
∫

f(x)≥2

(f(x) + ε)2 log(1 + f(x) + ε) dx

+
∫

0<f(x)<2

(f(x) + ε)2 log(1 + f(x) + ε) dx

+
∫

B

ε2 log(1 + ε) dx +
∫

RN\B

(
ε

|x|α

)2

log
(

1 +
ε

|x|α

)
dx

= I1(ε) + I2(ε) + I3(ε) + I4(ε).

(2.5)

By virtue of (2.2), since log(1 + f(x) + ε) ≤ 2 log(f(x) + ε) if f(x) ≥ 2,

I1(ε) =
∫

f(x)≥2

(f(x) + ε)2 log(1 + f(x) + ε) dx ≤ 1
π

∫
RN

|∇(f(x) + εh(x))|2 dx.

For the right hand side there is the elementary estimate∫
RN

|∇(f(x) + εh(x))|2 dx ≤ c‖f |W 1,2‖2 + cε2

∫
RN\B

|∇h(x)|2 dx.

http://www.river-valley.com
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Since ∣∣∣∣ ∂

∂xi
|x|−α

∣∣∣∣ ≤ α|x|−(α+1), |x| ≥ 1,

we have |∇h(x)|2 ≤ α2|x|−(2α+2) and for α > −1+N/2 we get, passing to polar coordinates,∫
|x|≥1

|∇h(x)|2 dx ≤ α2

∫
|x|≥1

|x|−(2α+2) dx = ωNα2 1
2α + 2−N

,

where ωN is the surface measure of the unit sphere, that is,

ωN =
2πN/2

Γ(N/2)
.

By Stirling’s formula,

Γ(N/2) ∼ e−N/2(N/2)N/2−1/2.

Put α = N for the rest of the proof. Then we obtain∫
|x|≥1

|∇h(x)|2 dx ≤ 2πN/2

Γ(N/2)
N2

2N + 2−N
≤ c

2πN/2

Γ(N/2)
N

≤ c
2πN/2 eN/2 N

(N/2)N/2−1/2
∼ 2N/2πN/2 eN/2 N3/2

NN/2

=
(

(2π e)NN3

NN

)1/2

,

which is bounded uniformly with respect to N (and even tends to 0 when N → ∞). Alto-
gether

I1(ε) ≤ c‖f |W 1,2‖+ cε2. (2.6)

http://www.river-valley.com
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We estimate the second integral. We shall make use of the well-known behaviour of the
best constant for the Sobolev imbedding; there holds

‖f |L2N/(N−2)(RN )‖ ≤ AN‖f |W 1,2(RN )‖, (2.7)

where

A−1
N =

√
πN1/2(N − 2)1/2

(
Γ(N/2)
Γ(N)

)1/N

(see e.g. [18]). By Stirling’s formula,

A−1
N ∼ N1/2. (2.8)

Hence by Hölder’s inequality,

I2(ε) =
∫

0<f(x)<2

(f(x) + ε)2 log(1 + f(x) + ε) dx

≤ c

(∫
0<f(x)<2

(f(x) + ε)2N/(N−2)

)(N−2)/N

|B|2/N

≤ cN−1|B|2/N ≤ cN−1

(
πN/2

Γ(1 + N/2)

)2/N

∼ N−1N−1 ∼ N−2,

(2.9)

where the first equivalence on the last line follows again from Stirling’s formula.
Finally, for small ε, the third and the fourth integrals can be estimated as follows:

I3(ε) + I4(ε) ≤
∫

B

ε2 log
1
ε

dx +
∫

RN\B

(
ε|x|−α

)2 log
|x|α

ε
dx

≤ |B|ε2 log
1
ε

+ cωNε2

∫ ∞

1

rN−1−2α log
rα

ε
dr

http://www.river-valley.com
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which is, after putting ε = δα, and with α = N ,

= |B|ε2 log
1
ε

+ cωNδ2NN

∫ ∞

1

rN−2N−1 log
r

δ
dr

= |B|ε2 log
1
ε

+ cωNδ2N−1N

∫ ∞

1

r−N
(r

δ

)−1

log
r

δ
dr

≤ c|B|ε2−1/N N

N − 1
.

Hence the left hand side of (2.3) is finite. Fatou’s lemma gives then∫
B

f(x)2 log(1 + f(x)) dx ≤ c‖f |W 1,2
0 (B)‖2, (2.10)

where c is independent of the dimension N .
Since the modular and the norm convergence in L2 log L(B) are equivalent we arrive at

the imbedding W 1,2
0 (B) ↪→ L2 log L in any RN , N ∈ N, with the norm independent of N .

Now our problem reduces to establishing a sufficient condition for the imbedding
L2 log L(B) ↪→ L2(V,B), where L2 log L(B) is the Orlicz space generated by the Young
function t 7→ t2 log(1 + |t|). Ishii’s theorem gives a necessary and sufficient condition for
that, namely, integrability of the function

sup
t>0

[t2V (x)−Kt2 log(1 + Kt)], x ∈ B, (2.11)

over B, for some K > 1. Let us rewrite the function in (2.11) as

sup
t>0

[tV (x)−Kt log(1 + Kt1/2)]. (2.12)

By virtue of the Young inequality the condition is V ∈ LΨ̃(B), where Ψ̃ is the complementary
function to Ψ(t) = |t| log(1 + t1/2). Note that Ψ(t) ∼ |t| log(1 + t) and it is well known that
the complementary function is equivalent to t 7→ exp |t| − 1.

http://www.river-valley.com
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Remark 2.1. A closer inspection of the proof shows that Theorem 2.2 remains to be true
in RN . In particular, the chain of the inequalities in (2.9) does not hold then and one has
to replace it by an appropriate estimate for the function f(x)+ εh(x) in B ∩{0 < f(x) < 2}
and in (RN \B)∩{0 < f(x) < 2}. The asymptotic estimate of I2(ε) by cN−3 does not hold,
nevertheless, it is not difficult to show that I2(ε) is bounded and consequently one can pass
to the lim inf as before. The integrals I3(ε) and I4(ε) can be treated with similarly.
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