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ON SPATIAL DECAY ESTIMATES FOR DERIVATIVES OF VORTICITIES
OF THE TWO DIMENSIONAL NAVIER-STOKES FLOW

YASUNORI MAEKAWA∗

Abstract. We are concerned with the spatial decay estimates for derivatives of vorticities solving the
two dimensional vorticity equations equivalent to the Navies-Stokes equations. As an application we derive
asymptotic behaviors of derivatives of vorticities at time infinity. It is well-known by now that the vorticity
behaves asymptotically as the Oseen vortex provided that the initial vorticity is integrable. We show that
each derivative of the vorticity also behaves asymptotically as that of the Oseen vortex.
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1. Introduction. We are interested in the two dimensional flow of a viscous incom-
pressible fluid. The velocity of the fluid is described by the Navier-Stokes equations:

{
ut −∆u + (u,∇)u +∇p = 0 for t > 0, x ∈ R2,

∇ · u = 0 for x ∈ R2,
(1.1)

where u = u(x, t) ∈ R2 is the fluid velocity, p(x, t) ∈ R is the pressure, ∇ = (∂/∂x1, ∂/∂x2),
∆ = (∂/∂x1)2 + (∂/∂x2)2 and ut = ∂tu = ∂u/∂t. The kinematic viscosity has been rescaled
to be 1. We are concerned with the vorticity ω =rot u = ∂u2/∂x1 − ∂u1/∂x2 when initial
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vorticity is integrable. For this purpose, instead of (1.1), we consider an equation for the
vorticity which is obtained by taking the curl of (1.1):

ωt −∆ω + (u,∇)ω = 0, t > 0, x ∈ R2. (1.2)

The velocity u is obtained in terms of ω via the Biot-Savart law

u(x, t) =
1
2π

∫
R2

(x− y)⊥

|x− y|2
ω(y, t) dy, t > 0, x ∈ R2, (1.3)

where x⊥ = (−x2, x1). The equation (1.2)–(1.3) are formally equivalent to (1.1).
The global well-posedness of the two dimensional vorticity equations in L1(R2) is first

obtained by Y. Giga, T. Miyakawa and H. Osada [10]. In fact they constructed a global
solution even when initial data is a finite measure. This result is extended by various authors
for example by M. Ben-Artzi [1], H. Brezis [2], and T. Kato [13]. Although the uniqueness of
solution was known by [10] when the point mass part of the initial data is small, it is quite
recent that the uniqueness is proved for a general measure by I. Gallagher and Th. Gallay
[5].

2. Spatial decay estimates for derivatives of vorticities. In the past papers,
several estimates for vorticities have been established. For example, we already know Lp

estimates of vorticities and velocities as follows.
Let p ∈ [1,∞] and q ∈ (2,∞]. Let |f |p denotes the norm of f in Lp; if f is a vector

(f1, f2), by |f |p we mean |(|f1|2 + |f2|2)
1
2 |p. Then, we have

|∂b
t ∂

β
xω(·, t)|p ≤

W1

tb+
|β|
2 +1− 1

p

|ω0|1, (2.1)

|∂b
t ∂

β
xu(·, t)|q ≤

W2

tb+
|β|
2 + 1

2−
1
q

|ω0|1, (2.2)
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where W1 = W1(b, β, p, |ω0|1) and W2 = W2(b, β, q, |ω0|1). Here, ∂β
x = ∂β1

x1
∂β2

x2
for multi-index

β = (β1, β2) ∈ N0 × N0, where ∂xi
= ∂/∂xi and N0 = N ∪ {0}, the set of all nonnegative

integers.
The above estimates (2.1), (2.2) were proved by T. Kato [13] for p ∈ (1,∞) by using an

interpolation method, and by Y. Giga and M.-H. Giga [9] for p ∈ [1,∞] by a Gronwall-type
argument (see also Y. Giga [11], or Y. Giga and O. Sawada [12]). In this paper we establish
spatial decay estimates for derivatives of vorticities. Our main result is

Theorem 2.1 ([14]). Assume that p ∈ [1,∞], q ∈ (2,∞]. Let ω be the solution of
(1.2)–(2.2) with initial vorticity ω0 ∈ L1(R2) and u be the velocity field associated with ω via
the Biot-Savart law. Then, there exists a positive constant W3 = W3(b, β, p, |ω0|1) such that
for all R ≥ 1 and t > 0,

|∂b
t ∂

β
xω(·, t)|p,2R ≤ W3

t1−
1
p +b+

|β|
2

{
t

1
4

R
1
2

+ |ω0|1,R

}
, (2.3)

where |ω(·, t)|p,R :=
( ∫
|x|>R

|ω(x, t)|p dx
) 1

p , |ω(·, t)|∞,R := ess.sup|x|>R|ω(x, t)|.
When b = 0 and |β| = 0, the spatial decay estimates similar to (2.3) are obtained by A.

Carpio [4] and by Y. Giga and M.-H. Giga [9]. In order to establish the estimate (2.3), we
need three spatial decay estimates as follows.

Let p, q, q̃ ∈ [1,∞] with q, q̃ ≤ p. Then, we have

|ω(·, t)|p,2R ≤ C

t1−
1
p

(
t

1
4

R
1
2

+ |ω0|1,R), (2.4)

|u(·, t)|∞,2R ≤ M ′
1

R
1
2
|ω(·, t)|4 + M ′

2|ω(·, t)|
1
2
1,R|ω(·, t)|

1
2
∞,R , (2.5)

|∂β
x et∆f |p,2R ≤ M3

t
1
q−

1
p + k

2−
1
4 R

1
2

|f |q +
M4

t
1
q̃−

1
p + k

2
|f |q̃,R, ∀f ∈ C0(R2) . (2.6)
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Here, et∆ is the heat semigroup. The estimate (2.4) is for ω itself, which is obtained by
using the pointwise estimate for the fundamental solution of the perturbed heat equation,
ωt −∆ω + (u,∇)ω = 0; as for this pointwise estimate, see [3]. The estimte (2.5) is for the
velocity u. Since u is represented by ω via the Biot-Savart law (1.3), it suffices to estimate the
well-known Reisz potential. The last estimate (2.6) is for the solution of the heat equation.
This estimate is established by using the representation

et∆f =
∫

R2

1
4πt

e−
|x−y|2

4t f(y) dy.

Collecting these estimates, one can derive the estimate (2.3) from the integral equation

ω(x, t) = et∆ ω0 −
∫ t

0

e(t−s)∆(u(s),∇)ω(s)ds. (2.7)

We omit the details here.

3. Application to large time behaviors of the derivatives of vorticities. As an
application of Theorem 2.1, we study the large time behaviors of derivatives of vorticities.
It is well-known that the vorticity itself behaves like a constant multiple of the Gauss kernel
g(x, t) = (4πt)−1 exp(− |x|2

4t ) at time infinity. Let us recall its precise form:

Theorem 3.1 ([8], [4], [6]). Assume that p ∈ [1,∞], q ∈ (2,∞]. Let ω be the solution of

(1.2)–(2.2) with initial vorticity ω0 ∈ L1(R2). Let m =
∫

R2 ω0(x) dx, and g(x, t) = 1
4πt e−

|x|2
4t .

Then

lim
t→∞

t1−
1
p |ω(·, t)−mg(·, t)|p = 0 ,

lim
t→∞

t
1
2−

1
q |u(·, t)−mvg(·, t)|q = 0 .

(3.1)

Here vg is the velocity field associated with g via the Biot-Savart law (1.3).
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The above theorem shows that the vorticity behaves asymptotically as mg which is
called the Oseen vortex. Note that the Gauss kernel is a solution of (1.2)–(2.2) with a Dirac
mass as the initial data. The quantity m =

∫
R2 ω0(x) dx is called “total circulation” and it

is preserved by the semi-flow defined by (1.2)–(2.2) in L1(R2);∫
R2

ω(x, t) dx =
∫

R2
ω0(x) dx, t ≥ 0. (3.2)

Y. Giga and T. Kambe [8] first proved Theorem 3.1 when the Reynolds number∫
R2 |ω0(x)|dx is sufficiently small by giving the delicate estimates of the bilinear form of

the integral equation associated with (1.2). Later A. Carpio [4] proved Theorem 3.1
under the assumption that |m| is small by rescaling solutions: ωk(x, t) = k2ω(kx, k2t),
uk(x, t) = ku(kx, k2t) for k > 0. Recently, Th. Gallay and C. E. Wayne [6] proved for a
general initital vorticity in L1(R2) by introducing entropy-like Lyapunov function for a renor-
malized equation. After this work was completed, the auther was informed of a recent work
of I. Gallagher, Th. Gallay and P.-L. Lions [7] which give another proof for Theorem 3.1
using the rearrangement argument.

With spatial decay estimates for derivatives of vorticities, we shall prove that each
derivative of vorticities behaves asymptotically as that of the Oseen vortex. That is, we
have the following theorem.

Theorem 3.2 ([14]). Assume that p ∈ [1,∞], q ∈ (2,∞], b ∈ N0 and β is a multi-index.
Let ω be the solution of (1.2)–(2.2) with initial vorticity ω0 ∈ L1(R2), m =

∫
R2 ω0(x) dx,

and g(x, t) = 1
4πt e−

|x|2
4t . Then, we have

lim
t→∞

tb+
|β|
2 +1− 1

p |∂b
t ∂

β
xω(·, t)− ∂b

t ∂
β
xmg(·, t)|p = 0, (3.3)

lim
t→∞

tb+
|β|
2 + 1

2−
1
q |∂b

t ∂
β
xu(·, t)− ∂b

t ∂
β
xmvg(·, t)|q = 0 . (3.4)

Let us give the outline of the proof of Theorem 3.2 for α = 0, |β| = 1. First we
consider the same rescaling as was used in A. Carpio [4]. We shall see that the convergence

http://www.river-valley.com


Home Page

Title Page

Contents

JJ II

J I

Page 6 of 9

Go Back

Full Screen

Close

Quit

of ∂xω(x, t) as time goes to infinity is equivalent to the convergence of the rescaled functions
∂xωk(x, 1) as k goes to infinity. Once we obtain Theorem 2.1, we can apply Ascoli-Arzelà
type compactness theorem in Lp to the family of rescaled functions {∂xωk(x, 1)}k≥1. So
every subsequence of {∂xωk(l)(x, 1)}∞l=1 (k(l) → ∞ as l goes to infinity) has a convergent
subseqence in Lp. Theorem 3.1 implies that the limit function is unique, so we obtain
Theorem 3.2. By the induction we see that Theorem 3.2 also holds for higher derivatives
of the solution; see [14] for details.

4. Alternative method. In fact, to prove the convergence results on derivatives in
Theorem 3.2, there is an alternative method by appealing interpolation together with the
convergence results of the vorticity ω itself and global estimates on derivatives (2.1). In
particular, spatial decay estimates in Theorem 2.1 are not involved. We shall show the
proof only for the case b = 0 and |β| = 1.

First, note that we have the interpolation inequalities such as

|f |1,p ≤ C|f |
1
2
p |f |

1
2
2,p, for all f ∈ W 2,p(Rn), (4.1)

where C depends only on n and p ∈ [1,∞]. So we see

|ωk −mg|1,p ≤ C|ωk −mg|
1
2
p |ωk −mg|

1
2
2,p

≤ C|ωk −mg|
1
2
p (|ωk|2,p + |mg|2,p)

1
2

≤ C|ωk −mg|
1
2
p ,

where C depends only on p and |ω0|1. Here, the last inequality follows from the global esti-
mates (2.1). Since we already have limk→∞ |ωk(·, 1)−mg(·, 1)|p = 0, the desired convergence
follows.

This proof is very simple compared with the proof using compactness argument together
with spatial decay estimates for derivatives of vorticities (2.3). However, the above interpola-
tion method has a disadvantage if there is an inhomogeneous term in the vorticity equations
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of the form

ωt −∆ω + (u,∇)ω = f. (4.2)

Before seeing this, note that we can prove the global existence and uniqueness of the solution
of (4.2) under appropriate conditions on f . Moreover, we can also show the large time
behaviors of solutions similar to those in Theorem 3.1. Let us state the typical results for
the inhomogeneous case without proofs.

Theorem 4.1. Assume that a function f ∈ L1(R2 × (0,∞)) satisfies that tf(·, t) ∈
L∞(0,∞;L1(R2)). Let ω0 ∈ L1(R2). Then, there exists a unique solution ω ∈ C([0,∞);L1(R2))
of (4.2) with initial vorticity ω0. The vorticity ω satisfies that for p ∈ [1,∞) and q ∈ [1, 2),

sup
t>0

t1−
1
p |ω(·, t)|p ≤ C, (4.3)

sup
t>0

t
3
2−

1
q |∂xω(·, t)|q ≤ C, (4.4)

|ω(·, t)|p,2R ≤ C

t1−
1
p

(
t

1
4

R
1
2

+ |ω0|1,R

)
(4.5)

+C

∫ t

0

1

(t− s)1−
1
p

(
(t− s)

1
4

R
1
2

|f(·, s)|1 + |f(·, s)|1,R

)
ds,

where C depends only on p, q, |ω0|1, and Cf :=
∫∞
0

∫
R2 |f(x, t)|dxdt + ess.supt>0t|f(·, t)|1.

Moreover, we have

lim
t→∞

t1−
1
p |ω(·, t)− (m + mf )g(·, t)|p = 0. (4.6)

Here, m =
∫

R2 ω0(x) dx and mf =
∫∞
0

∫
R2 f(x, t) dxdt.
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If we use interpolation inequalities such as (4.1) in order to derive the large time behav-
iors of derivatives of vorticities solving (4.2), we are forced to assume unnecessary regularity
conditions on the inhomogeneous term f . On the other hand, by arguing as in Section 3
with spatial decay estimates for derivatives of solutions of (4.2), we can derive the large time
behavior of derivatives of solutions without irrelevant regularity assumptions on f . Precisely,
we have

Theorem 4.2. Assume that a function f satisfies the conditions in Theorem 4.1. Let
ω0 ∈ L1(R2) and q ∈ [1, 2). Then, the solution ω satisfies that

|∂xω(·, t)|q,2R ≤ C

t
3
2−

1
q

(
t

1
4

R
1
2

+ |ω0|1,R

)
(4.7)

+C

∫ t

0

1

(t− s)
3
2−

1
q

(
(t− s)

1
4

R
1
2

|f(·, s)|1 + |f(·, s)|1,R

)
ds,

where C depends only on q, |ω0|1, and Cf . Moreover, we have

lim
t→∞

t
3
2−

1
q |∂xω(·, t)− ∂x(m + mf )g(·, t)|q = 0. (4.8)

The proof of the above theorem is quite similar to that of the homogeneous case, we
omit the details here.

Acknowledgments. The author is grateful to Professor Yoshikazu Giga, Professor
Shin’ya Matsui for critical and useful advices. The author is also grateful to Professor
Yoshinori Morimoto.

http://www.river-valley.com


Home Page

Title Page

Contents

JJ II

J I

Page 9 of 9

Go Back

Full Screen

Close

Quit

REFERENCES

[1] Ben-Artzi M., Global solutions of two-dimensional Navier-Stokes and Euler equations Arch. Rational
Mech. Anal. 128 (1994), 329–358.

[2] Brezis H., Remarks on the preceeding paper by M. Ben-Artzi: “Grobal solutions of two-dimensional
Navier-Stokes and Euler equations”, Arch. Rational Mech. Anal. 128 (1994), 359–360.

[3] Carlen E. A. and Loss M., Optimal smoothing and decay estimates for viscously damped conservation
laws, with applications to the 2-D Navier-Stokes equation, Duke Math. J. 81 (1996), 135–157.

[4] Carpio A., Asymptotic behavior for the vorticity equations in dimensions two and three, Commun. in
Patial Differential Equations 19 (1994), 827–872.

[5] Gallagher I. and Gallay Th., Uniqueness for two-dimensional Navier-Stokes equation with a measure
as initial vorticity, to appear.

[6] Gallay Th. and Wayne C. E., Global stability of vortex solutions of the two-dimensional Navier-Stokes
equation. Comm. Math. Phys, to appear.

[7] Gallagher I., Gallay Th. and Lions P.-L., On the uniqueness of the solution of the two-dimensional
Navier-Stokes equation with a Dirac mass as initial vorticity, preprint.

[8] Giga Y. and Kambe T., Large time behavior of the vorticity of two dimensional viscous flow and its
application to vortex formation, Comm. Math. Phys. 117 (1988), 549–568.

[9] Giga Y. and Giga M.-H., Nonlinear Partial Differential Equation, Self-similar solutions and asymptotic
behavior, Kyoritsu: 1999 (in Japanese), English version to be published by Birkhäuser.
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