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ON THE EXISTENCE OF HOPF BIFURCATION IN AN OPEN
ECONOMY MODEL

KATARÍNA MAKOVÍNYIOVÁ∗ AND RUDOLF ZIMKA†

Abstract. In the paper a four dimensional open economy model describing the development of output,
exchange rate, interest rate and money supply is analyzed. Sufficient conditions for the existence of equi-
librium stability and the existence of business cycles are found. Formulae for the calculation of bifurcation
coefficients are derived.
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1. Introduction. In economic theory there are many macroeconomic models describ-
ing the development of output Y in an economy. The majority of them are based on the
well-known IS-LM model. One of them is the Schinasi’s model (see [5]) describing the de-
velopment of output Y , interest rate R and money supply Ls in a closed economy. In [8] the
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Schinasi’s model was extended to an open economy model of the kind

Ẏ = α
[
I(Y,R) + G + X(ρ)− S(Y D, R)− T (Y )−M(Y, ρ)

]
ρ̇ = β [M(Y, ρ) + Cx(R)−X(ρ)− Cm(R)]

Ṙ = γ [L(Y,R)− LS ]

L̇S = G + M(Y, ρ) + Cx(R)− T (Y )−X(ρ)− Cm(R),

(1.1)

where Y – output, ρ – exchange rate, R – interest rate, LS – money supply, I – investments, S
– savings, G – government expenditures, T – tax collections, X –
– export, M – import, Cx – capital export, Cm – capital import, L – money demand,
α, β, γ – positive parameters, t – time and

Y D = Y − T (Y ), Ẏ =
dY

dt
, ρ̇ =

dρ

dt
, Ṙ =

dR

dt
, L̇S =

dLS

dt
.

The economic properties of the functions in (1.1) are expressed by the following partial
derivatives:

∂I(Y,R)
∂Y

> 0,
∂I(Y,R)

∂R
< 0,

∂S(Y D, R)
∂Y

> 0,
∂S(Y D, R)

∂R
> 0,

∂T (Y )
∂Y

> 0,
∂X(ρ)

∂ρ
> 0,

∂M(Y, ρ)
∂Y

> 0,
∂M(Y, ρ)

∂ρ
< 0,

∂Cx(R)
∂R

< 0,
∂Cm(R)

∂R
> 0,

∂L(Y, R)
∂Y

> 0,
∂L(Y, R)

∂R
< 0.

(1.2)

The development of Y, ρ,R and LS in the model (1.1) in a neighborhood of its equilibrium
was studied under fixed exchange rate regime in [6] and under flexible exchange rate regime
in [2] from the point of equilibrium stability and the existence of business cycles. In [4]
this model was analyzed under assumption that both ρ and R are flexible. In the paper [4]

http://www.river-valley.com


Home Page

Title Page

Contents

JJ II

J I

Page 3 of 15

Go Back

Full Screen

Close

Quit

the assertion on the existence of business cycles was formulated under assumption of the
existence of the Liapunov bifurcation constant a. In the present paper a formula for the
calculation of this Liapunov bifurcation constant a is found supposing that the functions
I(Y, R) and S(Y D, R) are nonlinear with respect to Y and linear with respect to R, and
other functions in (1.1) are linear with respect to all their variables except government
expenditures G, which are constant. In the end of the paper an example illustrating the
achieved results is presented.

2. Analysis of the model (1.1). Using denotation

B(Y,R) = I(Y,R)− S(Y D, R)
C(R) = Cm(R)− Cx(R)
D(Y ) = G− T (Y )

F (Y, ρ) = X(ρ)−M(Y, ρ),

the model (1.1) has the form

Ẏ = α [B(Y, R) + D(Y ) + F (Y, ρ)]
ρ̇ = −β [F (Y, ρ) + C(R)]

Ṙ = γ [L(Y, R)− LS ]

L̇S = D(Y )− F (Y, ρ)− C(R),

(2.1)

where on the base of (1.2)

∂B(Y,R)
∂R

< 0,
∂C(R)

∂R
> 0,

∂D(Y )
∂Y

< 0,
∂F (Y, ρ)

∂Y
< 0,

∂F (Y, ρ)
∂ρ

> 0,

and the sign of ∂B(Y,R)
∂Y can be positive or negative or zero according to the properties of

I(Y, R) and S(Y D, R).
Assume:

http://www.river-valley.com
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1. The functions I(Y, R), S(Y D, R), T (Y ), C(R), D(Y ), F (Y, ρ), L(Y, R) are of the
kind

I(Y,R) = i0 + i1
√

Y − i3R, C(R) = c0 + c3R,
S(Y D, R) = s0 + s1(Y D)2 + s3R, D(Y ) = d0 − d1Y,

Y D = Y − T (Y ), F (Y, ρ) = f0 − f1Y + f2ρ,
T (Y ) = t0 + t1Y, L(Y, R) = l0 + l1Y − l3R,

with positive coefficients i1, i3, s1, s3, t1, c3, d1, f1, f2, l1, l3.
2. The model (2.1) has an isolated equilibrium E∗ = (Y ∗, ρ∗, R∗, L∗S), Y ∗ > 0, ρ∗ > 0,

R∗ > 0, L∗S > 0.

Remark 1. A sufficient condition for the existence of an isolated equilibrium E∗ of the
model (2.1) was presented in [4].

Consider an isolated equilibrium E∗ = (Y ∗, ρ∗, R∗, L∗S) of (2.1). After the transforma-
tion

Y1 = Y − Y ∗, ρ1 = ρ− ρ∗, R1 = R−R∗, LS1 = LS − L∗S ,

the equilibrium E∗ goes into the origin E∗
1 = (Y ∗

1 = 0, ρ∗1 = 0, R∗
1 = 0, L∗S1 = 0) and the

model (2.1) takes the form

Ẏ1 = α [B(Y1 + Y ∗, R1 + R∗) + D(Y1 + Y ∗) + F (Y1 + Y ∗, ρ1 + ρ∗)]
ρ̇1 = −β [F (Y1 + Y ∗, ρ1 + ρ∗) + C(R1 + R∗)]

Ṙ1 = γ [L(Y1 + Y ∗, R1 + R∗)− LS1 − LS
∗
1]

L̇S1 = D(Y1 + Y ∗)− F (Y1 + Y ∗, ρ1 + ρ∗)− C(R1 + R∗).

(2.2)

Performing Taylor expansion of the functions on the right-hand side in (2.2) at the equilib-

http://www.river-valley.com
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rium E∗
1 we get the model

Ẏ1 = α [(b1 − d1 − f1)Y1 + f2ρ1 − b3R1] + α

[
4∑

k=2

akY k
1 + O(|Y1|5)

]
ρ̇1 = β (f1Y1 − f2ρ1 − c3R1)

Ṙ1 = γ (l1Y1 − l3R1 − LS1)

L̇S1 = (f1 − d1)Y1 − f2ρ1 − c3R1,

(2.3)

where b1 = ∂B(Y ∗,R∗)
∂Y , b3 = i3 + s3, ak = ∂kB(Y ∗,R∗)

∂Y k , k = 2, 3, 4.
The linear approximation matrix of (2.3) is

A(α, β, γ) =


α(b1 − d1 − f1) αf2 −αb3 0

βf1 −βf2 −βc3 0
γl1 0 −γl3 −γ

f1 − d1 −f2 −c3 0

 . (2.4)

The characteristic equation of A(α, β, γ) is

λ4 + a1(α, β, γ)λ3 + a2(α, β, γ)λ2 + a3(α, β, γ)λ + a4(α, β, γ) = 0, (2.5)

where

a1 = α(−b1 + d1 + f1) + βf2 + γl3,

a2 = −γc3 + βγf2l3 + α(βf2(−b1 + d1) + γ(b3l1 + l3(−b1 + d1 + f1))),

a3 = αγ(βf2(l1(b3 + c3) + l3(−b1 + d1))− c3(−b1 + d1 + f1)− b3(f1 − d1)),

a4 = αβγd1f2(b3 + c3).

http://www.river-valley.com
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As we are interested in equilibrium stability and in the existence of cycles in the model
(2.3) it is suitable to find such values of parameters α, β, γ at which the equation (2.5) has a
pair of purely imaginary eigenvalues λ1 = iω, λ2 = −iω, and the rest two eigenvalues λ3, λ4

are negative or have negative real parts. We shall call such values of parameters α, β, γ as
critical values of the model (2.3) and denote them α0, β0, γ0. Mentioned types of eigenvalues
are ensured by the Liu’s conditions ([3]):

a1 > 0, a2 > 0, a3 > 0, a4 > 0, (2.6)

∆3 = (a1a2 − a3)a3 − a 2
1 a4 = 0. (2.7)

The conditions (2.6) are satisfied if

− b1 + d1 ≥ 0,

α > α∗ =
c3

l3(−b1 + d1 + f1) + b3l1
,

(−b1 + d1 + f1)c3 + (f1 − d1)b3 < 0.

(2.8)

The relation (2.7) can be expressed in the form[
a(1)(β, γ)β + a(2)γ

]
α2 +

[
b(1)(β, γ)β + b(2)(γ)γ

]
α + c(1)(β, γ)β + c(2)γ2 = 0,

where in the power of (2.8) there is

a(2) = (−b1 + d1 + f1)[b3(f1 − d1)

+c3(−b1 + d1 + f1)][−b3l1 − l3(−b1 + d1 + f1)] > 0,

c(2) = c3l3[b3(f1 − d1) + c3(−b1 + d1 + f1)] < 0.

http://www.river-valley.com
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Take γ at any positive level and denote it γ0. Then a(2)γ0 > 0 and c(2)γ 2
0 < 0. Denote

A(β) = a(1)(β, γ0)β + a(2)γ0,

B(β) = b(1)(β, γ0)β + b(2)(γ0)γ0,

C(β) = c(1)(β, γ0)β + c(2)γ 2
0 .

Take β such small that A(β) > 0 and C(β) < 0. Denote this β as β0. Then the equation
A(β0)α2 + B(β0)α + C(β0) = 0 has two roots

α1,2 =
−B(β0)±

√
(B(β0))2 − 4A(β0)C(β0)

2A(β0)
=

{
α1 < 0

α2 > 0
,

and the function ∆3(α) = A(β0)α2 + B(β0)α + C(β0) has the following form (Fig. 2.1):

Fig. 2.1.

Denote α2 = α0. The triple (α0, β0, γ0) is the critical triple of the model (2.3). Thus for
given specific values of β0, γ0 it is always possible to find such a value α0 that the condition

http://www.river-valley.com
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(2.7) is satisfied. From Figure 1 we get in a small neighborhood of α0:

If α > α0 then ∆3(α) = (a1a2 − a3)a3 − a 2
1 a4 > 0.

If α < α0 then ∆3(α) = (a1a2 − a3)a3 − a 2
1 a4 < 0. (2.9)

If α = α0 then ∆3(α) = (a1a2 − a3)a3 − a 2
1 a4 = 0.

Consider a critical triple (α0, β0, γ0) of the model (2.3). Further we shall investigate
the behavior of Y1, ρ1, R1 and LS1 around the equilibrium E∗

1 with respect to parameter α,
α ∈ (α0 − ε, α0 + ε), ε > 0, and fixed parameters β = β0, γ = γ0.

Performed considerations enable us to answer the question about the stability of the
equilibrium E∗

1 of the model (2.3) in a small neighborhood of the critical value α0.

Theorem 1. Let the conditions (2.8) be satisfied and let (α0, β0, γ0) be such a critical triple
of the model (2.3) that A(β0) > 0 and C(β0) < 0. Then:

1. If α0 ≤ α∗ then at every α > α∗ the equilibrium E∗
1 is asymptotically stable.

2. If α0 > α∗ then at every α > α0 the equilibrium E∗
1 is asymptotically stable and at

every α∗ < α < α0 the equilibrium E∗
1 is unstable.

Proof. The conditions (2.8) guarantee that a1 > 0, a2 > 0, a3 > 0, and a4 > 0 what together
with (2.9) at α > α∗ ≥ α0 means that the Routh-Hurwitz necessary and sufficient conditions
for all the roots of the equation (2.5) to have negative real parts (∆1(α) > 0,∆2(α) >
0,∆3(α) > 0,∆4(α) > 0) are satisfied. If α∗ < α < α0 then ∆3(α) < 0 what means that the
Routh-Hurwitz conditions are not satisfied.

To gain the bifurcation equation of the model (2.3) it is suitable to transform (2.3) to
its partial normal form on invariant surface. After the shift of α0 into the origin by relation

http://www.river-valley.com
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α1 = α− α0 the model (2.3) takes the form

Ẏ1 = α0 [(b1 − d1 − f1)Y1 + f2ρ1 − b3R1] + (b1 − d1 − f1)Y1α1

+ f2ρ1α1 − b3R1α1 +
4∑

k=2

α0akY k
1 +

4∑
k=2

α1akY k
1 + O(|Y1|5)

ρ̇1 = β0 (f1Y1 − f2ρ1 − c3R1)

Ṙ1 = γ0 (l1Y1 − l3R1 − LS1)

L̇S1 = (f1 − d1)Y1 − f2ρ1 − c3R1.

(2.10)

Consider the matrix M which transfers the matrix A(α0, β0, γ0) into its Jordan form J.
Then the transformation x = My, x = (Y1, ρ1, R1, LS1)T , y = (Y2, ρ2, R2, LS2)T takes the
model (2.10) into the model

Ẏ2 = λ1Y2 + F1(Y2, ρ2, R2, LS2, α1)
ρ̇2 = λ2ρ2 + F2(Y2, ρ2, R2, LS2, α1)

Ṙ2 = λ3R2 + F3(Y2, ρ2, R2, LS2, α1)

L̇S2 = λ4LS2 + F4(Y2, ρ2, R2, LS2, α1),

(2.11)

where ρ2 = Y 2, F2 = F 1, and F3, F4 are real (the symbol ” - ” means complex conjugate
expression in the whole article; for the sake of simplicity we suppose that λ3, λ4 are real and
not equal).

Theorem 2. There exists a polynomial transformation

Y2 = Y3 + h1(Y3, ρ3, α1)
ρ2 = ρ3 + h2(Y3, ρ3, α1)
R2 = R3 + h3(Y3, ρ3, α1)

LS2 = LS3 + h4(Y3, ρ3, α1),

(2.12)

http://www.river-valley.com
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where hj(Y3, ρ3, α1), j = 1, 2, 3, 4, are nonlinear polynomials with constant coefficients of the
kind

hj(Y3, ρ3, α1) =
∑

m1,m2,m3

ν(m1,m2,m3)Y m1
3 ρ m2

3 α m3
1 , j = 1, 2, 3, 4, h2 = h1,

with the property

hj(
√

α1Y3,
√

α1ρ3, α1) =
∑

m1,m2,m3

ν(m1,m2,m3)(
√

α1)kY m1
3 ρ m2

3 , k ≤ 4,

which transforms the model (2.11) into its partial normal form on invariant surface

Ẏ3 = λ1Y3+δ1Y3α1+δ2Y
2

3 ρ3+U◦(Y3, ρ3, R3, LS3, α1)+U∗(Y3, ρ3, R3, LS3, α1)

ρ̇3 = λ2ρ3 + δ1ρ3α1 + δ2Y3ρ
2

3 + U◦ + U∗

Ṙ3 = λ3R3 + V ◦(Y3, ρ3, R3, LS3, α1) + V ∗(Y3, ρ3, R3, LS3, α1)

L̇S3 = λ4LS3 + W ◦(Y3, ρ3, R3, LS3, α1) + W ∗(Y3, ρ3, R3, LS3, α1),

(2.13)

where U◦(Y3, ρ3, 0, 0, α1) = V ◦(Y3, ρ3, 0, 0, α1) = W ◦(Y3, ρ3, 0, 0, α1) = 0 and

U∗(
√

α1Y3,
√

α1ρ3,
√

α1R3,
√

α1LS3,α1)=V ∗(
√

α1Y3,
√

α1ρ3,
√

α1R3,
√

α1LS3,α1)
= W ∗(

√
α1Y3,

√
α1ρ3,

√
α1R3,

√
α1LS3, α1) = O(

√
α1)5.

http://www.river-valley.com


Home Page

Title Page

Contents

JJ II

J I

Page 11 of 15

Go Back

Full Screen

Close

Quit

The resonant terms δ1 and δ2 in the model (2.13) are determined by the formulae

δ1 =
∂2F1

∂α1∂Y2
,

δ2 =
1

2λ2

∂2F1

∂Y 2
2

∂2F1

∂Y2∂ρ2
+

1
6λ1

∂2F1

∂ρ 2
2

∂2F2

∂Y 2
2

+
1
λ1

∂2F1

∂Y2∂ρ2

∂2F2

∂Y2∂ρ2
− 1

λ3

∂2F1

∂Y2∂R2

∂2F3

∂Y2∂ρ2
+

1
2(2λ1 − λ3)

∂2F1

∂ρ2∂R2

∂2F3

∂Y 2
2

− 1
λ4

∂2F1

∂Y2∂Ls2

∂2F4

∂Y2∂ρ2
+

1
2(2λ1 − λ4)

∂2F1

∂ρ2∂Ls2

∂2F4

∂Y 2
2

+
1
2

∂3F1

∂Y 2
2 ∂ρ2

,

where all derivatives in δ1 and δ2 are calculated at E∗
1 and α1 = 0.

Proof. Differentiating (2.12) in the power of (2.11) and (2.13) we get the equations for the
determination of the individual terms of the polynomials hj , j = 1, 2, 3, 4, and the resonant
terms δ1, δ2 by standard “step by step” procedure. As the whole record of this procedure is
rather long we are omitting it.

The model (2.13) takes in polar coordinates Y3 = reiϕ, ρ3 = re−iϕ the form

ṙ = r(ar2 + bα1) + Ũ◦(r, ϕ,R3, LS3, α1) + Ũ∗(r, ϕ,R3, LS3, α1)

ϕ̇ = ω + cα1 + dr2 +
1
r

[Φ◦(r, ϕ,R3, LS3, α1) + Φ∗(r, ϕ,R3, LS3, α1)]

Ṙ3 = λ3R3 + Ṽ ◦
1 (r, ϕ,R3, LS3, α1) + Ṽ ∗

1 (r, ϕ,R3, LS3, α1)

L̇S3 = λ4LS3 + W̃ ◦
1 (r, ϕ,R3, LS3, α1) + W̃ ∗

1 (r, ϕ,R3, LS3, α1),

(2.14)

where a = Re δ2, b = Re δ1.
The behavior of solutions of the model (2.14) around its equilibrium for small parameters

α1 depends on the signs of the constants a, b. It is known that to every constant solution

http://www.river-valley.com
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of the bifurcation equation ar2 + bα1 = 0 a periodic solution of (2.14) corresponds (see for
example [1]).

The following theorem ([4]) gives a sufficient condition for the negativeness of the coef-
ficient b.

Theorem 3. Let the assumptions of Theorem 1 be satisfied. Let in addition α0 > α∗ and the
critical value β0 be such that c3− β0f2l3 > 0. Then the value of the coefficient b is negative.

Analyzing the model (2.14) and taking into account all transformations which have been
done to get (2.14) we can formulate on the base of Poincaré-Andronov-Hopf bifurcation
theorem (see for example [7]) the following statement.

Theorem 4. Let the assumptions of Theorem 1 be satisfied. Let in addition α0 > α∗ and
the critical value β0 be such that c3 − β0f2l3 > 0. Then:

1. If a > 0 then the equilibrium E∗
1 of the model (2.3) is unstable also at the critical

triple (α0, β0, γ0) and to every α > α0 there exists an unstable limit cycle.
2. If a < 0 then the equilibrium E∗

1 of the model (2.3) is asymptotically stable also at
the critical triple (α0, β0, γ0) and to every α∗ < α < α0 there exists a stable limit
cycle.

2.1. Numerical example. Take the functions I, S, T , C, D, F , L from the model
(1.1) in the form

I = 1.8 + 0.6
√

Y − 0.3R, C = 0.024 + 0.2R,
S = −0.8 + 0.01(Y D)2 + 0.3R, D = 2.7− 0.3Y,

Y D = 0.7Y + 0.2, F = −0.6− 0.05Y + 0.03ρ,
T = −0.2 + 0.3Y, L = 2 + 0.8Y − 0.2R.

http://www.river-valley.com
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Then (1.1) has the following form

Ẏ = α
[
0.6
√

Y − 0.01(0.7Y + 0.2)2 − 0.35Y + 0.03ρ− 0.6R + 4.7
]

ρ̇ = −β (−0.05Y + 0.03ρ + 0.2R− 0.576)

Ṙ = γ (0.8Y − 0.2R− LS + 2)

L̇S = −0.25Y − 0.03ρ− 0.2R + 3.276.

(2.15)

The equilibrium of (2.15) is

E∗ = (Y ∗ = 9, ρ∗ = 1.2541667, R∗ = 4.941875, L∗S = 8.211625),

where the values of Y and LS are taken in 102 milliards. After the transformation of E∗

into the origin and Taylor expansion the model (2.15) has the form

Ẏ1 = α(−0.341Y1 + 0.03ρ1 − 0.6R1)

+ α

[
− 691

90000
Y 2

1 +
1

6480
Y 3

1 − 1
93312

Y 4
1 + O(|Y1|5)

]
ρ̇1 = β (0.05Y1 − 0.03ρ1 − 0.2R1)

Ṙ1 = γ (0.8Y1 − 0.2R1 − LS1)

L̇S1 = − 0.25Y1 − 0.03ρ1 − 0.2R1.

(2.16)

The matrix of linear approximation of this model is

A(α, β, γ) =


−0.341α 0.03α −0.6α 0
0.05β −0.03β −0.2β 0
0.8γ 0 −0.2γ −γ
−0.25 −0.03 −0.2 0

 .

http://www.river-valley.com
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Take β0 = 1, γ0 = 1. Then α0 = 5(26610277753+462357
√

46690885481)
933779562749

.= 0.6774. The eigenvalues
of the matrix A(α0, β0, γ0) are

λ1
.= 0.3886 i, λ2

.= −0.3886 i, λ3
.= −0.3748, λ4

.= −0.0862.

The formulae for the calculation of the resonant constants δ1 and δ2, which are introduced
in Theorem 2, give the values

δ1
.= −0.3180− 0.3537 i, δ2

.= 0.0020− 0.0024 i.

The bifurcation coefficients are

a = Re δ2
.= 0.0020, b = Re δ1

.= −0.3180,

and the partial normal form of the model (2.16) on invariant surface for critical triple
(α0, β0, γ0) = (0.6774, 1, 1) in polar coordinates is

ṙ = r(0.0020r2 − 0.3180α1) + Ũ◦(r, ϕ,R3, LS3, α1) + Ũ∗(r, ϕ,R3, LS3, α1)

ϕ̇ = 0.3886− 0.3537α1 − 0.0024r2 +
1
r

[Φ◦ + Φ∗]

Ṙ3 = −0.3748R3 + Ṽ ◦
1 (r, ϕ,R3, LS3, α1) + Ṽ ∗

1 (r, ϕ,R3, LS3, α1)

L̇S3 = −0.0862LS3 + W̃ ◦
1 (r, ϕ,R3, LS3, α1) + W̃ ∗

1 (r, ϕ,R3, LS3, α1).

The value of α∗ from (2.8) is α∗
.= 0.3648. On the base of the values a and b we get the

following result: To every value of parameter α > α0
.= 0.6774 the equilibrium of the model

(2.15) is asymptotically stable and there exists an unstable limit cycle. To every value of
parameter α ∈ (0.3648, 0.6774) this equilibrium is unstable.
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