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BOUNDARY VALUE PROBLEMS FOR STRONGLY NONLINEAR
SECOND ORDER DIFFERENTIAL INCLUSIONS

NIKOLAOS M. MATZAKOS∗

Abstract. In this paper we examine nonlinear differential inclusions with Dirichlet boundary conditions
and a forcing term with no growth restrictions and satisfying instead a generalized sign condition. Using
techniques from multivalued analysis and theory of nonlinear operators of monotone type, we establish the
existence of a solution.

Key words. Boundary value problem,Strongly nonlinear problem, sign condition, measurable multi-
function, upper and lower semicontinuous multifunctions,truncation, Moreau-Yosida regularization.
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1. Intorduction. In this paper we examine nonlinear differential inclusions

a(t, x(t), x′(t))′ − ∂ϕ(x(t))− F (t, x(t)) 3 h(t)− βx′(t) a.e on T = [0, b]

x(0) = x(b) = 0.

}
(1.1)

Here a : T × R × R → 2R and F : T × R → 2R are multifunctions and ∂ϕ(x) is the
subdifferential of the convex function ϕ(·). We do not impose any growth condition on
the multifunction F (t, x). Instead we use a generalized sign condition. Using techniques
from multivalued analysis and the theory of the operators of monotone type, we prove the
existence of a solution for problem (1.1).
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A particular case of this problem was studied by Boccardo-Drabek-Giachetti-Kucera [1],
Del Pino-Elgueta-Manasevich [3], Drabek [4], where a(t, x, y) = ‖y‖p−2

y, ϕ = 0, F is single-
valued and h = 0, β = 0. In addition in all these papers, F has a restricted growth, the
usual (p− 1)-polynomial growth condition and satisfies also a nonresonance condition. The
approach in those papers is different from ours and is based on degree theoretic arguments.
Problems with multivalued terms were studied by Pruszko [13], Frigon-Granas [6], Frigon [5],
Kandilakis-Papageorgiou [12] and Halidias-Papageorgiou [8]. In all these works a(t, x, y) = y
(semilinear problem) , ϕ = 0, but F depends also on y in a nonlinear in general way.
Also F has restricted growth. It should be pointed out that the works of Pruszko [13],
Kandilakis-Papageorgiou [12] and Halidias-Papageorgiou [8] deal with the vector problem
and moreover, in Kandilakis-Papageorgiou [12] and Halidias-Papageorgiou [8] the authors
use boundary conditions which are nonlinear and multivalued and incorporate the Dirichlet
boundary conditions as a special case. The approach of the Pruszko [13] is based on degree
theory, Frigon-Granas [6] and Frigon [5] employ the method of upper and lower solutions,
while Kandilakis-Papageorgiou [12] and Halidias-Papageorgiou [8] use the theory of nonlinear
monotone operators and the multivalued Leray-Schauder alternative theorem. Recently
there have been works involving the one-dimensional p-Laplacian (i.e a(t, x, y) = ‖y‖p−2

y),
f single-valued but depending also nonlinearly on y and with periodic or Neumann boundary
conditions. We refer to the papers of Guo [7] and Dang-Oppenheimer [2] and the references
therein. They impose polynomial growth restrictions on f .

2. Preliminaries. Our analysis of problem (1.1) is based on notions and results from
multivalued analysis and the theory of nonlinear operators of monotone type. So, for easy
reference, in this section we recall some basic definitions and facts from these areas. For
details we refer to the book of Hu-Papageorgiou [10].

Let (Ω,Σ) be a measurable space and X a separable Banach space. We use the fol-
lowing notations: Pf(c)(X) = {A ⊆ X : nonempty closed (and convex)} and P(w)k(c)(X) =
{A ⊆ X nonempty, (weakly-) compact (and convex)}.

Also if A ∈ 2X \ {∅} , x ∈ X and x∗ ∈ X∗, we set |A| = sup[‖a‖ : a ∈ A], d(x, A) =
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inf[‖x− a‖ : a ∈ A] (the distance function from A ) and σ(x∗, A) = sup[(x∗, a) : a ∈ A] (the
support function of A).

A multifunction F : Ω → Pf (X) is said to be “measurable”, if for all x ∈ X, the
R+-valued function ω → d(x, F (ω)) is measurable.

A multifunction F : Ω → 2X \ {∅} is graph measurable, if
GrF = {(ω, x) ∈ Ω×X : x ∈ F (ω)} ∈ Σ×B(X) with B(X) being the Borel σ-field of X.

For multifunctions with values in Pf (X), measurability implies graph measurability,
while the converse is true if Σ is complete, i.e Σ = Σ̂(=the universal σ-field corresponding to
Σ). Suppose µ is a finite measure on Σ. Given a multifunction F : Ω → 2X \ {∅}, by Sp

F we
denote the set of all selectors of F which belong in the Lebesgue-Bochner space Lp(Ω, X),
i.e Sp

F = {f ∈ Lp(Ω, X) : f(ω) ∈ F (ω)µ− a.e}. In general this set may be empty. However,
if F (·) is graph measurable and there exists a function ξ ∈ Lp(Ω)such that inf[‖x‖ : x ∈
F (ω)] ≤ ξ(ω)µ-a.e, then Sp

F 6= ∅.
Let Y,Z be Hausdorff topological spaces. A multifunction G : Y → 2Z \ {∅} is “lower

semicontinuous” (lsc for short)( resp “upper semicontinuous” (usc for short)), if for all C ⊆ Z
closed, the set G+(C) = {y ∈ Y : G(y) ⊆ C} (resp G−(C) = {y ∈ Y : G(y) ∩ C 6= ∅}) is
closed in Y . As usc multifunction G with nonempty closed values (i.e. for all y ∈ Y, G(y) ∈
Pf (Y )) has a closed graph
GrG = {(y, z) ∈ Y × Z : z ∈ G(y)}. The converse is true if in addition G(·) is locally com-
pact, i.e. for every y ∈ Y , there exists a neighborhood U of y such that G(U) is compact in
Z.

If Z is a metric space, then in Pf (Z) we can define a generalized metric, known as the
Hausdorff metric, by

h(A,B) = max[sup
a∈A

d(a,B), sup
b∈B

d(b, A)].

We set h∗(A,B) = supa∈A d(a,B) (the excess of A from B) and h∗(B,A) =
supb∈B d(b, A) (the excess of B from A). If Y is a Hausdorff topological space and G : Y →
2Z \ {∅}, then G is h-lower semicontinuous (h-lsc for short) (resp h-upper semicontinuous) (
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h-usc for short), if the function y → h∗(G(y), G(x))) (resp. the function y → h∗(G(x), G(y))
is continuous at x for every x ∈ X. A multifunction G which is both h-usc and h-lsc is said
to be “h-continuous”, i.e. G is continuous from Y into the pseudometric space (2Z \{∅} , h).
In general we have that usc implies h-usc and h-lsc implies lsc. However, for multifunc-
tions with nonempty and compact values h-usc ⇐⇒ usc and h-lsc ⇐⇒ lsc. Moreover, if
G : Y → 2Z \ {∅} is h-usc, then for every z ∈ Z, y → d(z,G(y)) is lower semicontinuous,
while G is lsc if and only if for every z ∈ Z, y → d(z,G(y)) is upper semicontinuous.

Now let us recall a few definitions and facts from the theory of nonlinear operators of
monotone type. So let X be a reflexive Banach space and X∗ its topological dual. A map
A : D ⊆ X → 2X∗

(D = {x ∈ X : A(x) 6= ∅} , the domain of A), is said to be “monotone”,
if for all x∗ ∈ A(x), y∗ ∈ A(y), we have (x∗ − y∗, x − y) ≥ 0 (here by (·, ·) we denote the
duality brackets for the pair (X, X∗)). If (x∗ − y∗, x − y) = 0 implies x = y, then we say
that A is “strictly monotone”. The operator A is “maximal monotone”, if it is monotone
and y∗ ∈ A(y) if (x∗ − y∗, x− y) ≥ 0 for all x ∈ D and x∗ ∈ A(x), i.e. GrA is maximal with
respect to inclusion among the graphs of all monotone operators. A maximal monotone
map A has a graph which is sequentially closed in X × X∗

w and in Xw × X∗, where by
Xw and X∗

w we denote the spaces X and X∗ with their respective weak topologies. If
A : X → Pfc(X∗) is a monotone map and for every x, y ∈ X λ → A(x + λy) is usc from
[0, 1] into X∗

w, then A is maximal monotone. Now let A : X → X∗ be a single-valued map
which is everywhere defined (i.e. D = X). We say that A is “demicontinuous”, if xn → x

in X, then A(xn) w→ A(x) in X∗. A monotone, demicontinuous map is maximal monotone.
A map A : D ⊆ X → 2X∗

is said to be “coercive”, if D is bounded or D is unbounded and
inf {‖x∗‖ : x∗ ∈ A(x)} → ∞ as ‖x‖ → ∞. A maximal monotone, coercive map is surjective.

An operator A : X → 2X∗
is said to be “ pseudomonotone” , if the following are true:

(a) for every x ∈ X, A(x) ∈ Pwkc(X∗);
(b) A is usc from every finite dimensional subspace Z of X into X∗

w;
and

(c) if xn
w→ x, x∗n ∈ A(xn) and limn→∞(x∗n, xn − x) ≤ 0, then for every y ∈ X, there
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exists x∗(y) ∈ A(x) such that (x∗(y), x− y) ≤ limn→∞(x∗n, xn − y).
If the operator A is bounded (i.e. it maps bounded sets in X to bounded sets in X∗)

and satisfies (c) above, then it satisfies also (b). An operator A : X → 2X∗
is said to

be “generalized pseudomonotone”, if xn
w→ x in X, xn

w→ x∗ in X∗, x∗n ∈ A(xn) and
limn→∞(x∗n, xn − x) ≤ 0, then x∗ ∈ A(x) and (x∗n, xn) → (x∗, x). Every maximal monotone
map is generalized pseudomonotone. Also a pseudomonotone operator is generalized pseu-
domonotone. The converse is true if the operator A has values in Pwkc(X∗) and is bounded.
A pseudomonotone operator which is coercive, is surjective.

Let X be a reflexive Banach space and ϕ : X → R = R ∪ {+∞} is a proper, convex
function (i.e. dom f = {x ∈ X : ϕ(x) < +∞} 6= ∅ and epi f = {(x, λ) ∈ X × R : ϕ(x) ≤ λ}
is convex). Given x ∈ X, we denote by ∂ϕ(x) the set of all x∗ ∈ X∗ such that (x∗, y − x) ≤
ϕ(y) − φ(x) for all y ∈ X. Such elements x∗ ∈ X∗ are called subgradients of ϕ at x and
∂ϕ(x) is the subdifferential of ϕ at x. The generally multivalued operator ∂ϕ : X → 2X∗

is monotone and if ϕ is also lower semicontinuous. then ∂ϕ is maximal monotone. Also
∂ϕ(x) is always a closed convex set, possibly empty. If ϕ is Gateaux differentiable, then
∂ϕ(x) = {ϕ′(x)} and ϕ(x) = infX ϕ if and only if 0 ∈ ∂ϕ(x). For every λ > 0 we define

ϕλ(x) = inf
[
ϕ(y) +

1
2λ

‖x− y‖2 : y ∈ X

]
.

The function ϕλ is convex and everywhere finite on X and it is called the Moreau-Yosida
approximation of ϕ. If X is reflexive and ϕ is proper, convex and lower semicontinuous, then
ϕλ is Gateaux differentiable and limλ↓0 ϕλ(x) = ϕ(x) for all x ∈ X. Moreover, ∂ϕλ = (∂ϕ)λ

(=the Yosida approximation of the maximal monotone map ∂ϕ).

Our hypotheses on the data of (1.1) are the following:

H(α) : a : T × R× R → Pfc(R) is a multifunction such that for almost all
t ∈ T and all x ∈ R, 0 ∈ a(t, x, 0) and

(i) (t, x, y) → a(t, x, y) is graph measurable;
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(ii) for almost all t ∈ T and all x ∈ R, a(t, x, ·) is maximal monotone, while for almost
all t ∈ T and all y ∈ R, a(t, ·, y) is lsc;

(iii) for almost all t ∈ T and all x, y ∈ R

|a(t, x, y)| ≤ γ(t) + c(|x|p−1 + |y|p−1)

with γ ∈ Lq(T )( 1
p + 1

q = 1), c > 0;
(iv) for almost all t ∈ T , all x ∈ R, all y ∈ R and all v ∈ a(t, x, y) we have

vy ≥ c1 |y|p − γ1(t)

with γ1 ∈ L1(T ), c1 > 0.

H(ϕ) : ϕ : R → R is convex and ϕ(0) = infRϕ.

H(F) : F : T × R → Pkc(R) is a multifunction such that
(i) (t, x) → F (t, x) is measurable;
(ii) for all t ∈ T, x → F (t, x) is usc;
(iii) for every r > 0 there exists ξr ∈ L1(T ) such that for almost all t ∈ T and all |x| ≤ r

we have

|F (t, x)| ≤ ξr(t);

(iv) there exists M1 > 0 such that for all t ∈ T we have x. min {v ∈ F (t, x)} ≥ 0 if
x ≤ −M1 and x.max {v ∈ F (t, x)} ≥ 0 if x ≥ M1.

By virtue of hypotheses H(a), for every x ∈ W 1,p
0 (T ), Sq

a(·,x(·),x′(·)) 6= ∅. Then term
a(t, x(t), x′(t))′ in (1.1), as usual, is interpreted in the following way

a(t, x(t), x′(t))′ =
{

g′ : g ∈ Sq
a(·,x(·),x′(·))

}
.

The derivative of g is defined in the sense of distributions. From a well-known repre-
sentation theorem for the space W−1,q(T ) = W 1,p

0 (T )∗ (see for example Hu-Papageorgiou

http://www.river-valley.com
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[11], theorem A.1.25, p. 866), we see that a(t, x(t), x′(t))′ ∈ Pfc(W−1,q(T )). By a solution
of (1.1) we mean a function x ∈ W 1,p

0 (T ) such that for some g ∈ Sq
a(·,x(·),x′(·)), u ∈ Sq

∂ϕ(x(·)
and f ∈ Sq

F (·,x(·)) such that

g′(t)− u(t)− f(t) = h(t)− βx′(t) a.e on T.

3. Auxiliary results. In this section we prove some auxiliary results which will be
used in Section 4 to prove the main existence theorem concerning problem (1.1).

We start by establishing the existence of an approximate a Caratheodory selection of F
which satisfies a generalized sign contition. Recall g : T × R → R is Caratheodory function
if it is measurable in t ∈ T and continuous in x ∈ R. Such a function is jointly measurable.

Proposition 3.1. If F : T × R → Pkc(R) is a multifunction which satisfies hypotheses
H(F) and ε > 0 is given, then there exists gε : T × R → R a Caratheodory function such
that

(a) for all (t, x) ∈ T × R, gε(t, x) ∈ F (t, x + Bε) + Bε where Bε = [−ε, ε];
(b) for every M > 0 there exists mM ∈ L1(T ) such that for almost all t ∈ T and

all |x| ≤ M , |gε(t, x)| ≤ mM (t) and mM (·) can be chosen to be independent of
0 < ε ≤ 1;

(c) for all t ∈ T and all |x| ≥ M1 + 1, we have xgε(t, x) ≥ 0.
Proof. Let ϑ1(t, x) and ϑ2(t, x) be the two measurable functions introduced in the remark
of Section 2. We define

ϑ̂1(t, x) =

{
θ1(t, x) if x ≥ M1

max {0, ϑ1(t, x)} if x < M1

and

ϑ̂2(t, x) =

{
θ2(t, x) if x ≥ −M1

min {0, ϑ2(t, x)} if x < −M1

.

It is easy to see that ϑ̂1, ϑ̂2 are both measurable and ϑ̂1(t, ·) is lower semicontinuous

http://www.river-valley.com
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while ϑ̂2(t, ·) is upper semicontinuous. We set F̂ (t, x) = [ϑ̂1(t, x), ϑ̂2(t, x)]. Then F̂ (·, ·) is
measurable and for all t ∈ T, F̂ (t, ·) is usc. Moreover, since θ1 ≤ ϑ̂1 ≤ ϑ̂2 ≤ ϑ2, we have that
F̂ (t, x) ⊆ F (t, x) for all (t, x) ∈ T × R.

Fix t ∈ T . Invoking Theorem I.4.42, p. 107, of Hu-Papageorgiou [10], we know that
given δ > 0, we can find rδ : R → R a continuous map such that rδ(x) ∈ F̂ (t, x + Bδ) + Bδ

for all x ∈ R, with Bδ = (−δ, δ).
Choose δ ≤ min

{
ε, 1

2

}
. We have

max
{

u ∈ F̂ (t, x + Bδ)
}
≤ 0 if x < −

(
M1 +

1
2

)
andmin

{
u ∈ F̂ (t, x + Bδ)

}
≥ 0 if x > M1 +

1
2
.

Define r̂δ : R → R by

r̂δ(x) =


min {0, rδ(x)} if x ≤ −(M1 + 1)

rδ(x) if −
(

M1 +
1
2

)
≤ x ≤ M1 +

1
2

max {0, rδ(x)} if x ≥ M1 + 1

and on the remaining intervals [−(M1 +1),−(M1 + 1
2 )] and [M1 + 1

2 ,M1 +1], we define linear
connections. Then r̂δ(·) is continuous, for |x| ≥ M1 + 1 we have xr̂δ(x) ≥ 0 and

r̂δ(x) ∈ F̂ (t, x + Bδ) + Bδ

=⇒ r̂δ(x) ∈ F (t, x + Bδ) + Bδ.

Now we will choose such a continuous approximate selector of F , which depends mea-
surably on t ∈ T . To this end, define the multifunction Sε : T → 2C(R) by

Sε(t) = {r ∈ C(R) : r(x) ∈ F (t, x + Bε) + Bε, xr(x) ≥ 0 for all |x| ≥ M1 + 1} .

http://www.river-valley.com
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From the first part of the proof, we know that Sε has nonempty values. Let F ∗(t, x) =
F (t, x + Bε) + Bε. Clearly F ∗(t, ·) is usc and has compact and convex values (i.e. for every
(t, x) ∈ T × R, F ∗(t, x) is a bounded, closed interval). For every y ∈ R we have

σ(y, F ∗(t, x)) = sup[σ(y, F (t, x + z)) : z ∈ Bε] + ε.

Invoking Proposition II.2.23, p. 161 of Hu-Papageorgiou [10], we have that t →
sup[σ(y, F (t, x + z)) : z ∈ Bε] is measurable and then so is t → σ(y, F ∗(t, x)) from which we
infer the Lebesgue measurability of t → F ∗(t, y). We have

GrSε = {(t, r) ∈ T×C(R) : d(r(x), F ∗(t, x)) = 0 for all x ∈ R, xr(x) ≥ 0 for |x| ≥ M1+1}.

Let {an}n≥1 ⊆ R be an enumeration of the rationals in the real line and {cm}m≥1 an
enumeration of the rationals in |x| ≥ M1 + 1. Also note that since F ∗(t, ·) is usc, for every
r ∈ C(R), x → d(r(x), F ∗(t, x)) is lower semicontinuous. Indeed, suppose that xn → x in R.
For all n ≥ 1 we have

h∗(F ∗(t, xn), F ∗(t, x)) ≥ d(r(xn), F ∗(t, x))− d(r(xn), F ∗(t, xn))
=⇒ d(r(xn), F ∗(t, xn)) ≥ d(r(xn), F ∗(t, x))− h∗(F ∗(t, xn), F ∗(t, x))

Since F ∗(t, ·) is usc, it is also h-usc and so h∗(F ∗(t, xn), F ∗(t, x)) → 0 as n → ∞. Hence
d(r(x), F ∗(t, x)) = limn→∞ d(r(xn), F ∗(t, x)) ≤ limn→∞ d(r(xn), F ∗(t, xn))
=⇒ x → d(r(x), F ∗(t, x)) is lower semicontinuous as claimed.

Exploiting this fact, we can write

GrSε =
⋂

n≥1,m≥1

{(t, r) ∈ T × C(R) : d(r(an), F ∗(t, an)) = 0, cmr(cm) ≥ 0} .

Note that for every n ≥ 1, (t, r) → d(r(an), F ∗(t, an)) is a Caratheodory function on T ×
C(R) (on C(R) we consider the topology of uniform convegence on compacta which makes it

http://www.river-valley.com
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a separable Frechet space). So the function is jointly measurable (see Hu-Papageorgiou [10],
Proposition II.1.6, p. 142). Therefore GrSε ∈ L(T )×B(C(R)), with L(T ) being the Lebesgue
σ-field of T and B(C(R)) the Borel σ-field of the space C(R). Apply the Yankov-von
Neumann-Aumann selection theorem (see Hu-Papageorgiou [10], Theorem II.2.14, p. 158)
and obtain ĝ : T → C(R) a Lebesgue measurable map such that ĝε(t) ∈ Sε(t) for all t ∈ T .
If we set gε(t, x) = ĝε(t)(x), then clearly gε(t, x) is the desired Caratheodory selector.

Let A : W 1,p
0 (T ) → 2Lq(T ) be defined by

A(x) = Sq
a(·,x(·),x′(·))

and let α : W 1,p
0 (T ) → 2W−1,q

(T ) be defined by

α(x) = {−g′ : g ∈ A(x)}

and for every x ∈ W 1,p
0 (T ), let Vx : W 1,p

0 (T ) → 2W−1,q

(T ) be defined by

Vx(v) =
{
−w′ : w ∈ Sq

a(·,x(·),v′(·))

}
.

In both these operators, the derivatives involved in their definitions are defined in the
sense of distributions. We will show that α is pseudomonotone. For this we need the following
intermediate lemma about the operator Vx.

Lemma 3.2. If hypotheses H(a) hold, then Vx : W 1,p
0 (T ) → 2W−1,q(T ) is maximal monotone.

Proof. By virtue of hypotheses H(a)(i) and (iii) for every v ∈ W 1,p(T ), Sq
a(·,x(·),v′(·)) ∈

Pwkc(W−1,q(T )). So in order to prove the maximal monotonicity of Vx(·), it suffices to show
that for all u ∈ W 1,p

0 (T ), λ → Vx(v + λu) is usc from [0, 1] into W−1,q(T )w (by W−1,q(T )w

we denote the space W−1,q(T ) furnished with the weak topology). Since Vx(·) is bounded
and W−1,q(T ) is reflexive, because of Proposition I.2.23, p. 43, of Hu-Papageorgiou [10], we

http://www.river-valley.com
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know that it suffices to show that if λn → λ, ηn
w→ η in W−1,q(T ) and ηn ∈ Vx(v + λnu),

then η ∈ Vx(v + λu). We have ηn = −g′n, with gn ∈ Lq(T ) and satisfies

gn(t) ∈ a(t, x(t), (v + λnu)′(t)) a.e on T.

Because of hypothesis H(a)(iii) and since ηn
w→ η in W−1,q(T ), we infer that gn

w→ g in
Lq(T ) with −g′ = η. From Proposition VII. 3.9, p. 694, of Hu-Papageorgiou [10], we obtain

g(t) ∈ convlima(t, x(t), (v + λnu)′(t)) ⊆ a(t, x(t), (v + λu)′(t)) a.e on T,

the last inclusion following from the convexity of the values of a and since a(t, x(t), ·) has
closed graph (since it is maximal monotone). Hence g ∈ Sq

a(·,x(·),(vλ+u)′(·)), from which it
follows that η ∈ Vx(v + λu). Therefore λ → Vx(v + λu) is usc from [0, 1] into W−1,q(T )w

and so Vx(·) is maximal monotone.

Using this intermediate result we can now prove the pseudomonotonicity of α.

Proposition 3.3. If hypotheses H(a) hold, then α : W 1,p
0 (T ) → 2W−1,q(T ) is pseudomono-

tone.

Proof. Note that because of hypotheses H(a)(i) and (iii), Sq
a(·,x(·),x′(·)) ∈ Pwkc(Lq(T )) and

so we see that α has nonempty, weakly compact and convex values. Moreover, α is bounded,
So in order to show the pseudomonotonicity of α, it suffices to show that α is generalized
pseudomonotone. To this end we take an ∈ α(xn), n ≥ 1, and assume that xn

w→ x in

W 1,p
0 (T ), an

w→ a in W−1,q(T ) and limn→∞ 〈an, xn − x〉 ≤ 0, with 〈·, ·〉 being the duality
brackets for the pair (W 1,p

0 (T ),W−1,q(T )). By definition we have an = −g′n, with gn ∈
Sq

a(·,xn(·),x′n(·)). From hypothesis H(a)(iii) we have

|gn(t)| ≤ γ(t) + c(|xn(t)|p−1 + |x′n(t)|p−1) a.e on T,

=⇒ {gn}n≥1 ⊆ Lq(T ) is bounded.
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Passing to a subsequence if necessary, we may assume that gn
w→ g in Lq(T ). For every

z ∈ W 1,p
0 (T ) we have

〈−g′n, z〉 =
∫ b

0

gnz′ dt →
∫ b

0

gz′ dt = 〈−g′, z〉

=⇒ an
w→ −g′ in W−1,q(T ), i.e. a = g′.

First we will show that g(t) ∈ a(t, x(t), x′(t)) a.e on T . For this purpose let v ∈ W 1,p
0 (T ).

Then by virtue of hypothesis H(a)(i), t → a(t, x(t), v′(t)) is measurable and so by the
Yankov-von Neumann-Aumann selection theorem, we can find w : T → R a measurable
map such that w(t) ∈ a(t, x(t), v′(t)) for all t ∈ T , i.e. w ∈ Sq

a(·,x(·),v′(·)) 6= ∅. Also for every
n ≥ 1 let

Γn(t) = {u ∈ a(t, xn(t), v′(t)) : |w(t)− u| = d(w(t), a(t, xn(t), v′(t)))} .

Because t → a(t, xn(t), v′(t)) is measurable, the function (t, u) → ηn(t, u) = |w(t)− u|
− d(w(t), a(t, xn(t), v′(t))) is Caratheodory, thus jointly measurable. Hence GrΓn ∈ L(T )×
B(R) and we can apply once again the Yankov-von Neumann-Aumann selection theorem
and obtain wn ∈ Sq

a(·,xn(·),v′(·)) n ≥ 1, such that wn(t) ∈ Γn(t) a.e on T . Therefore we have

|w(t)− wn(t)| = d(w(t), a(t, xn(t), v′(t)))
≤ h∗(a(t, x(t), v′(t)), a(t, xn(t), v′(t))) a.e on T

and because xn → x in C(T ) (from the compact embedding of W 1,p
0 (T ) into C(T )) and from

the lower semicontinuity of a(t, ·, v′(t)) (hypothesis H(a)(ii)), we have that

h∗(a(t, x(t), v′(t)), a(t, xn(t), v′(t))) → 0 a.e on T,

=⇒ |w(t)− wn(t)| → 0 a.e on T.
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So by the dominated convergence theorem, we have wn → w in Lq(T ) and then w′
n → w′

in W−1,q(T ). From the monotonicity of a(t, xn(t), ·) we have

0 ≤
∫ b

0

(gn(t)− wn(t))(x′n(t)− v′(t)) dt

=
∫ b

0

gn(t)(x′n(t)− x′(t)) dt +
∫ b

0

gn(t)(x′(t)− v′(t)) dt

+
∫ b

0

wn(t)(v′(t)− x′n(t)) dt

= 〈an, xn − x〉+
∫ b

0

gn(t)(x− v)′(t) dt +
∫ b

0

wn(t)(v − xn)′(t) dt

Passing to the limit and using the fact that limn→∞ 〈an, xn − x〉 ≤ 0, we obtain

0 ≤
∫ b

0

g(t)(x− v)′(t) dt +
∫ b

0

w(t)(v − x)′(t) dt,

=⇒ 0 ≤ 〈−g′ + w′, v − x〉 for all (v, w) ∈ GrVx.

Invoking Lemma 3.2, we deduce that −g′ ∈ Vx(x′), hence g(t) ∈ a(t, x(t), x′(t)) a.e on T .
Therefore an

w→ a = −g′ in W−1,q(T ) with g ∈ Sq
a(·,x(·),x′(·)), hence a ∈ α(x). To finish the

proof, it remains to show that 〈an, xn〉 → 〈a, x〉. As above let wn ∈ Sq
a(·,xn(·),x′(·)) such that
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wn → g in Lq(T ). We have∫ b

0

gn(t)(xn − x)′(t) dt =
∫ b

0

(gn − wn)(t)(xn − x)′(t) dt

+
∫ b

0

wn(t)(xn − x)′(t) dt

=⇒ 〈an, xn − x〉 ≥
∫ b

0

wn(t)(xn − x)′(t) dt (since a(t, xn(t), ·) is monotone)

=⇒ limn→∞ 〈an, xn − x〉 ≥ 0.

On the other hand by hypothesis limn→∞ 〈an, xn − x〉 ≤ 0 and so finally 〈an, xn〉 → 〈a, x〉,
which finishes the proof of the proposition.

Now we consider the Caratheododory selector gε(t, x) from Proposition 3.1 and define
its truncation at level k > 0:

gk
ε (t, x) =

{
gε(t, x) if |gε(t, x)| ≤ k

k sgn(gε(t, x)) if |gε(t, x)| > k

In what follows by Nε
k we denote the Nemitsky operator corresponding to the trunceted

function gk
ε ,i.e. Nε

k(x)(·) = gk
ε (·, x(·)). Evidently Nε

k : Lp(T ) → Lq(T ) is continuous and
Nε

k |W 1,p
0

: W 1,p
0 (T ) → W−1,q

0 (T ) is compact and has values in L∞(T ).
Since by hypothesis H(ϕ), ϕ is R-valued, it is continuous (in fact locally Lipschitz)

and so for every x ∈ W 1,p
0 (T ) ⊆ C(T ), ϕ(x(·)) ∈ L∞(T ). So we can define the function

Φ : W 1,p
0 (T ) → R by Φ(x) =

∫ b

0
ϕ(x(t)) dt. Evidently Φ is continuous, convex. Therefore

it is subdifferentiable everywhere, i.e. D(∂Φ) =
{

x ∈ W 1,p
0 (T ) : ∂Φ(x) 6= ∅

}
= W 1,p

0 (T ).
For every λ > 0 we consider the Moreau-Yosida approximation of Φ, which is continuous,
convex and Gateaux differentiable. Moreover, ∂Φλ = (∂Φ)λ(= the Yosida approximation of
the maximal monotone map ∂Φ).
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Finally let K : W 1,p
0 (T ) → W−1,q

0 (T ) be defined by

Kx = −βx′

Exploiting the compact embedding of Lp(T ) into W−1,q(T ), we see that K is a compact
linear operator. Consider the following auxiliary operator inclusion:

α(x) + K(x) + ∂Φλ(x) + Nε
k(x) 3 −h (3.1)

In the next proposition we obtain a solution for (3.1)

Proposition 3.4. If hypotheses H(a), H(ϕ), H(F ) hold and h ∈ L1(T ), then the operator
inclusion (3.1) has a solution x ∈ W 1,p

0 (T ).

Proof. By Proposition 3.3, α is pseudotonotone. Also we already mentioned that K ∈
L(W 1,p

0 (T ),W−1,q(T )) is compact. Hence α1 = α + K : W 1,p
0 (T ) → W−1,q(T ) is pseu-

domonotone. Also ∂Φλ : W 1,p
0 (T ) → W−1,q(T ) is maximal monotone and earlier we pointed

out that Nε
k : W 1,p

0 (T ) → W−1,q(T ) is compact. Since maximal monotone maps defined
everywhere and compact maps are pseudomonotone and the sum of pseudomonotone maps
is pseudomonotone (see Hu-Papageorgiou [10], pp. 365–368) it follows that x → U(x) =
(α1+∂Φλ+Nε

k)(x) is pseudomonotone. Also for every x ∈ W 1,p
0 (T ) and every a = −g′ ∈ α(x)

with g ∈ A(x), we have

〈−g′, x〉 − β(x, x′)pq + 〈∂Φλ(x), x〉+ (Nε
k(x), x)pq = 〈U(x), x〉

where by (·, ·)pq we denote the duality brackets for the pair (Lp(T ), Lq(T )). From integration
by parts and using hypothesis H(a)(iv), we have

〈−g′, x〉 =
∫ b

0

g(t)x′(t) dt ≥ c1 ‖x′‖
p
p − ‖γ1‖1 .
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Also β(x, x′)pq = β
∫ b

0
x(t)x′(t) dt = β

2

∫ b

0
d
dtx(t)2 dt = 0. In addition since by hypothesis

H(ϕ), 0 ∈ ∂ϕ(0), we deduce that ∂Φλ(0) = 0 and so 〈∂Φλ(x), x〉 ≥ 0. Finally

(Nε
k(x), x)pq =

∫ b

o

Nε
k(x)(t)x(t) dt ≤ ‖Nε

k(x)‖1 ‖x‖∞ ≤ ϑ1(k) ‖x‖

for some θ1(k) > 0. Therefore finally we can write that for all u ∈ U(x)

〈u, x〉 ≥ c1 ‖x′‖
p
p − ϑ1(k) ‖x‖ . (3.2)

Recalling that ‖x′‖p
p is an equivalent norm on W 1,p

0 (T ), from (3.2) it follows that U(·)
is coercive. But a pseudomonotone, coercive operator is surjective. Since h ∈ L1(T ) ⊆
W−1,q(T ), we see that there exists x ∈ W 1,p

0 (T ) such that −h ∈ U(x)

4. Existence theorem. In this section, using the preparatory work of Section 3, we
prove the following existence theorem for problem (1.1).

Theorem 4.1. If hypotheses H(a), H(ϕ), H(F ) hold and h ∈ L1(T ), then problem (1.1)
has a solution x ∈ W 1,p

0 (T ).

Proof. Let λk, εk ↓ 0 and let xk ∈ W 1,p
0 (T ) be solutions of

α(x) + K(x) + ∂Φλk
(x) + Nεk

k (x) 3 −h, k ≥ 1.

We take the duality brackets with xk. So we have

〈−g′k, xk〉+ (K(xk), xk)pq + (∂Φλk
(xk), xk)pq + (Nεk

k (xk), xk)pq = (−h, xk)1,∞

where gk ∈ A(xk). As before (proof of Proposition 3.4), we have

〈−g′k, xk〉 =
∫ b

0

gk(t)x′k(t) dt ≥ c1 ‖x′k‖
p
p − ‖γ1‖1

(K(xk), xk)pq ≥ 0 and (∂Φλk
(xk), xk)pq ≥ 0.
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Thus we can write that

c1 ‖x′k‖
p
p − ‖γ1‖1 +

∫ b

0

Nεk

k (xk)(t)xk(t) dt ≤ ‖h‖1 ‖xk‖∞ . (4.1)

Let T (k) = {t ∈ T : |xk(t)| ≤ M1 + 1 = M2}. We have

∫ b

0

Nεk

k (xk)(t)xk(t) dt =
∫

T (k)

Nεk

k (xk)(t)xk(t) dt +
∫

T\T (k)

Nεk

k (xk)(t)xk(t) dt

≥
∫

T (k)

Nεk

k (xk)(t)xk(t) dt (see Proposition 3.1)

≥ −ϑ2 > 0 (4.2)
hypothesis H(F )(iii) and Proposition 3.1).

for some ϑ2. Using this in (4.1) and from the Poincare inequality, we obtain

c1 ‖x′k‖
p
p ≤ θ3 ‖x′k‖+ ϑ4 for some ϑ3, ϑ4 > 0 independent of k ≥ 1.

=⇒ {xk}k≥1 ⊆ W 1,p
0 (T ) is bounded.

So by passing to a subsequence if necessary, we may assume that xk
w→ x in W 1,p

0 (T ).
Now let T ′ ⊆ T be a measurable subset and let µ > M2 = M1+1. Set T ′

1k = {t ∈ T ′ : |xk(t)| ≤ µ},
T ′

2k = {t ∈ T ′ : |xk(t)| > µ} and Tk = {t ∈ T : |xk(t)| > M2} .
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Evidently T ′
2k ⊆ Tk. Since µ > M2, we have∫

T ′
|Nεk

k (xk)(t)|dt =
∫

T ′
1k

|Nεk

k (xk)(t)|dt +
∫

T ′
2k

|Nεk

k (xk)(t)|dt

≤
∫

T ′
ξµ(t) dt +

∫
T ′

2k

|Nεk

k (xk)(t)|dt

≤
∫

T ′
ξµ(t) dt +

1
µ

∫
T ′

2k

Nεk

k (xk)(t)xk(t) dt

≤
∫

T ′
ξµ(t) dt +

1
µ

∫
Tk

Nεk

k (xk)(t)xk(t) dt

=
∫

T ′
ξµ(t) dt +

1
µ

[
∫

T

Nεk

k (xk)(t)xk(t) dt−
∫

T\Tk

Nεk

k (xk)(t)xk(t) dt].

Directly from the equation and because {xk}k≥1 ⊆ W 1,p
0 (T ) is bounded, we can write that∫

T

Nεk

k (xk)(t)xk(t) dt ≤ ϑ5 for some ϑ5 > 0 independent of k ≥ 1.

So we can write that∫
T ′
|Nεk

k (xk)(t)|dt ≤
∫

T ′
ξµ(t) dt +

1
µ

[ϑ5 + ϑ2] (see(4.2))

Because µ > M2 was arbitary and ξµ ∈ L1(T ), it follows that

lim
|T ′|↓0

sup
k≥1

∫
T ′
|Nεk

k (xk)(t) dt| = 0

=⇒ {Nεk

k (xk)(·)}
k≥1

is uniformly integrable.
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Therefore by the Dunford-Pettis theorem and by passing to a subsequence if necessary,
we may assume that Nεk

k (xk) w→ v in L1(T ) and in W−1,q(T ), since L1(T ) is embedded
continuously in W−1,q(T )

Because gk ∈ A(xk), from hypothesis H(a)(iii), we have that {gk}k≥1 ⊆ Lq(T ) is
bounded. Hence {g′k}k≥1 ⊆ W−1,q(T ) is bounded. Thus by passing to a subsequence if

necessary, we may assume that gk
w→ g in Lq(T ) and g′k

w→ z in W−1,q(T ). Clearly z = g′.
Because

−g′k − βx′k + ∂Φλk
(xk) + Nεk

k (xk) = −h, k ≥ 1

we infer that

∂Φλk
(xk) w→ u in W−1,q(T )

(recall xk
w→ x in W 1,p

0 (T )). Also from Hu-Papageorgiou [10] (Proposition III.2.29(c), p. 325),
for all k ≥ 1 and all y ∈ W 1,p

0 (T ), we have

‖∂Φλk
(y)‖ ≤

∥∥∂Φ0(y)
∥∥ (4.3)

and ∂Φλk
(y) w→ ∂Φ0(y) in W−1,q(T ) as k →∞ (4.4)

Recall that ∂Φ0(y) = w ∈ ∂Φ(y) such that ‖w‖ = inf[‖w‖ : w ∈ ∂Φ(y)]. From (4.3) with
y = x, we have that

limk→∞ ‖∂Φλk
(x)‖ ≤

∥∥∂Φ0(x)
∥∥ , (4.5)

while from (4.4) and the weak lower semicontinuity of the norm, we have

limk→∞ ‖∂Φλk
(x)‖ ≥

∥∥∂Φ0(x)
∥∥ . (4.6)

http://www.river-valley.com


Home Page

Title Page

Contents

JJ II

J I

Page 20 of 22

Go Back

Full Screen

Close

Quit

From (4.5) and (4.6), we have that ‖∂Φλk
(x)‖ →

∥∥∂Φ0(x)
∥∥ and since W−1,q(T ) in uniformly

convex, from the Kadec-Klee property, we have that ∂Φλk
(x) → ∂Φ0(x) in W−1,q(T ).

For every k ≥ 1 we have

〈−g′k, xk − x〉 − β(x′k, xk − x)pq + 〈∂Φλk
(xk), xk − x〉+ (Nεk

k (xk), xk − x)pq

= (−h, xk − x)1∞ (4.7)

Exploiting the monotonicity of ∂Φλk
, we have

〈−g′k, xk − x〉 − β(x′k, xk − x)pq + 〈∂Φλk
(x), xk − x〉+ (Nεk

k (xk), xk − x)pq

≤ (−h, xk − x)1∞.

Observe that (x′k, xk − x)pq → 0, 〈∂Φλk
(x), xk − x〉 → 0, (Nεk

k (xk), xk − x)pq → 0 and
(−h, xk − x)1∞ → 0 (in the last convergence we have used the fact that xk → x in C(T )
from the compact embedding of W 1,p

0 (T ) into C(T )). So we have

limk→∞ 〈−g′k, xk − x〉 ≤ 0.

From Proposition 3.3, we know that α is pseudomonotone. So from the above inequality,
we infer that −g′ ∈ α(x), hence g(t) ∈ a(t, x(t), x′(t)) a.e on T and 〈−g′k, xk〉 → 〈−g′, x〉 .
Since ∂Φλk

= (∂Φ)λk
, we have that

λk ‖∂Φλk
(xk)‖∗ = ‖xk − Jλk

(xk)‖

where ‖·‖∗ denotes the norm in W−1,q(T ) and Jλk
the resolvent operator (see Hu-Papageorgiou

[10], p. 325). Since {∂Φλk
(xk)}k≥1 ⊆ W−1,q(T ) is bounded, we deduce that ‖xk − Jλk

(xk)‖ →
0 as k → ∞. Therefore Jλk

(xk) w→ x in W 1,p
0 (T ). Moreover, since 〈−g′k, xk〉 → 〈−g′, x〉,

from (4.7) we obtain that

lim
k→∞

〈∂Φλk
(xk), xk − x〉 = 0
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We have that

〈∂Φλk
(xk), xk − x〉 = 〈∂Φλk

(xk), xk − Jλk
(xk)〉+ 〈∂Φλk

(xk), Jλk
(xk)− x〉 .

Observe that |〈∂Φλk
(xk), xk − Jλk

(xk)〉| ≤ ‖∂Φλk
(xk)‖∗ ‖xk − Jλk

(xk)‖ → 0. So it follows
that

lim
k→∞

〈∂Φλk
(xk), Jλk

(xk)− x〉 = 0

Recall that ∂Φλk
(xk) ∈ ∂Φ(Jλk

(xk)) and Jλk
(xk) w→ x in W 1,p

0 (T ). But ∂Φ being maximal
monotone, it is generalized pseudomonotone. So because ∂Φλk

(xk) w→ u in W−1,q(T ) we
have u ∈ ∂Φ(x). Therefore in the limit as k →∞ we obtain

−g′ − βx′ + u + v = −h

with g ∈ A(x), u ∈ ∂Φ(x). Moreover, using Proposition VII. 3.9, p. 624 of Hu-Papageorgiou
[10], we can easily check that v ∈ S1

F (·,x(·)). Thus x ∈ W 1,p(Z) solves (1.1).
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