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OSCILLATION AND NONOSCILLATION CRITERIA FOR RETARDED
FUNCTIONAL DIFFERENTIAL EQUATIONS

ANA PEDRO∗

Abstract. Several criteria are given for having the retarded functional differential equation

d

dt
x (t) =

∫ 0

−1
x (t− r (θ)) dq (θ)

either oscillatory or nonoscillatory, depending upon the smoothness of the delay function r (θ).

1. Introduction. The purpose of this note is to investigate the oscillatory behavior of
the equation

d
dt

x (t) =
∫ 0

−1

x (t− r (θ)) dq (θ) (1.1)

where x (t) ∈ R, r (θ) is a positive real continuous function on [−1, 0] , and q (θ) a real
function of bounded variation on [−1, 0], normalized in manner that q (−1) = 0.

We will analyze the existence or nonexistence of oscillations in terms of the smoothness
of the delay functions, r (θ). Namely, when r (θ) is in the set C+ of all continuous functions
in [−1, 0] , or in D+, the set of all differentiable functions on [−1, 0].

It will be also considered the relevant class of differential difference equation

d
dt

x (t) =
p∑

j=1

ajx (t− rj) (1.2)

∗Departamento de Matemática, Faculdade de Ciências e Tecnologia, UNL, Quinta da Torre, 2825-114
Monte de Caparica, Portugal (anap@fct.unl.pt)

http://www.river-valley.com


Home Page

Title Page

Contents

JJ II

J I

Page 2 of 16

Go Back

Full Screen

Close

Quit

where the aj are nonzero real numbers and each rj is a positive real number (j = 1, . . . , p).
As is well-know, this equation can be obtained from (1.1), under the assumption that q (θ)
is a step function with a number p of jump points. More concretely it can be obtained from
(1.1) with q (θ) given explicitly, for example, by

q (θ) =
p∑

j=1

H (θ − θj) aj , (1.3)

where, for −1 < θ1 < . . . < θp < 0, by H we mean the Heaviside function and the delays,
rj , are obtained through any function r (θ) ∈ C+ which satisfy r (θj) = rj for j = 1, . . . , p.

A metric is introduced in C+ through the norm ‖r‖ = max {r(θ) : −1 ≤ θ ≤ 0} (r ∈ C+).
The value m (r) = min {r (θ) : −1 ≤ θ ≤ 0} will also have some relevance in the sequel.

By a solution of (1.1) we mean a continuous function x : [−‖r‖ ,∞[ , which is differ-
entiable on [0,+∞[ in manner that (1.1) be satisfied for every t ≥ 0. A solution is said
oscillatory whenever it has an infinite number of zeros; otherwhise it will be said nonoscilla-
tory. When all solutions are oscillatory the equation (1.1) is called oscillatory. If (1.1) has
at last one nonoscillatory solution the equation will be said nonoscillatory.

We will take the Banach space NBV of all (normalized) real functions of bounded
variation, φ, on [−1, 0] , such that φ (−1) = 0. Denoting by

∫ 0

−1
|dφ (θ)| the total variation of

φ on [−1, 0], through ‖φ‖ =
∫ 0

−1
|dφ (θ)| , we introduce a norm in NBV .

We will say that a function φ : [−1, 0] → R is increasing (decreasing) on J ⊂ [−1, 0], if
φ is non constant on J and for every θ1, θ2 ∈ J such that θ1 < θ2, one has φ (θ1) ≤ φ (θ2)
(respectively, φ (θ2) ≤ φ (θ1) . Following [1, 2] , a given θ ∈ [−1, 0] is said a point of increase
(respectively, a point of decrease) of φ, if for every ε > 0, sufficiently small, φ is increasing
(decreasing) in [θ − ε, θ + ε] ([−ε, 0] if θ = 0, [−1,−1 + ε] if θ = −1). If there exists a ε > 0
such that φ is constant in [θ − ε, θ + ε] ([−ε, 0] if θ = 0, [−1,−1 + ε] if θ = −1), θ will be
said a point of constancy of φ.

As is well known, any function φ ∈ NBV can be decomposed as the difference of two
nondecreasing functions α and β : φ = α − β. This decomposition is not unique and a
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particular decomposition of φ is given by

φ = φ+ − φ−, (1.4)

where by φ+ and φ− we denote, respectively, the positve and negative variation of φ,
which are defined as follows. For each θ ∈ [−1, 0] , let P be the set off all partitions
P = {−1 = θ0, θ1, . . . , θk = θ} of the interval [−1, θ] and to each P ∈ P associate the sets

A (P ) = {j : φ (θj)− φ (θj−1) > 0} and B (P ) = {j : φ (θj)− φ (θj−1) < 0} .

Then φ+ and φ− are given, respectively, by

φ+ (θ) = sup

 ∑
j∈A(P )

(φ (θj)− φ (θj−1)) : P ∈ P


and

φ− (θ) = sup

 ∑
j∈B(P )

|φ (θj)− φ (θj−1)| : P ∈ P

 .

(whenever A (P ) or B (P ) are empty, we make φ+ (θ) = 0, φ− (θ) = 0). One easily sees that
both φ+ and φ− are nondecreasing functions such that φ (θ) = φ+ (θ) − φ− (θ) , for every
θ ∈ [−1, 0].

The oscillatory analysis of the equation (1.1) can be made, as is well known (see [3]),
through the study of the zeros of the function F (λ) = λ−

∫ 0

−1
exp (−λr (θ)) dq (θ) , namely

(1.1) is oscillatory if and only if F (λ) 6= 0, for every λ ∈ R. However, taking into account
that for every λ > 0 ∣∣∣∣∫ 0

−1

exp (−λr (θ)) dq (θ)
∣∣∣∣ ≤ exp (−λm (r)) ‖q‖ ,

http://www.river-valley.com
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and that then F (λ) → +∞, as λ → +∞, we can conclude that (1.1) is oscillatory if only if

F (λ) > 0, ∀λ ∈ R. (1.5)

2. Nonoscillations for continuous delays. In this section we will look for conditions
in order to have (1.1) nonoscillatory. This happens whenever F (λ) ≤ 0 for some λ ∈ R.

Noticing that if q (0) ≥ 0 then F (0) = −q (0) ≤ 0, in such situation (1.1) is nonoscil-
latory independently of the delay functions r ∈ C+. This happens, in particular, when q is
nondecreasing on [−1, 0] .

A different situation for having (1.1) nonoscillatory is expressed in the following theorem.

Theorem 2.1. Let θ0 ∈ [−1, 0] be such that r (θ0) = ‖r‖ and r (θ) < ‖r‖ for every θ 6= θ0.
If θ0 is a point of increasing of q (θ) , then equation (1.1) is nonoscillatory.

Proof. For a matter of simplicity, let as assume that θ0 = 0.

Considering the decomposition of q given by (1.4),

q (θ) = q+ (θ)− q− (θ) (θ ∈ [−1, 0]) ,

θ0 = 0 will be a point of constancy of the function q− . Therefore we have for some ε > 0,
sufficiently small, the function q+ increasing and q− constant on [−ε, 0] , which means that

F (λ) = λ−
∫ 0

−1

exp (−λr (θ)) dq+ (θ) +
∫ −ε

−1

exp (−λr (θ)) dq− (θ) .

Take 0 < δ < ε in manner that m0 = min {r (θ) : −δ ≤ θ ≤ 0} be such that

http://www.river-valley.com
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m0 > M = max {r (θ) : −1 ≤ θ ≤ −ε} . One easily can see that for every real λ < 0,∫ 0

−1

exp (−λr (θ)) dq+ (θ) ≥
∫ 0

−ε

exp (−λr (θ)) dq+ (θ)

≥
∫ 0

−δ

exp (−λr (θ)) dq+ (θ)

≥ exp (−λm0) (q+ (0)− q+ (−δ)) ,

and

0 ≤
∫ −ε

−1

exp (−λr (θ)) dq− (θ) ≤ exp (−λM) ‖q−‖ .

Thus, for every real λ < 0, we have

F (λ) ≤ − exp (−λm0) (q+ (0)− q+ (−δ)) + exp (−λM) ‖q−‖ ,

that is,

F (λ) ≤ − exp (−λm0) [(q+ (0)− q+ (−δ))− exp (−λ (m0 −M)) ‖q−‖] ,

which shows that F (λ) → −∞, as λ → −∞. Hence (1.1) is nonoscillatory.

Example 1. Consider the equation

d
dt

x (t) =
∫ 0

−1

cos (2πθ) x (t− r (θ)) dθ (2.1)

where the delay function, r ∈ C+, is strictly increasing in [−1, 0] . With respect to (1.1), the
corresponding function of NBV is q (θ) =

∫ θ

−1
cos (2πθ) dθ, which has a point of increase at

θ = 0, where r (θ) attains its absolute maximum. Hence (2.1) is nonoscillatory.

http://www.river-valley.com
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Corollary 2.2. The equation (1.2) is nonoscillatory if ak > 0, where the index k is
determined by rk = max {r1, . . . , rp} .

Remark 1. We notice that the fact of the point θ0, defined in the Theorem (2.1), be
a point of increase of q (θ), has nothing to see with any increasing characteristics of this
function in the whole interval [−1, 0]. In fact, with q (θ) nondecreasing, or even increasing,
on [−1, 0] , the point θ0 is not necessarily a point of increase of q (θ). Actually, in such case,
θ0 may eventually be a point of constancy of q (θ). Conversely,, if q (θ) has at θ0 a point of
increase, on the interval [−1, 0] it may not be a nondecreasing function. In fact, it may not
be a monotonous function either.

When q is a decreasing function on [−1, 0] it cannot have at θ0 a point of increase. Under
that situation, in [4] are obtained several criteria in view of having (1.1) oscillatory, namely
when ∫ 0

−1

r (θ) dq (θ) < −1
e
. (2.2)

However, in such case is possible to have a nonoscillatory situation as the stated in the
following theorem.

Theorem 2.3. If q (θ) is decreasing, then (1.1) is nonoscillatory if

‖r‖ |q (0)| ≤ 1
e
. (2.3)

Proof. If λ < 0, we have exp (−λr (θ)) ≤ exp (−λ ‖r‖) , which implies that

−
∫ 0

−1

exp (−λr (θ)) dq (θ) ≤ exp (−λ ‖r‖) |q (0)| .

Thus F (λ) ≤ f (λ) = λ + exp (−λ ‖r‖) |q (0)|. Since f (λ) → +∞, as λ → ±∞, then
f (λ) has as absolute minimum the value f (λ0) , for λ0 = 1

‖r‖ log (‖r‖ |q (0)|) . But, by

http://www.river-valley.com
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(2.3), f (λ0) = 1
‖r‖ [log (‖r‖ |q (0)|) + 1] ≤ 0, which means that F (λ0) ≤ 0. Hence (1.1) is

nonoscillatory.

Remark 2. If q (θ) is decreasing, then∫ 0

−1

r (θ) dq (θ) ≥ ‖r‖ q (0) ≥ −1
e
.

Therefore under (2.3) we are in the complement of condition (2.2).

Example 2. Let (1.1) for q (θ) = 1
2

(
θ2 − 1

)
and r (θ) = (1−e)θ+1

e3 . As q (0) = − 1
2 and

‖r‖ |q (0)| = 1
2 e2 < 1

e . Therefore, by the Theorem 2.3, the corresponding equation (1.1) is
nonoscillatory.

With respect to the equation (1.2), the Theorem 2.3, through the formulation (1.3),
enables the following statement.

Corollary 2.4. If aj < 0 for j = 1, . . . , p, r1 < . . . < rp, and rp

∑p
j=1 |aj | ≤ 1

e , then
(1.2) is nonoscillatory.

Example 3. By Corollary 2.4, one easily sees that the equation

d

dt
x (t) = −1

8
x

(
t− 1

8

)
− 1

8
x

(
t− 1

4

)
− 1

4
x

(
t− 1

2

)
is nonoscillatory.

3. Oscillations and nonoscillations for differentiable delays. With −1 ≤ a ≤
b ≤ 0, let D+ (a, b) be the family of all functions in D+ which are increasing on [−1, a] ,
constant on [a, b] and decreasing on [b, 0] . In case of having a = b = θ0 with θ0 ∈ [−1, 0] we
obtain the family D+ (θ0) of all differential and positive functions which are increasing on
[−1, θ0] and decreasing on [θ0, 0] . If θ0 = −1, D+ (−1) is the class of all positive differentiable
and decreasing functions on [−1, 0] wich we will denote by D+

d . For θ0 = 0 we obtain the

http://www.river-valley.com
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family D+
i of all positive differentiable and increasing funtions on [−1, 0]. For these families

of delays we start by stating the following oscillatory situation.

Theorem 3.1. Let r ∈ D+ (a, b). If

q (θ) ≥ 0 for every θ ∈ [−1, a] ,
q (θ) ≤ 0 for every θ ∈ [b, 0] ,
q (0) < 0,

(3.1)

and ∫ a

−1

q (θ) d log r (θ) +
∫ 0

b

q (θ) d log r (θ) <
e

r (0)
[log (r (0) |q (0)|) + 1] , (3.2)

then (1.1) is oscillatory.

Proof. With r ∈ D+ (a, b) we have

F (λ) = λ −
∫ a

−1

exp (−λr(θ)) dq (θ)− exp(−λr(a))(q(b)− q(a))

−
∫ 0

b

exp (−λr (θ)) dq (θ) .

Integrating by parts each one of the above integrals, we have

F (λ) = λ + exp (−λr (0)) |q (0)| − λ

∫ a

−1

exp(−λr(θ))q(θ) dr(θ)

− λ

∫ 0

b

exp (−λr (θ)) q (θ) dr (θ) .

(3.3)

http://www.river-valley.com
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On the other hand, since λr (θ) exp (−λr (θ)) ≤ e−1, for every λ ∈ R and every r (θ), from
(3.3) we obtain

F (λ) ≥ λ + exp (−λr (0)) |q (0)|

− e−1

[∫ a

−1

q (θ) d log r (θ) +
∫ 0

b

q (θ) d log r (θ)
]

,

for every real λ. As the function, ϕ (λ) = λ + exp (−λr (0)) |q (0)| similar to the func-
tion f (λ) considered in the proof of Theorem 2.3, is such that ϕ(λ) ≥ 1

r(0) [log (r (0)
· |q (0)|) + 1], for every λ ∈ R, we conclude that

F (λ) ≥ 1
r (0)

[log (r (0) |q (0)|) + 1]− e−1

[∫ a

−1

q (θ) d log r (θ) +
∫ 0

b

q (θ) d log r (θ)
]

,

for every real λ. Thus, by (3.1), F (λ) > 0 for every real λ, and (1.1) is oscillatory.

For the case where a = b = θ0, we first notice that it cannot be θ0 = 0. Otherwise
(3.1) would be contradictory with respect to the value q (0) . For that case we have then the
following corollary.

Corollary 3.2. With θ0 ∈ [−1, 0[ let r ∈ D+ (θ0). If

q (θ) ≥ 0 for every θ ∈ [−1, θ0]

q (θ) ≤ 0 for every θ ∈ [θ0, 0] ,

q (0) < 0,

(3.4)

and ∫ 0

−1

q (θ) d log r (θ) <
e

r (0)
[log (r (0) |q (0)|) + 1] , (3.5)

http://www.river-valley.com
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then (1.1) is oscillatory.

Example 4. Let in (1.1)

q (θ) =


2 (1 + θ) , if − 1 ≤ θ ≤ −1

4
,

−1, if − 1
4
≤ θ ≤ 0,

r(θ) =


−θ2 − θ +

3
4
, if − 1 ≤ θ ≤ −1

2
,

1, if − 1
2
≤ θ ≤ −1

4
,

−2θ2 − θ +
7
8
, if − 1

4
≤ θ ≤ 0.

As

2
∫ −

1
2

−1

(1 + θ) d log
(
−θ2 − θ +

3
4

)
−
∫ 0

−
1
4

d log
(
−2θ2 − θ +

7
8

)

≈ 0.224 <
8
7

e
[
log
[
7
8

]
+ 1
]

≈ 2.692,

then, by Theorem 3.1, (1.1) is oscillatory.
The special case θ0 = −1 gives the following corollary.

Corollary 3.3. Let r ∈ D+
d . If

q (θ) ≤ 0 for every θ ∈ [−1, 0] ,

q (0) < 0,

and (3.5) holds then (1.1) is oscillatory.

Remark 3. The condition (2.2) and the condition (3.5) of Corollary 3.2 are independent
in the following sense. If we consider functions r and q which are decreasing on [−1, 0] ,
and such that q (−1) = 0 and q (0) < 0, that is, when the conditions (3.4) are satisfied

http://www.river-valley.com
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for θ0 = −1, then neither of two conditions (2.2) or (3.5) implies the other. Indeed in the
following two examples we show that there are pairs of functions q, r, fulfilling the above
conditions, which verify (2.2) but do not satisfy (3.5) (or verify (3.5) but do not satisfy
(2.2)). In both examples the correspondent equation (1.1) is oscillatory.

Example 5. With a > 0 let q (θ) = − 1
a (θ + 1) and r (θ) = 1

5 − θ. Since
∫ 0

−1
r (θ) dq (θ) =

− 7
10a , the condition (2.2) is verified if and only if a < 7 e

10 . On the other hand, as∫ 0

−1

q (θ) d log r (θ) =
−5 + 6 log 6

5a
,

the condition (3.5) of Corollary 3.2 is satisfied if and only if −5+6 log 6
5a > 5 e

(
log 1

5a + 1
)
.

One can see numerically that this inequality is satisfied if a < 0.4505 and is not verified
whenever a ≥ 1

2 . Therefore for 1
2 ≤ a < 7 e

10 the condition (2.2) is verified, but (3.5) is not.

Example 6. As in the preceding example let q (θ) = − 1
a (θ + 1) , with a > 0. Taking into

account that for r (θ) = (1− θ)1/2
,∫ 0

−1

r (θ) dq (θ) = −1
a

(
−2

3
+

4
√

2
3

)
,

the condition (2.2) is verified if and only if a < e
3

(
4
√

2− 2
)
. But in the regard of (3.5),

this condition is satisfied if and only if
∫ 0

−1
q (θ) d log r (θ) = −1+2 log 2

2a > e
(
log 2

a + 1
)
.

Numerically one can see that this condition is not satisfied if a ≤ 5. Thus for e
3

(
4
√

2− 2
)
≤

a ≤ 5 the condition (3.5) is satisfied, but the condition (2.2) is not.
With respect to the equation (1.2) we can state the following corollary

Corollary 3.4. If r1 > r2 > . . . > rp, aj < 0, for every j = 1, . . . , p, and

p−1∑
k=1

 k∑
j=1

aj

 log
rk+1

rk
<

e

rp

log

rp

∣∣∣∣∣∣
p∑

j=1

aj

∣∣∣∣∣∣
+ 1



http://www.river-valley.com
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then (1.2) is oscillatory.
For nonoscillations we state the following theorem.

Theorem 3.5. Let r ∈ D+ (a, b) and q ∈ NBV such that

q (θ) ≥ 0 for every θ ∈ [−1, a] ,

q (θ) ≤ 0 for every θ ∈ [b, 0] ,

− 1
e r (0)

< q (0) < 0.

If ∫ a

−1

q (θ) dr (θ) +
∫ 0

b

q (θ) dr (θ) ≤
(

1 +
1

log (r (0) |q (0)|)

)
(r (0) |q (0)|)‖r‖/r(0) (3.6)

then (1.1) is nonoscillatory.

Proof. Recalling (3.3),

F (λ) = λ + exp (−λr (0)) |q (0)|

− λ

[∫ a

−1

exp (−λr (θ)) q (θ) dr (θ) +
∫ 0

b

exp (−λr (θ)) q (θ) dr (θ)
]

,

we have for λ < 0,

F (λ) ≤ λ + exp (−λr (0)) |q (0)|

− λ exp (−λ ‖r‖)
[∫ a

−1

q (θ) dr (θ) +
∫ 0

b

q (θ) dr (θ)
]

.
(3.7)

Recall also the function considered in the proof of the Theorem 3.1, ϕ (λ) = λ+exp (−λr (0)) |q (0)| ,
and its absolute minimum ϕ (λ0) = 1

r(0) [log (r (0) |q (0)|) + 1] , attained at λ0 = 1
r(0) log (r (0) |q (0)|) .

http://www.river-valley.com
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Notice that since r (0) |q (0)| < e−1, one has λ0 < 0. Therefore by (3.7) and (3.6) we
obtain

F (λ0) ≤ ϕ (λ0)− λ0 exp (−λ0 ‖r‖)
(

1 +
1

log [r (0) |q (0)|]

)
(r (0) |q (0)|)‖r‖/r(0)

.

Taking into account that

λ0 exp (−λ0 ‖r‖) =
(r (0) |q (0)|)−‖r‖/r(0)

r (0)
log (r (0) |q (0)|)

we have then F (λ0) ≤ 0 and (1.1) is nonoscillatory.

Remark 4. Notice that the assumption − e−1

r(0) < q (0) < 0 implies

r (0) |q (0)| < e−1

and consequently that log (r (0) |q (0)|) + 1 < 0. Thus in the Theorem 3.4 we are in the
complementary of (3.2).

Example 7. Let

q (θ) =


1 + θ, if − 1 ≤ θ ≤ −1

2
,

−1, if − 1
2
≤ θ ≤ 0,

r (θ) =


−θ2 − 3

2
θ +

51
80

, if − 1 ≤ θ ≤ −3
4
,

6
5
, if − 3

4
≤ θ ≤ −1

2
,

−4
5
θ2 − 4

5
θ + 1, if − 1

2
≤ θ ≤ 0.

We have in this case

− 1
2 e

< q (0) = −1 < 0,

q (θ) ≥ 0, for every θ ∈
[
−1,− 3

4

]
q (θ) ≤ 0, for every θ ∈

[
− 1

2 , 0
]
,

http://www.river-valley.com
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and ∫ − 3
4

−1

(1 + θ) d

(
−θ2 − 3

2
θ +

51
80

)
+
∫ 0

− 3
4

q (0) d

(
−4

5
θ2 − 4

5
θ + 1

)

≈ 0.0420 <

(
1 +

1
log 1

2 e

)(
1
2 e

) 6
5

≈ 0.0537.

Then, by the Theorem 3.5, (1.1) is nonoscilatory.
By setting in the Theorem 3.5, a = b = θ0, the following corollary is obtained.

Corollary 3.6. Let r ∈ D+ (θ0) and q ∈ NBV such that

q (θ) ≥ 0 for every θ ∈ [−1, θ0] ,

q (θ) ≤ 0 for every θ ∈ [θ0, 0] ,

− 1
e r (0)

< q (0) < 0.

If ∫ 0

−1

q (θ) dr (θ) ≤
(

1 +
1

log (r (0) |q (0)|)

)
(r (0) |q (0)|)‖r‖/r(0)

then (1.1) is nonoscillatory.
By choosing θ0 = −1, we obtain an important particular case of the Corollary 3.6.

Corollary 3.7. Let r ∈ D+
d and q ∈ NBV such that q (θ) ≤ 0, for θ ∈ [−1, 0[ and

− 1
e r(0) < q (0) < 0. If∫ 0

−1

q (θ) dr (θ) ≤
(

1 +
1

log (r (0) |q (0)|)

)
(r (0) |q (0)|)‖r‖/r(0)

,
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then (1.1) is nonoscillatory.

With respect to equation (1.2) from (1.3) we can state the following corollary

Corollary 3.8. If r1 > r2 > . . . > rp and − e−1

r(0) <
p∑

j=1

aj < 0,

p−1∑
k=1

 k∑
j=1

aj

 rk+1

rk
≤

1 +
1

log

(
rp

∣∣∣∣∣ p∑
j=1

aj

∣∣∣∣∣
)

rp

∣∣∣∣∣∣
p∑

j=1

aj

∣∣∣∣∣∣


then (1.2) is nonoscillatory.

Example 8. Let be a1 = − 1
8 , a2 = − 1

4 , a3 = − 1
8 and r1 = 1

2 , r2 = 1
4 , r3 = 1

8 . Thus

2∑
k=1

 k∑
j=1

aj

 log
rk+1

rk
= −1

4
log

1
2

≈ −0.173 <

[
1
4

+
1

4 log
(

1
4

)] ≈ 0.0696.

Therefore, by Corollary 3.8, the equation

d
dt

x (t) = −1
8
x

(
t− 1

2

)
− 1

4
x

(
t− 1

4

)
− 1

8
x

(
t− 1

8

)

is nonoscillatory.
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