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NEW ROSENBROCK METHODS OF ORDER 3
FOR PDAES OF INDEX 2

JOACHIM RANG* AND LUTZ ANGERMANNT

Abstract. In this note new Rosenbrock-methods for index 2 PDAEs are presented. These solvers are
of order 3, have 4 internal stages, and satisfy certain order conditions to improve the convergence properties
if inexact Jacobians and approximations of %tt are used. A comparison with other Rosenbrock solvers shows
the advantages of the new methods.
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1. Introduction. In the papers [11] and [4] the Navier—Stokes equations

i—Re 'Au+ (u-V)u+Vp = f in J x Q,
V-u = 0 in J x €,

= g on J x 092,

uw(0,2) = wo x €,

S
[

(Re denotes the positive Reynolds number) is solved numerically by the help of Rosenbrock
methods. It is well known that on the one hand the semi-discretized Navier—Stokes equations
form a MOL-DAE of index 2 (see [1] or [15]) and that on the other hand Rosenbrock methods
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have to satisfy certain conditions for DAEs of index 2 and for PDEs (see [8] and [7]). The
Rosenbrock methods considered in [11] and [4] satisfy only one of the two conditions. The
method ROWDA2IND (see [8]) is a method for DAEs of index 2 and most of the other
methods, for example ROS3P (see [5, 6]) ROS3Pw, ROS34PW2 (see [11]) or ROSDAP (see
[13]), are schemes for solving PDAEs of index 1. Moreover, the numerical examples in the
above-mentioned papers have shown that Rosenbrock W-methods yield very good results.
So the motivation for this paper was to create some new Rosenbrock methods for PDAESs of
index 2. The new methods are of order 3 and have 4 internal stages.

The numerical comparisons presented at the end of the paper illustrate the good qualities
of the methods in both academic and more practical problems.

2. Rosenbrock methods. An s-stage Rosenbrock-method for the implicit ODE

is given by
i—1
Mk, = 7 f|tod+ o T, Uoid + Zaij k;
Jj=1
+TW Y v ki + 7T, i=1,...,s (2.2)
j=1
S
Upew = Uold + Z b; k;
i=1

where s is the number of internal stages, 7 is the step length, a;j, vij, b; are the parameters
) g i

of the method, W := f’(to1a, Uota), T = f(toid, Uoid); i := 23':1 a;j, and 7y; := Z;zl Y

The values k; are unknown. By “*” and “’” we denote differentiation with respect to the

time ¢ and the phase space variable, respectively.
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The parameters o;, v;5, and b; should be chosen in such a way that some order conditions
are fulfilled to obtain a sufficient consistency order. A derivation of these conditions with
Butcher series can be found in [2]. Here we only summarize the conditions up to order 3:

(A1) Th o= 1
(A2) b = 2-7 7 23)

(A32)  Ybhai = 3

(A3b) > bifiB; = % —y+9?

where we use the abbreviations 3;; := oy; + vi; and §; = Z;;ll Bij. We get an additional
consistency condition if we set W := f'(¢to14, Uora) + O(h) (see [14]):

(B2) Y ba = 3 . (2.4)
For arbritary matrices W, we get the following order conditions (see [14]):
(C3a) > biasja; =
(C3b) > biay;B; =
(C3c) > bifija; =

If a Rosenbrock-method is applied to semidiscretized PDAEs and PDEs, resp., the following
condition should be satisfied to avoid order reduction (see [7]):

(2.5)

(o N E N o
RN

b'B/(2B% —a?) =0, 1<j<2 (2.6)

with B := (8;;); j_1, &® :== (oF,...,a2) T, and e := (1,...,1)T € R*. To obtain convergence,

the Rosenbrock-method should fulfill certain order conditions for both the ODE and the al-
gebraic part. These consistency properties can be derived again via Butcher series technique
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(see [2] and [12]). For a third-order method we get the condition
(E3) Ybwga; = 1, (2.7)
where (wi;)§ =y = B™"

From [8] we know that a Rosenbrock method should satisfy certain order conditions if
the method is applied on an index-2 DAE, i.e.

(F3a) Z biwijwjkai =’

(F3b) Z biaiaijwjkwklalz = % (28)

(F3c) Y bwijajojpwpwima?, = 2
If us appears non-linearly in the semi-explicit DAE

Uy = fi(ug,uz),
0= f2(u1)7
then the condition
(G3) > by jWjkWkI O} QU Wi W2 = % (2.9)

has to be satisfied (see [8]).
The stability function of (2.2) is given by

Ro(z) =14 2b" (I — zB) e,

where b = (by,...,bs)" and e=(1,...,1)T.


http://www.river-valley.com

Home Page 3. Construction of methods. We start with the following result.

LemMA 3.1. There exists no Rosenbrock method of order 8 with 8 internal stages which
satisfies (2.3), (2.6), (F3b), and (F3c).

Title Page

Proof. This result can be shown by an easy calculation. 0

Let us now consider Rosenbrock methods with 4 internal stages. The order conditions

Contents in this case read as (see [2])
(A1) by +by+bg+by = 1
(A2) bof2 +b3B3 +bsfBs = 3—7
(A3a) braj +bzaf +bsaf = 3
(A3b)  b3fBs202 + ba(Ba2fB2 + Basfs) = & -7+
(B2) boas + bgag + bacs = 3
Page 5 of 17 (C3a) bzagaag + by(azan + cauzas) = %
(C3b)  bzauzafs + ba(auzfo + ausfs) = §—3%
Go Back \ (C3c)  bsfsaary + ba(Ba2ca + Bazaz) = &—1%
Full Screen LEMMA 3.2. (see [11]) The conditions for PDEs (2.6) can be simplified by the help of (A1),
(A2), (A3a), and (A3D) to
(D3a) biBa2fuzay = 29* =29+ 3797

(D3b) b3/6320¢% aF b4(ﬂ420&% + ﬂ43a§) 273 _ 3»)/2 + %7
(D3c) b4fBa3B32821 = O
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REMARK: The expressions b3 33203 + bs(Bs203 + ,84301%) and b4B43032021 are known as part
of the order-conditions for 4th-order Rosenbrock-methods (see [2]).
The algebraic order condition reads as (see [2])

(E3) bgwgga% a4 b3 (wgga% 4 w33a§) T b4((4.)420(% A UJ436¥§ aF w44ai) =1.
LeEMMA 3.3. A Rosenbrock-method which satisfies (A1)—(A3b) and (D3a)—(D3c) fulfills (E3),
too.
Proof. See [11]). 0

LEMMA 3.4. A Rosenbrock-method which satisfies (A1)—(A3b) and (D3a)—(D3c) fulfils (F3a),
too.

Proof. see [9]. 0
The conditions (F3b) and (F3c) can be written as follows
(F3b)  v(bsasasaad + baoy(aa203 + au303)) — 2bsosausfBaaag = 293
{ (F3c) bifuzazazay = 390 — 29

The embedded methods should be L-stable, too. Therefore we need the following result
from [11].

LeEMMA 3.5. Let a Rosenbrock method which satisfies (A1)—(A3b) and (D3a)—(D3c) be given.
The embedded method satisfying (A1) and (A2) is L-stable, too, if

& 1 1
by [73 — 292 4+ —'y] . (3.1)

N 2

Proof. See [11]. O
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TABLE 3.1
Set of coefficients for ROSI2P1

vy = 4.3586652150845900e — 01

a1 = 5.0000000000000000e — 01 | 721 = —5.0000000000000000e — 01
az = 5.5729261836499822¢ — 01 | 131 = —6.4492162993321323¢ — 01
o3z = 1.9270738163500176e — 01 | v32 = 6.3491801247597734e — 02
ag1 = —3.0084516445435860e — 01 | v41 = 9.3606009252719842e — 03
Qa2 = 1.8995581939026787¢ + 00 | va2 = —2.5462058718013519¢ — 01
og3 = —5.9871302944832006e — 01 | 43 = —3.2645441930944352¢ — 01
b1 = 5.2900072579103834e — 02 | by = 1.4974465479289098e — 01
b2 = 1.3492662311920438¢ + 00 | bo = 7.0051069041421810e — 01
b3 = —9.1013275270050265¢ — 01 | bs = 0.0000000000000000e + 00
ba = 5.0796644892935516¢ — 01 | by = 1.4974465479289098e — 01

3.1. An L-stable Rosenbrock method. Our first method is L-stable and satisfies
the conditions (A1)—(A3b), (B2), (C3a)—(C3c), (D3a)—(D3c), (F3b), and (F3c). We call
the method ROSI2P1, where ROS stands for Rosenbrock, 12 for index 2 problems, P for
semi-discretized PDE problems, and 1 is an internal number. To find a solution of the
equations given above, we have used the software environment "MAPLE”. We choose the
free variables as follows: as = 1/2, ag = 3/4, and ay = 1. The coefficients of ROSI2P1 are
given in TABLE 3.1. The embedded method satisfies the conditions (A1), (A2), and (3.1).
Moreover we set by = 0. The resulting system of equations can be solved easily.

3.2. A stiffly accurate Rosenbrock method. A Rosenbrock method satisfying
Bsi=0b;, i1=1,...,s, and az=1 (3.2)

is called stiffly accurate. Methods which satisfy (3.2) yield asymptotically exact results for
the problem u = A(u — ¢(t)) + ¢(t). A stiffly accurate Rosenbrock method is L-stable, i.e.
v ~ 0.4358665 (see [2] or [11]).
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Our conditions simplify to (see [11] and [8])

( (A1) by +by+b3 = 1—v
(AZ) baf32 + b33 1-2y++2
(A3a)) bya2 + bza3 1oy
(A3b?) bs 33232 130439293
(B2) bacvg + bsas % —
(C3a’) bsaszaas + Y(ouuaas + ayzas) %
(C3b) byazaBe + y(auafz + au3fs) : P
(C3e’) bsBz2002 F—v+9?
(D3a’) bsfs203 = 29° =29+ 37
(D3c’) b3fB32B2 = 0
(F3b)) (403 + as303) — 204303203 = 2v°
(F3c”) bsasazpald = 2472 —293

Our new method should satisfy the conditions (A1’)—(A3b’), (D3a’), (D3c¢’), (F3b’), and
(F3c’). Moreover we set aip = 1/2, aiy1 = g1, g2 = 32, and a3 = 0, i.e. the method needs
only three function evaluations. First we note that §; = 0. This follows from (D3a’) and
(D3c¢’). With (F3b’) we get ayp = 8y2. Inserting this result into (F3c’) yields b3 = 1/3 — 7.
Using (D3a’) we obtain

293 —29% + 1y
1/3 =~

The remaining coefficients can be computed by the help of (A1’), (A2’), and (A3a’). The
new method is called ROSI2P2 and its coefficients are given in TABLE 3.2. The embedded

B3z =4
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TABLE 3.2
Set of coefficients for ROSI2P2

vy = 4.3586652150845900e — 01

a1 = 5.0000000000000000e — 01 | 721 = —5.0000000000000000e — 01
az1 = —95.1983699657507165¢ — 01 | v31 = —4.0164172503011392¢ — 01
azy = 1.5198369965750715e + 00 | v32 = 1.1742718526976650e + 00
ag1 = —5.1983699657507165e — 01 | y41 = 1.1865036632417383e + 00
g2 = 1.5198369965750715¢ + 00 | va2 = —1.5198369965750715¢ + 00
Q43 = 0.0000000000000000e + 00 | v43 = —1.0253318817512568e — 01
b1 = 6.6666666666666663¢ — 01 | by = —9.5742384859111473e — 01
ba =  —5.4847955522165341e — 32 | by = 2.9148476971822297e + 00
b3 = —1.0253318817512568¢ — 01 | bs = 5.0000000000000000e — 01
ba = 4.3586652150845900e — 01 | by = —1.4574238485911146e + 00

method satisfies the conditions (A1), (A2), and (3.1). Moreover we set by = 1/2. This
system of equations can be solved easily.

3.3. A stiffly accurate Rosenbrock method with W = f, + O(h) and T = 0.
Our new method should satisfy the conditions (A1’)—(A3b’), (B2’), (C3c¢’), (D3a’), (D3c’),
(F31’), (F3c¢’), and (G3). The condition (G3) can be simplified to

a43a§a32a§ = %73‘

As the free variable we choose a3 = 3/4. As in the previous section we have 35 = 0. The
variable ap = 2v can be determined by (D3a’) and (C3c¢’). The equations (A3a) and (B2)
form a linear system of equations in the variables by and b3. Then the remaining coefficients
can be determined easily. The method is called ROSI2Pw and the coeflicients are given in
TABLE 3.3. The embedded method satisfies the conditions (Al), (A2), and (3.1). Moreover
we set by = 0. This system of equations can be solved easily.
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TABLE 3.3

Home Page Set of coefficients for ROSI2Pw
~ = 4.3586652150845900e — 01
T B s = 8.7173304301691801e — 01 | 721 = —8.7173304301691801e — 01
sz = 7.8938917169345013e — 01 | v31 = —8.4175599602920992¢ — 01
azz = —3.9389171693450180e — 02 | v32 = —1.2977652642309580e — 02
g = 6.2787416864263046e — 01 | 741 = —3.7964867148089526e — 01
Contents Qg = 6.9295440480994763e + 00 | v42 = —8.3490231248017537e + 00
a4z = —6.5574182167421071e + 00 | a3 = 8.2928052747741905e + 00
b1 = 2.4822549716173517¢ — 01 | by = 4.4315753191688778e — 01
b = —1.4194790767022774e + 00 | by = 4.4315753191688778¢ — 01
b3 = 1.7353870580320832¢ + 00 | bs = 0.0000000000000000e + 00
b = 4.3586652150845900¢ — 01 | by = 1.1368493616622447¢ — 01

3.4. A stiffly accurate Rosenbrock W-method. In the following a Rosenbrock
Page 10 of 17 method is constructed which satisfies the conditions (A1’)—(A3b’), (B2’), (C3a’)—(C3c’),
(D3a’), (D3c’), (F3b’), and (F3c’). We have 12 equations and 12 unknowns. Note that 5
unknowns are determined by (3.2). There are no free variables. The coefficients ag = 2y
Go Back and By = 0 can be computed as the in the previous section. Let us assume that we know the
coefficient a3. Then (A3a’) and (B2’) form a linear system of equations in the unknowns bo
and b3. The solution depends on a3 and is given by

Full Screen

1672 —6y+1

i60z3'y+2—6'y—3a3 1
3a3(2y—asz)’

12 (27 — a3)

by = bs =

An esay computation shows that

2(—144%2+693 -1+ 7
o = 6L M+ 607 — 14 T) ~ —1.55 < 0.
—12v + 3672 — 693 — 7294 + 3675 + 1
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The method is called ROSI2ZPW and the coefficients are given by TABLE 3.4. The embedded
method satisfies the conditions (A1), (A2), and (3.1). Moreover we set b5 = 0. This system
of equations can be solved easily.

TABLE 3.4
Set of coefficients for ROSI2PW

v = 4.3586652150845900e — 01

a1 = 8.7173304301691801e — 01 | 721 = —8.7173304301691801e — 01
oz = —7.9937335839852708¢ — 01 | v31 = 3.0647867418622479¢ + 00
a3z = —7.9937335839852708¢ — 01 | 732 = 3.0647867418622479¢ + 00
o4 = 7.0849664917601007e — 01 | ya1 = —1.0424832458800504e — 01
oz = 3.1746327955312481e — 01 | 742 = —3.1746327955312481e — 01
o3 = —2.5959928729134892e — 02 | yu3 = —1.4154917367329144¢e — 02
b1 = 6.0424832458800504e — 01 | by = 4.4315753191688778e — 01
ba = —3.6210810811598324¢ — 32 | bo = 4.4315753191688778e — 01
bs = —4.0114846096464034e — 02 | by = 0.0000000000000000e + 00
ba = 4.3586652150845900¢ — 01 | by = 1.1368493616622447e — 01

4. Comparison of Rosenbrock methods and numerical results. All examples
are solved numerically by the help of the FEM-package MooNMD3.0 (see [3]) on a uniform
spatial grid consisting of 1024 quadrangles, i.e. h = 27°. We compare our new methods
with other well-known Rosenbrock methods such as ROS3P, ROS3Pw, ROS34PW2, and
RODASP. An overview of the selected Rosenbrock methods can be found in TABLE 4.1.

We apply these schemes to a PDAE of index 2 and to the Navier—Stokes equations with
different right-hand sides. For the definition of the index of linear PDAEs we refer to the
paper [10].
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Home Page
N 1/2
= —u(t,)|?
Title Page ||§||l2(J,V) (TN Z ”u" 11( n)”V) )
n=0
where V := Ly(Q) or H'(2) and 7y is a time-step depending on N € N. In this section, the
Contents letter J is used to denote a time interval.
TABLE 4.1

Properties of the selected Rosenbrock methods

Name s | p | Index 1 | Index 2 | PDEs | R(co) | stiffly acc. | reference
ROS3P 3|3 yes no yes 0.73 no 6
ROWDAIND2 | 4 | 3 yes yes no 0 yes 8
ROS3Pw 3|3 yes no yes 0.73 no 11
ROS34PW2 413 yes no yes 0 yes 11
RODASP 6 | 4 yes no yes 0 yes 13
Page 12 of 17 ROSI2P1 413 yes yes yes 0 no see Section 3.1
ROSI2P2 4|3 yes yes yes 0 yes see Section 3.2
ROSI2Pw 4|3 yes yes yes 0 yes see Section 3.3
Go Back ROSI2PW 4|3 yes yes yes 0 yes see Section 3.4
Full Screen ExaMPLE 4.1. Let J := (0,1) and © := (0,1). We consider the following nonlinear PDAE
U1 — Aug — ugtis + Usuz = 2e2wt in J x €,
Aus = 0 in J x Q,
Aus = 0 in J x Q, @1
Uy — Aug — ANAu; = —e 22 4+2) —2Xwt in J xQ

where A, € and w are free parameters. The right-hand side f, the initial conditions and the
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non-homogeneous Dirichlet boundary conditions are chosen such that

is the solution of (4.2). Moreover we set € = w = X\ = 1. For the semi-discretization in
space we used central finite differences with step length A = 1/100. The computations were
carried out with time steps 7n = ﬁ with N = 1,2,4,8,16,32,64,128. The Jacobian is
computed exactly. Note that all occurring discretization errors will results from the temporal
discretization. FIGURE 4.1 shows the results of the calculation.

The most inaccurate results were obtained with the methods for PDAEs of index 1,
namely ROS3P, ROS3Pw and ROS34PW2. This is due to the fact that these methods
do not satisfy the conditions (F3b) and (F3c). The method ROWDAIND?2 satisfies these
conditions, but it has order reduction because a semidiscretized PDAE is solved. The best
results were obtained with the fourth order method RODASP and the solvers ROSI2P1,
ROSI2P2, ROSI2Pw, and ROSI2PW.

ExampLE 4.2. Let J := (0,1) and Q := (0,1)2. We consider the Navier—Stokes equations

t—Re 'Au+ (u-Viu+Vp = f inJxQ,
Viu = 0 inJ xQ,
u = g ondJ xR, (4.2)
u(0,z) = wuy x€9Q,

where Re denotes the positive Reynolds number. The right-hand side f, the initial condition
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ROWDAINDZ
ROS3P
- ROS3Pw
1078 | - ROS34PW2 |
RODASP
ROSI2P1
ROSI2P2
1078 | ROSI2Pw ||
S 5OSI2PW
§ '3'@:1:”
© 1070}
10—127
-14 . .
22 0 6 8

4
timestep

Fic. 4.1. Ezample 4.1, results

ug and the non-homogeneous Dirichlet boundary conditions are chosen such that

ul(tvx’y) = ts 27
u2(t7 T, y) = t2x7
p(t,z,y) =tx+y—(t+1)/2
is the solution of (4.2). Moreover we set Re = 1. We used the Qq/P{is¢ discretization on a

square mesh with an edge length h = 1/64 and solve the problem with variable time step
sizes. The Jacobian is computed exactly. Note that for any ¢ the solution can be represented
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T 0 -3 ROSI2P1 2 107
=3 XX X ROSI2P2 =3
ROSI2Pw
» ROSI2PW
107° B
1074
- -
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s 10 a
G S 107
5 S
Page 15 of 17 5 10 5
< 107°
107°

exactly by the discrete functions. Hence, all occurring discretization errors will results from
the temporal discretization. During the calculations we have to deal with 33 282 d.o.f. for the
velocity and 11 288 d.o.f. for the pressure. FIGURE 4.2 shows the results of the calculation.

CPU-time

Fi1G. 4.2. Ezample /.2, results

Full Screen

Considering the velocity error it can be observed that the fourth order method RODASP
gave the best results. All other schemes gave good results, too. A similar observation can
be made for the pressure error.
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e, = <~ ROWDAIND? 10* < ROWDAINDZ]
1071 O, % ROS3P | ) % ROS3P
A% Qg > ROS3Pw * > ROS3Pw
~ YO O ROS34PW2 N 10° [ %8 O ROS34PW?2 ||
102 v - RODASP Pa % RODASP
T B g o ROSI2P1 = JRREE & ROSI2P1
=3 . X ROSI2P2 =3 ¢y X ROSI2P2
= NG ROSI2Pw 10 % ROSI2Pw
107 ey —— ROSI2PW | % —7~ ROSI2PW
X oy .
-3 - -
z 107 < 1072
> o
5 5
‘§ 10 E § 10
5 o 5
10°° &ox] -
P 4? 10
10° ) 10°
CPU-time CPU-time

Fic. 4.3. Ezample 4.3, results

EXAMPLE 4.3. We consider the Navier-Stokes equations (4.2) with Dirichlet boundary con-
ditions on the whole boundary and with the solution

ui (t, z,y) = 392,
u2(ta €, y) = eXp(—50t)x,
p(t,z,y) = (10 + t) exp(—t)(z +y — 1).

The computations were carried out with Re = 1000, a spatial grid consisting of squares of
edge length h = 1/32, and variable time step sizes. This gives 8 450 velocity d.o.f. and 3072
pressure d.o.f. for the Q/P¢ finite element discretization.

All methods gave good results. The differences between the fourth order method RO-
DASP and the other third order methods is much smaller than in the previous example.
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