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ON THE NEHARI SOLUTIONS∗

ARMANDS GRITSANS† AND FELIX ZH. SADYRBAEV‡

Abstract. We show that there exist equations of the Emden-Fowler type which have multiple Nehari
solutions.
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1. Introduction. We consider the Emden-Fowler type equations

x′′ = −q(t)|x|2εx, ′ =
d
dt

, ε > 0, q ∈ C(R, (0,+∞)), (1.1)

of which the typical representative is equation

x′′ = −q(t)x3.

Behavior of solutions of equations (1.1) can be highly irregular if the coefficient q(t) is
non-monotone. One might expect that some regularity to the theory of the Emden-Fowler
superlinear equations is brought by the results of Nehari ([3], [4]), which are variational in
nature. Brief description of the Nehari theory is given below.
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1.1. Brief overview of the Nehari theory. Consider differential equation

x′′ + xF (t, x2) = 0,

where
(A1) F (t, s) ∈ C((0,+∞)× [0,+∞), R);
(A2) F (t, s) > 0 for t > 0, s > 0;
(A3) t−ε

2 F (t2, s) > t−ε
1 F (t1, s) for 0 ≤ t1 < t2 < ∞, fixed s > 0 and some ε > 0.

The general theorem was proved in [4, Theorem 3.2].

Theorem 1.1. Let Γn denote the class of functions x(t) with the following properties: x(t)
is continuous and piecewise differentiable in [a, b], x(aν) = 0 (ν = 0, 1 . . . , n, n ≥ 1), where
the aν are numbers such that a = a0 < a1 < . . . < an = b for ν = 1, . . . , n, but x(t) 6≡ 0 in
any interval [aν−1, aν ] and∫ aν

aν−1

x′2(t) dt =
∫ aν

aν−1

x2(t)F (t, x2(t)) dt,

where F is subject to the conditions (A1)–(A3). Set G(t, y) =
∫ y

0
F (t, s) ds.

The extremal problem∫ b

a

[x′2 −G(t, x2)] dt = min = λn, x(t) ∈ Γn (1.2)

has a solution xn(t) whose derivative is continuous throughout [a, b], and the characteristic
values λn are strictly increasing with n. The function xn(t) has precisely n−1 zeros in (a, b),
and it is a solution of the differential system

x′′ + xF (t, x2) = 0, x(a) = x(b) = 0.
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1.2. The Nehari numbers for the Emden-Fowler type equations. The Nehari
theory applies to the Emden-Fowler type equations of the form

x′′ = −q(t)|x|2εx, ε > 0, q ∈ C(R, (0,+∞)). (1.3)

The extremal problem (1.2) for the case of equation (1.3) takes the form:

H(x) =
∫ b

a

[
x′2 − (1 + ε)−1q(t)x2+2ε

]
dt → inf (1.4)

over all functions x(t), which are continuous and piece-wise continuously differentiable in
[a, b]; there exist numbers aν such that

a = a0 < a1 < . . . < an = b;

x(a0) = 0 and x(aν) = 0 for ν = 1, . . . , n, but x 6≡ 0 in any [aν−1, aν ] and∫ aν

aν−1

x′2(t) dt =
∫ aν

aν−1

q(t)x2|x|2ε dt.

The respective extremal functions xn(t) are solutions of equation (1.3), vanish at the
points t = a and t = b, have exactly n− 1 zeros in (a, b) and satisfy the condition∫ b

a

x′2(t) dt =
∫ b

a

q(t)x2|x|2ε dt. (1.5)

By combining (1.4) with (1.5) one gets

λn(a, b) = min
x∈Γn

H(x) =
ε

1 + ε

∫ b

a

q(t)x2+2ε
n dt =

ε

1 + ε

∫ b

a

x′2n (t) dt.
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Thus the characteristic number λn(a, b) is up to a constant the minimal value of
∫ b

a
x′2(t) dt

over the set of solutions of the boundary value problem

x′′ = −q(t)|x|2εx, x(a) = x(b) = 0, x(t) has n− 1 zeros in (a, b).

Definition 1.2. We will call the characteristic numbers λn by the Nehari numbers and the
respective solutions xn(t) by the Nehari solutions.

It was asked in the paper [3] whether the Nehari solutions are unique for n and (a, b)
given. The answer is no, as was shown theoretically in [5]. There exist equations of the type
(1.3), which have more than one Nehari solution for certain a and b.

In order to get the constructive proof let us consider the example below.

2. Example: nonuniqueness of the Nehari solutions. We construct the Emden-
Fowler equation of the form (2.2) which possesses three solutions which obey the conditions
(2.3). Two of those three solutions are the Nehari solutions.

2.1. Lemniscatic functions. We use in our considerations the so called lemniscatic
functions which can be defined as solutions of the equation

x′′ = −2x3. (2.1)

The functions sl t and cl t ([6, § 22.8]) solve equation (2.1) and satisfy respectively the initial
conditions

x(0) = 0, x′(0) = 1 and x(0) = 1, x′(0) = 0.

http://www.river-valley.com


Home Page

Title Page

Contents

JJ II

J I

Page 5 of 19

Go Back

Full Screen

Close

Quit

The lemniscatic sine and cosine functions are periodic with a minimal period of 4A, where

A =

1∫
0

ds√
1− s4

≈ 1.311. For convenient reference we mention that

sl 0 = sl 2A = 0, sl A = 1, cl 0 = 1, cl A = 0, cl 2A = −1,

sl′ t = cl t (1 + sl2 t), cl′ t = − sl t(1 + cl2 t),

lim
t→0

sl t
t

= 1.

The interested reader may consult the paper [1] for more properties and useful formulas of
these functions.

2.2. Equation. Consider the boundary value problem

x′′= −q(t)x3, (2.2)

x(−1) = 0, x(1) = 0, x(t) > 0, t ∈ (−1, 1). (2.3)

Let q(t) =
2

ξ6(t)
, where

ξ(t) =

{
ξ1(t), −1 ≤ t ≤ 0,

ξ2(t), 0 ≤ t ≤ 1

and

ξ1(t) = ht + η, −1 ≤ t ≤ 0,

ξ2(t) = −ht + η, 0 ≤ t ≤ 1.

Thus ξ(t) is a “Λ-shaped” piece-wise linear function, which depends on a positive valued
parameter h, η := h + 1.

http://www.river-valley.com
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2.3. Solutions. Solution (solutions) of the problem (2.2), (2.3) can be composed of
solutions of the problems

x′′1 = − 2
(ht + η)6

x3
1, x1(−1) = 0, x1(0) = τ, x1(t) > 0, t ∈ (−1, 0); (2.4)

x′′2 = − 2
(−ht + η)6

x3
2, x2(0) = τ, x2(1) = 0, x2(t) > 0, t ∈ (0, 1), (2.5)

where τ > 0. The function

x(t) =

{
x1(t), if −1 ≤ t ≤ 0,

x2(t), if 0 ≤ t ≤ 1,

is a C2-solution of the problem (2.2), (2.3) if additionally the smoothness condition

x′1(0) = x′2(0)

is satisfied. The problem (2.4) has a solution

x1(t;β1) = β
1
2
1 (ht + η) · sl

(
β

1
2
1

t + 1
ht + η

)
,

where β1 = x′1(−1) > 0 is such that x1(0;β1) = τ. The derivative is given by

x′1(t;β1) = β
1
2
1 h · sl

(
β

1
2
1

t + 1
ht + η

)
+

β1

ht + η
· sl′

(
β

1
2
1

t + 1
ht + η

)
.

Similar formulas are valid for x2(t). Notice that x′2(1) = −β2 < 0. In order to get an explicit
formula for a solution of the BVP (2.2), (2.3) one has to solve a system of two equations
with respect to (β1, β2) {

x1(0;β1) = x2(0;β2),

x′1(0;β1) = x′2(0;β2).

http://www.river-valley.com
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This system after replacements and simplifications looks as
β

1
2
1 · sl

(
β

1
2
1
η

)
= β

1
2
2 · sl

(
β

1
2
2
η

)
,

β
1
2
1 h · sl

(
β

1
2
1
η

)
+ β1

η · sl′
(

β
1
2
1
η

)
= −β

1
2
2 h · sl

(
β

1
2
2
η

)
− β2

η · sl′
(

β
1
2
2
η

)
,

(2.6)

where 0 <
β

1
2
1
η ,

β
1
2
2
η < 2A. In new variables u := β

1
2
1
η , v := β

1
2
2
η the system takes the form{

Φ(u) = Φ(v), 0 < u, v < 2A,

Ψh(u) = −Ψh(v), h > 0,
(2.7)

where Φ(z) := z sl z and Ψh(z) := hz sl z + z2 sl′ z. Notice that if a solution (ū, v̄) of the
system (2.7) exists, then a solution x(t) of the BVP (2.2), (2.3) can be constructed such that

x′(−1) = β1 = ū2(h + 1)2, x′(1) = −β2 = −v̄2(h + 1)2.

Proposition 2.1. For h large enough the system (2.7) has exactly three solutions:
1. There exists a unique solution of the form (u0, u0). One has that (u0, u0) → (2A, 2A)

as h → +∞.
2. There exists a unique solution (u1, v1) in the triangle

{
0 < u, v < 2A, v > u)

}
for

h large. Moreover, (u1, v1) → (0, 2A) as h → +∞.
3. There exists a unique solution (u2, v2) in the triangle

{
0 < u, v < 2A, v < u)

}
for

h large. Solutions (u1, v1) and (u2, v2) are symmetric, that is, (v2, u2) = (u1, v1).

2.4. Investigation of a system. Standard analysis shows that the function
Φ(z) = z sl z has the following properties (see Fig. 2.1):

Φ(0) = Φ(2A) = 0, Φ(z) > 0 ∀z ∈ (0, 2A),

Φ′(z) = sl z + z sl′ z,

http://www.river-valley.com
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Φmax = Φ(z0) ≈ 1.47233 at the unique point of maximum z0 ≈ 1.61879.
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Fig. 2.1. Functions Φ(u) (solid line) and Ψh(u) (dashed lines).

Consider a set of zeros of a function Φ(u)−Φ(v) in the square Q =
{
(u, v) : 0 ≤ u, v ≤

2A
}
. It consists of the diagonal segment Γ0 (u = v) and two symmetric branches Γ+ and

Γ−, which are shown in Fig. 2.2.

Lemma 2.2. The relation F (u, v) = Φ(u) − Φ(v) = 0 defines a function v = f(u) for
u ∈ [0, 2A]. One has that f(0) = 2A, f(2A) = 0, f ′(u) = Φ(u)

Φ(v)

∣∣∣
v=f(u)

< 0 for u ∈ [0, 2A].

Proof. A set of zeros of F (u, v) for v > u (branch Γ+ in Fig. 2.2) can be parametrized
by the equalities Φ(u) = p, Φ(v) = p, where p ∈ [0,Φmax]. If p changes from 0 to Φmax,
variables u and v respectively increase from 0 to z0 and decrease from 2A to z0. One gets by
using Implicit Function Theorem that there exists function v = f(u), u ∈ (0, z0) such that

http://www.river-valley.com
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Fig. 2.2. Zeros of Φ(u)− Φ(v) = 0 (solid line) and Ψh(u) + Ψh(v) = 0 (dashed line), h = 0.3, h = 2,
h = 12.

F
(
u, f(u)

)
= 0 for u ∈ (0, z0) and

f ′(u) = −

∂F

∂u
(u; v)

∂F

∂v
(u; v)

∣∣∣∣∣∣∣
v=f(u)

=
Φ′(u)
Φ′(v)

∣∣∣∣
v=f(u)

.

Since Φ′(u) > 0 for u ∈ (0, z0) and Φ′(v) < 0 for v ∈ (z0, 2A) one has that f ′(u) < 0. The
graph of f(u) is the set Γ+. The same type argument can be applied for (u, v) in the lower

http://www.river-valley.com
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triangle, u > v. Thus a decreasing function v = f(u) exists for u ∈ [0, 2A]. The graph of
this function is the union of Γ+ and Γ−.

Consider the functions Ψh(z). We mention the following properties:

Ψh(0) = 0, Ψh(2A) = −4A2 ∀h > 0.

Ψ′h(z) = hΦ′(z) + zΦ′′(z).

The function Ψh(z) increases for z ∈
(
0, zmax(h)

)
and decreases for z ∈

(
zmax(h), 2A

)
. It is

easy to show that (Ψh)max = Ψh(zmax) → +∞ and zmax(h) → z0 as h → +∞.

Lemma 2.3. A set Z of zeros of the function Ψh(u) + Ψh(v) in the square Q consists of
three mutually disjointed sets

Z+ ⊂
{
(x, y) : 0 ≤ x ≤ δ, 2A− δ ≤ y ≤ 2A

}
,

Z0 ⊂
{
(x, y) : 2A− δ ≤ x ≤ 2A, 2A− δ ≤ y ≤ 2A

}
,

Z− ⊂
{
(x, y) : 2A− δ ≤ x ≤ 2A, 0 ≤ y ≤ δ

}
.

It is true that δ → 0 as h → +∞.

Proof. Let z1 be a unique zero of Ψh(z) in the interval (0, 2A). Let z∗ and z∗ be the level
points defined by the relations Ψh(z∗) = Ψh(z∗) = 4A2, z∗ < z∗. It is clear that the equality
Ψh(x) + Ψh(y) = 0 implies the inclusion (x, y) ∈ (0, z∗)

⋃
(z∗, 2A). Indeed, if x ∈ (z∗, z∗)

then Ψh(x) > 4A2 and Ψh(x) + Ψh(y) > 0 for any y. If Ψh(x) + Ψh(y) = 0 then either x or
y belongs to (z1, 2A).

Consider the case x ∈ (z1, 2A). Then there are two values of y, say, y1 and y2, such that
Ψh(x) + Ψh(y) = 0, y1 ∈ (0, z∗) and y2 ∈ (z∗, z1). Similarly, if y ∈ (z1, 2A), then there are
two values of x, x1 and x2, such that x1 ∈ (0, z∗) and x2 ∈ (z∗, z1). Therefore any point
(x, y) ∈ Q such that Ψh(x) + Ψh(y) = 0 belongs to one of the sets Z+, Z0 or Z−.

Let us show that z∗ → 0 and z∗ → 2A as h → +∞. Both values of z satisfy the relation

http://www.river-valley.com
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Ψh(z) = hz sl z + z2 sl′ z = 4A2. Then z sl z +
1
h

z2 sl′ z =
1
h

4A2. If h → +∞ then z sl z → 0

and the level points z∗(h) and z∗(h) tend respectively to 0 and 2A.

Lemma 2.4. The relation Gh(u, v) = Ψh(u) + Ψh(v) = 0 defines a function v = g(u) for
u ∈ [0, δ]. One has that g′(u) = −Ψ′

h(u)
Ψ′

h(v)

∣∣∣
v=g(u)

> 0 for u ∈ [0, δ].

Proof. [Proof of Proposition 2.1] Consider the set Z+. The function v = f(u) strictly
decreases and satisfies the relation f(0) = 2A. The function v = g(u) strictly increases and
satisfies the relations g(0) < 2A, g(u∗) = 2A for some u∗ ∈ (0, δ). Therefore there exists a
unique point of intersection of the graphs of both functions in Z+.

By symmetry with respect to the diagonal, the same ir true for the set Z−. Thus two
solutions of the system (2.7).

For u = v the system (2.7) reduces to a single equation Ψh(z) = 0, which has a unique
solution, tending to 2A as h → +∞. Thus exactly free solutions of the system (2.7).

We give also the alternative proof.
Proof. [Alternative proof of Proposition 2.1] Let us parametrize the upper (the left) branch
Γ+ (for this branch v > u) by Φ(u) = Φ(v) = p, where 0 < p < p∗, p∗ = max

[0,2A]
Φ(u). The

function Φ(u) attains its maximal value p∗ ≈ 1.47233 at the point m∗ ≈ 1.61879.

This branch is then defined parametrically as u = u(p), v = v(p). Notice that (u(0), v(0)) =
(0, 2A) and

(
u(p∗), v(p∗)

)
= (m∗,m∗).

Suppose that h > 1 and consider the one argument function

ω(p) := hu(p) slu(p) + u2(p) sl′ u(p) + hv(p) sl v(p) + v2(p) sl′ v(p)

in the interval [0, p∗]. Our intent is to show that this function changes sign only once. Then
there exists a unique solution of the system (2.7) on Γ+ and as a consequence, there exist
exactly three solutions of the system (2.7) for 0 < u, v < 2A.

http://www.river-valley.com
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Since u(p) slu(p) = v(p) sl v(p) = p, the function ω takes the form

ω(p) = 2hp + u2(p) sl′ u(p) + v2(p) sl′ v(p).

The problem is to show that the function ω(p) strictly increases on the interval (0, p∗),
where u(p) is defined parametrically as u sl u = p, u ∈ (0,m∗), and v(p) is defined by
v sl v = p, v ∈ (m∗, 2A).

Consider the first equation in (2.7). Define two functions x(p) and y(p) parametrically
using the equalities

x sl x = y sl y = p, (2.8)

where p ∈ [0, p∗], x : [0, p∗] → [0,m∗], y : [0, p∗] → [m∗, 2A]. The functions x(p) and y(p) are
well defined, continuous, but may have infinite derivatives. One has from (2.8) that

dx

dp
=

1
sl x + x sl′ x

,
dy

dp
=

1
sl y + y sl′ y

.

Thus x(p) has infinite derivatives at p = 0 and p = p∗, and y(p) has infinite derivative at
p = p∗.

Consider now the second equation in (2.7). We will show that the function

ω(p) = h x sl x + x2 sl′ x + h y sl y + y2 sl′ y
= h (x sl x + y sl y) + x2 sl′ x + +y2 sl′ y
= 2hp + x2 sl′ x + +y2 sl′ y

is strictly increasing in p for h large enough.
One has that

dω(p)
dp

= 2h + 2xx′ sl′ x + x2 sl′′ xx′ + 2yy′ sl′ y + y2 sl′′ y y′

= 2h + xx′(2 sl′ x + x sl′′ x) + yy′(2 sl′ y + y sl′′ y).
(2.9)

http://www.river-valley.com
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Since slx is a bounded periodic function together with the derivatives sl′ x and sl′′ x, the
expressions in parentheses are bounded.

Let us evaluate the products x(p) x′(p) and y(p) y′(p).

One has for the second one that dy
dp = 1

sl y+y sl′ y at p = 0 is dy
dp = 1

sl 2A+2A sl′ 2A = − 1
2A

and y(0)dy
dp (0) = 2A ·

(
− 1

2A

)
= −1.

Evaluation of x(p) x′(p) follows. One gets by using the l’Hospital’s rule

(
x′ =

1
sl x + x sl′ x

⇒ x′′ = −x′
sl′ xx′ + x′ sl′ x + xx′ sl′′ x

(sl x + x sl′ x)2
= −x′

2 sl′ x + x sl′′ x
(sl x + x sl′ x)2

)

lim
p→0

x(p) x′(p) = lim
p→0

x′(p)
1

x(p)

= lim
p→0

x′′(p)
−1

x2(p) x′(p)

= lim
p→0

2 sl′ x + x sl′′ x
(sl2 x + 2 slx · sl′ x · x + x2 sl′ x) · 1

x2

= lim
p→0

2 sl′ x− 2x sl3 x(
sl x
x

)2
+ 2

(
sl x
x

)
sl′ x + sl′ x

=
2 sl′ 0

1 + 2 sl′ 0 + sl′ 0
=

1
2
.

Similarly can be shown that lim
p→0

y(p) y′(p), lim
p→p∗

x(p) x′(p) and lim
p→p∗

y(p) y′(p) are finite.

Then the last two addends in (2.9) are finite in the interval [0, p∗] and for h large enough
dω(p)

dp
is positive. Since ω(0) < 0 and ω(p∗) > 0, this function can change sign only once.

Thus only one zero of the system (2.7) in the upper triangle. Totally exactly three solutions.
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2.5. Integrals. The Nehari number λ (−1, 1) we are looking for is a minimal value of
the functional

H(x) =
1
2

1∫
−1

x′2(t) dt or that of H(x) =
1
2

1∫
−1

q(t)x4(t) dt

over all solutions of the BVP.
Notice that

H(x) =
1
2

0∫
−1

q1(t)x4
1(t) dt +

1
2

1∫
0

q2(t)x4
2(t) dt = J1 + J2,

where qi(t) =
2

ξ6
i (t)

, i = 1, 2.

Computation yields

H(x) =
1
3

β
3
2
1

[
β

1
2
1

η
− sl′

(
β

1
2
1

η

)
sl

(
β

1
2
1

η

)]
+

1
3

β
3
2
2

[
β

1
2
2

η
− sl′

(
β

1
2
2

η

)
sl

(
β

1
2
2

η

)]
,

where β1 and β2 solves the system (2.6), η = h + 1.
If x(t) is a “symmetric” solution, then β1 = β2 =: β0, and the above formula looks as

H(x) = 2 β
3
2
0

β
1
2
0 /η∫
0

sl4(z) dz =
2
3

β
3
2
0

[
β

1
2
0

η
− sl′

(
β

1
2
0

η

)
sl

(
β

1
2
0

η

)]
.

One has that

lim
h→+∞

β
1
2
1

η
= 0, lim

h→+∞

β
1
2
0

η
= 2A, lim

h→+∞

β
1
2
2

η
= 2A,
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lim
h→+∞

Hsym

Hasym

= lim
h→+∞

2
3

β
3
2
0

[
β

1
2
0

η
− sl′

(
β

1
2
0

η

)
sl

(
β

1
2
0

η

)]
1
3

β
3
2
1

[
β

1
2
1

η
− sl′

(
β

1
2
1

η

)
sl

(
β

1
2
1

η

)]
+

1
3

β
3
2
2

[
β

1
2
2

η
− sl′

(
β

1
2
2

η

)
sl

(
β

1
2
2

η

)]

= 2 lim
h→+∞

(
β

1
2
0

η

)3 [
β

1
2
0

η
− sl′

(
β

1
2
0

η

)
sl

(
β

1
2
0

η

)]
(

β
1
2
2

η

)3 [
β

1
2
2

η
− sl′

(
β

1
2
2

η

)
sl

(
β

1
2
2

η

)] = 2.

3. Conclusion. We have shown that the boundary value problem (2.2), (2.3) for suf-
ficiently large values of parameter h has exactly three nontrivial solutions. One of those
solutions is symmetric with respect to t = 0 and two others are asymmetric as shown in
Fig. 3.1. Both asymmetric solutions are the Nehari solutions.

http://www.river-valley.com


Home Page

Title Page

Contents

JJ II

J I

Page 16 of 19

Go Back

Full Screen

Close

Quit

-1 -0.5 0.5 1

5

10

15

20

25

30

Fig. 3.1.

Computations in the Table 3.1 show that in fact the system (2.7) has exactly three
solutions for h > 1. The respective three solutions of the boundary value problem looks like
shown in Fig. 3.1. The value of the functional H(x) for any of two asymmetric solutions is
less than that of the symmetric solution.
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Table 3.1
The results of computation for different values of h.

h β0 β1 β2 Hsym J1 J2 Hasym = J1 + J2

0 1.72 − − 1.97 − − −
0.5 4.93 − − 13.12 − − −
1 10.48 − − 48.19 − − −
2 30.41 10.20 41.79 274.92 41.04 200.73 241.77

3 63.79 13.15 83.53 871.82 75.93 595.70 671.63

4 111.22 16.34 138.76 2034.08 122.82 1309.47 1432.29

5 172.68 19.62 207.64 3952.96 181.61 2436.69 2618.29

6 248.05 22.95 290.22 6817.91 252.26 4071.93 4324.18

7 337.27 26.31 386.53 10817.92 334.76 6309.75 6644.51

8 440.29 29.69 496.57 16141.90 429.12 9244.71 9673.83

9 557.10 33.08 620.35 22978.82 535.31 12971.36 13506.67

10 687.68 36.48 757.88 31517.65 653.34 17584.24 18237.58

20 2750.10 70.67 2889.26 252098.71 2484.21 133255.04 135739.25
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Fig. 3.2. Values of Hsym (stars) and Hasym (boxes) for h = 2, 3, . . . , 10.

REFERENCES

[1] A. Gritsans and F. Sadyrbaev, Lemniscatic functions in the theory of the Emden – Fowler differential
equation, in: A. Lepin, Y. Klokov and F. Sadyrbaev, eds., Proceedings Institute of Mathematics and
Computer Science, University of Latvia, 3 (2003), 5–27.

[2] R. Moore and Z. Nehari, On second-order non-linear oscillations, Trans. Amer. Math. Soc., 93 (1959),
30–52.

[3] Z. Nehari, On a class of nonlinear second-order differential equations, Trans. Amer. Math. Soc., 95
(1960), 101–123.

[4] Z. Nehari, Characteristic values associated with a class of nonlinear second-order differential equations,
Acta. Math., 105(3-4) (1961), 141–175.

[5] F. Sadyrbaev, On solutions of the Emden – Fowler type equation, Differential equations, 25(5) (1989),
799–805 (in Russian). – English translation: F. Zh. Sadyrbaev, Solutions of an Emden-Fowler equation,
Differential Equations (ISSN: 0012-2661, by Kluwer Academic/Plenum Publishers.) 25(5) (1989), 560–

http://www.river-valley.com


Home Page

Title Page

Contents

JJ II

J I

Page 19 of 19

Go Back

Full Screen

Close

Quit

565.
[6] E.T. Whittaker and G. N. Watson, A Course of Modern Analysis, Part II. Cambridge Univ. Press,

1927 (Russian transation).

http://www.river-valley.com

	Introduction
	Brief overview of the Nehari theory
	The Nehari numbers for the Emden-Fowler type equations

	Example: nonuniqueness of the Nehari solutions
	Lemniscatic functions
	Equation
	Solutions
	Investigation of a system
	Integrals

	Conclusion

