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REMARKS ON THE INCOMPRESSIBLE NAVIER-STOKES FLOWS FOR
LINEARLY GROWING INITIAL DATA*

OKIHIRO SAWADAT

Abstract. We deal with the Cauchy problem of the Navier-Stokes equations with linearly growing initial
data Up := —Mx + up(x). Here M is an n X n matrix with assumptions tr M = 0 and M? is symmetric,
and up € L5 (R™). We establish the local-in-time solvability applied Ornstein-Uhlenbeck semigroup theory.
We also show that our solution is analytic in z, if || etM || <1 for all t > 0, nevertheless, the semigroup is
not analytic.
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1. Introduction. We consider the incompressible and viscous fluid flows in R"™ for
initial velocity which grows linearly at space-infinity, which are described the Navier- -Stokes
equations, i.e.

U, — AU+ (U,V)U+VP=0 in R"x(0,7),
V.-U=0 in R"x(0,7),  (L1)
U0)=Up with V-Uy=0 in R"™.
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Here U = U(t) = (U(x,t),...,U"(z,t)) and P = P(z,t) stand for the unknown velocity
and the unknown pressure of the fluid; Uy = (Ug(z), ..., U (z)) is the given initial velocity.
There are many contributions of literatures on existence of solutions of (1.1) in the whole
space, see e.g. [1, 5, 6, 7, 9, 13, 23]. All these results assume that the initial data decay as
|| — co. On the other hand, Okamoto [26] showed that for certain concrete flow problems
there exist many exact solutions U which have the property that U grows linearly as |z| — oc.

Our purpose is to construct mild solutions to the equations of Navier-Stokes in L2 (R™),
when the initial datum may grow as —Mz, where M = (m;;)1<;,j<n is a real-valued constant
matrix satisfying tr M = 0 and M? is symmetric. We hence assume throughout this paper
that the initial velocity is of the form

Up(z) = =Mz + up(x), x €R™, (1.2)

where ug € L2(R™)™ is a function.

In the case M = 0, it is well known that there exists a local-in-time smooth solution to
(1.1) provided the initial data Uy belongs to LE(R™) for p > n; see e.g. the articles in the
list of References. However, if M £ 0, the situation is more complicated.

We shall explain the reason why we study (1.1) with (1.2) in Physical point of view. Let
us think about the case M is skew-symmetric, e.g.

—a

M=R:= 0
0

o 2 O
9 e

for @ € R, Notice that U := — Rz describes the pure rotation of the fluid. This problem was
investigated by Hishida and by Babin, Mahalov and Nicolaenko. Indeed, Hishida constructed
in [18, 19, 20] a unique local-in-time mild solution, provided that ug € H'/?(R?), and its
initial-boundary value problem in the exterior domain is also considered. (We will see the
notion of a mild solution below.) Babin, Mahalov and Nicolaenko [3], [4] also proved the
existence of a local-in-time mild solution (and global regularity theorem), provided wyg is in
LP(R3) or uy is a periodic function enjoying the smoothness.
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In [29], the second author of this paper proved the existence of a unique local-in-time
mild solution, still for M = R, provided wug belongs to the Besov space Bgo’l

Bgo,l ={fes’ Z llpj * flloo < 00, f= Z @;* f in &’ sense}.

j=—00 j=—00

Note that Bgo,l C BUC (and this embedding is continuous), where BUC denotes the space
of bounded and uniformly continuous functions. The virtue of Bgo,l and several example of
functions are found in [30].

An interesting example of M is

b 0 O
M=J:= 0 —-b O
0 0 2b

for b € R. According to Majda [24], —Jx for b < 0 corresponds to the drain along to 1 and
xo-axises horizontally and to the jet along to z3-axis of the fluid. He showed that (U, P) is
an exact solution of (1.1), where

U:=—-Mz, P:=(llz,z),

and II := [(M*¥™)? + (M?*)?] under the assumptions that tr M = 0 and M? is symmet-
ric. We have denoted by M®Y™ and M?2 the symmetric and skew-symmetric part of M,
respectively, i.e., M¥™ := L(M + M7T) and M*™ := (M — M™). Here MT denotes the
transposed matrix of M.

Giga and Kambe [11] also investigated the axisymmetric irrotational flow (mainly, the
behavior of its vortex), and studied the stability of the vortex when the velocity field of the
fluid U is expressed as U = —Jx + V, where V = (V1,V?2,0) is a two-dimensional velocity
field.
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This paper is organized as follows. In Section 2 we state the main results. We shall
refer to key lemmas for proving the theorems in Section 3. In Section 4, we show the proof
briefly.

2. Main results. In this section we refer to the main results in this paper. Before
stating our main theorem, we consider a simple substitute as follows:

w:=U-U=U+Mz, p:=P—P=P—(lz,z).

Note that, if (U, P) is the classical solution of (1.1), then (u, P) should satisfy the following
equations in classical sense:

ug + Au + (u, V)u —2Mu + VP =0 in R" x (0,7),
Vou=0 in R"x (0,T), (2.1)
u(0) =wuy with V-ug =20 in R™.

Here we have defined the operator A by
Au = —Au — (Mz,V)u+ Mu
with domain
D(A) := {u € W?*P(R™) N LE(R™); (Mx, V)u € LP(R™)}.
Thanks to the results of Ornstein-Uhlenbeck semigroup theory by e.g. [25], we know that

— A generates a (Cp)-semigroup in L2 (R™) for p € [1,00). Also, —A generates a semigroup
in LS. We also have a representation form of semigroup

1 —tM [ p(etM ) e~ 1(Q1 V) gy,

—tA o
HE) = G 7S e



http://www.river-valley.com

Home Page

Title Page

Contents

Page 5 of 17

Go Back

Full Screen

where Q¢ := fot eM esM" {5 for all t > 0. Note that this semigroup is not analytic; see e.g.
[18]. Using this semigroup, we deduce the integral equation by Duhamel’s principle:

t t
u(t) = e Aug — / e~ APV . (u(s) @ u(s))ds + 2/ e (=4 Py(s) ds.
0 0

Here P is the Helmholtz projection from LP to L2. Since V - u = 0, we have used that
(u,V)u = V- (u ® u), and that A commutes P (since V - Pu = 0). The solution of the
integral equation is often called a mild solution, we use this terminology. The integral
equation is formally equivalent to (2.1). Indeed, once we get the mild solution w, the pair
(u, P) satisfies (2.1) in classical sense with some P; see REMARK 2.1(i) below. In what
follows we rather discuss the mild solution.

We now state the local-in-time solvability theorem and the uniqueness result for mild
solutions in LP spaces.

THEOREM 2.1. Letn > 2, p € [n,00). Let M be a real-valued constant n x n-matric.
Assume that ug € LE(R™). Then there exist Ty > 0 and a unique mild solution u such that
[t #27u] € C([0, To); L (R™)
[t ¢# G670+ u] € C([0, To); LY(R™))

for all g € [p, 0].

REMARK 2.1.

(i) In this theorem we may relax the condition of M, although in order to derive (2.1)
from (1.1) with (1.2) we need tr M = 0 and M? is symmetric. The mild solution  is smooth
in z, ie. u(t) € C*°(R") for all ¢t € (0,7p). This comes from the regularizing effect of the
semigroup; see (3.6) in Section 3. Hence, (u, P) is a classical solution of (2.1) provided we
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choose P appropriately, for example,

0P = Z 3kRiRjuiuj -2 Z minleui.

2,j=1 2,j=1

Uniqueness of classical solutions follows from the argument by [22] and [31].
(ii) When the initial data up € L3 or BUC,, it is not easy to obtain a unique mild
solution in general, because the Helmholtz projection is not a bounded operator in L°°.

However, we can show the existence theorem of the mild solutions u € C’([O,To);Bgo,l)
provided ug € Bgo’l with V - ug = 0.

(iii) In the case n = p = 2 we obtain the global-in-time solution. Multiplying (2.1) with u
and integrating over R?, as the standard way, we can derive ||u(t)||2 < C|luol|2 exp{|M |t} for
all ¢ > 0. Here C is a numerical constant, and |M| := max; j |m;;|. That is not conservative,
however, that sufficiently gives an a priori estimate for extending the mild solution globally-
in-time. In 3-dimensional case, we do not know how to get the global solvability as well as
the case M = 0.

We see that w € C*° in REMARK 2.1(i). It is a natural question whether uw € C* or not.
We can verify it, if M satisfies an additional condition.

THEOREM 2.2. Assume, furthermore, that
[eM] <1 forall t > 0. (2.2)

Then w is analytic in x.

Besides, it is impossible to get the analyticity in time, since the Ornstein-Uhlenbeck
semigroup is not analytic. It is clear that (2.2) holds true if M is skew-symmetric. We do
not know whether the assumption (2.2) is essential or not. THEOREM 2.2 is an application
of the regularizing rate estimates of u and its higher order derivatives. We now state them
in the case p = n only (for the shake of simplicity).
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PROPOSITION 2.3. Letn > 2, ug € L*(R™) and r € (n,00). Assume that M satisfies (2.2).
Let u be the local-in-time mild solution of (2.1) for some T > 0. Assume further that there
exist constants My and Ms such that

sup |Ju(®)|l, < M; <oco and  sup t%(%_%)ﬂu(t)ﬂr < My < o0.
0<t<T 0<t<T

Then there exist constants K1 and Ko (depending only on n, r, M, T, My and Ms) such
that

m__n

IV™u(t)]lq < Ki(Kom)™~ 27 3G=3) (2.3)

for allt € [0,T], m € Ny and q € [n,o0].

REMARK 2.2. There exists a constant C' > 0 such that the size of radius of the Taylor
expansion p(t) w.r.t. x is estimated as

m —1/m
p(t) > lim sup <M> >CvVt  te(0,T). (2.4)

This estimate follows from PROPOSITION 2.3 with ¢ = oo, the Stirling formula, and Cauchy-
Hadamard’s criterion. It is clear that (2.4) yields THEOREM 2.2.

3. Preliminaries. In this section we prepare the lemmas to prove the theorems. Firstly,
we mention the LP — L7 estimate of e~*4, and its first derivatives.
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LEMMA 3.1.
(1) Let n > 1, and let 1 < p < q < oco. Then there exist constants C > 0 and w > 0
such that

n 1l

e~ fllg < Cett=2Gma)| f]l,, (3.1)
_ it e
IVe™™ fll, < Ce 72| fll, (3.2)

for all f € LP and t > 0.
(2) Assume, additionally, that p < q. Then

2G| e fl, — 0 as t—0, (3.3)
2| Ve M fl, >0 as t—0 (3.4)

for all f € LP.

Proof. The first parts of LEMMA 3.1 are proved by direct calculations of the kernel of the
representation form of the semigroup, combining with Young’s inequality. To do so, we use
the change the variables y = Qtl/ *z. For proving second parts, we first recall that C§° is
densely subset of LP for p < co. As same as that in [23], by triangle inequality (3.3) follows
from (3.1), obviously. As the same way, the proof of (3.4) is also shown by (3.2). 0
Remark that LEMMA 3.1 (and LEMMA 3.2 below) is shown by [8] for the case M = Id.
To prove THEOREM 2.2 (and Proposition 2.3), we need the estimates for higher order
derivatives of the Ornstein-Uhlenbeck semigroup, that is to say, we compute V™ e~ *4 f. The
difficulties arise from the fact that V does not commute e *4. Indeed, we see that

ve—tA f _ etM e—tA vf

Nevertheless, thanks to the representation formula, we can get similar estimate to that of
the Stokes semigroup.
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LeMMA 3.2, Letn > 1, andlet1 < p < q < 0o. Then there exist constants C’l, C’g, C’g > 0,
w1, wae, w3, wy > 0 (depending only on n, p, q, M) such that

n

[97 6744 fl < Gy elerteamt =2 G2y, (35)
for allt >0, m € N and f € W™P(R™), and also
V™ &=t fllg < Co(Com)m/2 eleatenmt =2 G2 1], (3.6)

for allt >0, m € N and f € LP(R").

Proof. We first consider the case p = ¢. Since || || = ||e"M" || < C'e¥*! for all ¢ > 0 with
some constants C' > 0 and wsy, it follows that

V™ e fllg < [ ™| e 4 V™ fllg < Ce2mt et |V £, (3.7)

for some wy > 0. This and (3.1) show the assertion (3.5).
To prove (3.6) we compute

m . — =i m— m—1 —(1—=1
IV e fllg = |[VemmmA elmm M gmte=(=zm)t4 | (3.8)
t

-1/2 1
< = w(m—1)t m—1 _,—(1-57)tA . .
_C’(—2 ) exm Ce |V e 2 fllq (3.9)

We thus see that there exist constants C > 0 and w3, w4 > 0 such that
”vm e A f”q < O™ M/2 gwamt qwst t—m/2|| e—%A f”q

Finally, we apply (3.1) to obtain (3.6). O
To show PROPOSITION 2.3 with ¢ = oo, we have to prepare the following estimate of set
of three operators Ve '4P.
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LeMmMmA 3.3. Let 1 <p < oo. Then there exist constants Cp, > 0 and ws € R such that

||Ve_tA P||£(LP) < Cpt_1/2 e¥st, t > 0.

Remark that P is not bounded in L' and L>. We use the Fourier multipliers theorem;
refer to [2]. For making short of this paper we omit the proof, since we can find it in [16].
Note also that LEMMA 3.3 has already been proved by [10] for the case A = —A. They
showed it by direct calculation, recalling the e*® = G is a convolution type operator.

Before closing this section we pick up the bilinear estimate of homogeneous Besov spaces
to show REMARK 2.1(ii).

LEMMA 3.4. There exists a positive constant C such that

I1f - 9 Booall < CUIf; Booall 95 B 1l + 113 Bl 195 Bao 1 11)
forall f,g € ngl N Béol
We can prove this lemma using by the equivalent norm:
g o 1/q
o Byl = [ [ 7175 sup o+ 7y — 20le]
0 lyl<t

which is valid for 1 < p,q < 00,0 < s < 2, where 7, is the translation by y € R”, that is,
Ty f(x) = f(x —y). In [17] we found the similar proof so that we may skip the details.

4. Proofs of theorems. We give the proofs of theorems briefly.

Proof of THEOREM 2.1. We use the iteration procedure, that is, successive approxima-
tion. We only show it for the case p =n. Let n > 2 and ug € LZ(R™). For j > 1 and ¢t > 0
we define u; (t) := e~ uy and functions u; 41 by

t t
wj1(t) = e g — / e APV . (ui(s) ® u;(s))ds + 2/ e~ =) APMu;(s) ds.
0 0
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Since e7*4 acts on LE(R") it follows from the definition of the Helmholtz projection that
the functions u; are divergence-free for all ¢ > 0 and all j.
Let T € (0,1], and let 6 € (0,1). We settle

Ag := sup t1;26||e_tAu0||n/5 and Aj:= sup t%||Ve_tAu0||n,
0<t<T 0<t<T

as well as A; := A; and A; = A;- where

1—6 o
Aji= sup t 7 |juj(t)|ln;s and A} = sup ¢/2|Vu;(t)n,  j>1.
0<t<T 0<t<T

We thus obtain the LP — L?-smoothing of the semigroup and the boundedness of P from L?
into L? that

1-6 & n(l_ & &
l[tj41(B)llnys <777 Ao + C/ (t —5)" 3G |uy(s) - Vuy ()|l ds + C/ [l ($)]ln/s ds
0 0
Here r = {75. We apply the Holder inequality. Multiplying with 2 and taking in ¢, we
have
Aj+1 < Ap+ C1AjA; = CzTAj (4.1)

with some constants C7, Co independent of j and 7.
Similarly, applying V to the approximation equation and estimating it in the L"-norm,
we obtain

Al < Ap+ C3A AL + C4TA; (4.2)

with some positive constants C3 and Cy. LEMMA 3.1(2) implies that for any A > 0, there
exists Tp > 0 such that Ay, Afy < A for all T' < Tp. Therefore, we obtain bounds for A; and
Aj for any T' < Tp uniformly in j provided that 7p is small enough.
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Using the uniform bounds of A; and A}, it follows that ¢3 2 |Juj(t)]|, as well as

1724 ||V (t)||, are bounded for ¢ € [n,00], t < Ty and j € N. The continuity of the
above functions follows from similar calculations.

The estimate on u;41 —u; is the same as above, essentially. It thus follows that approx-
imations are Cauchy sequences and we conclude that there are unique limit functions

t*Hu(t) € OO, Tl L8), '~ %u(t) € O([0, Tols LY,

of the sequences (t%_z_zuj (t));>1 and (t'72a Vau;(t));>1. Finally, note that v(t) = t'/2Vu(t)
and that v is a mild solution on [0, Tp].

Uniqueness of mild solutions follows as in [12] from Gronwall’s inequality. This completes
the proof of THEOREM 2.1. O

Proof of PROPOSITION 2.3. Suppose that M satisfies (2.2). We start to prove the
assertion (2.3) under the additional assumption that the mild solution is smooth:

97u € C((0,T); LY(R")) (4.3)

for all & € N§. We may assume (4.3), since it can be shown by similar way; see the details
in [16].

We use an induction w.r.t. m € N. That is, we assume that (2.3) holds true for all
m < k — 1. We now proceed to show it for m = k. For simplicity, we suppose that T' < 1,
n >3, ¢ < oco. For € € (0,1) we have

(1—e)t t
IV u(®)lg < IIVF e uollq + (/ +/( : > IV e C=9APY - (u(s) @ u(s))llq ds
0 1—e)t

(1—e)t  pt
12 / + / |VE =094 P Afu(s)|l, ds
0 (1—e)t
=: By + By + B3 + By + Bs.
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We shall estimate each the above terms Bj, ..., Bs separately.
The estimates for By are derived from (3.6) as follows:

k

By < Co(Cak)*/2 693k |lug ||t~ 3 =275 < O5(Csk)r—0t 3G—a)—%

for t € (0,T) with constants Cj := C’g||u0||n < CyM; and Cs := Cs3e*s. This follows since
k/2 <k —¢6 for k > 2 and § < 1. The estimates for By, By and Bj are basically same as
above, so we omit to prove.

To derive the estimate Bj3, we use the Leibniz rule:

t
By < Cs /( (t — 5) 12| V*u(s) | qlu(s) oo ds

1—e)t
' g
w0 [ - 3 (D) j02ue)aof u)ll ds
(1—e)t Bl=k =25 N
=: B3y + Bsp.

Here C7; = 2C)e* is independent of k by (2.2): (5 ) =TI, % is a binomial

coefficient.

Consider Bs,. Firstly, there exists positive constant C such that ||u(s)||e < Cs™/2; see
the Proposition 3.1 in [15]. Then,

t
B < C / (t — 5)"1/25~1/2| Tus) |, ds
(

1—e)t

with Cy is a constant depending only on n,p,q, M, M;, M5. Next we deal with Bs,. By
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assumption of induction, we have

t

B <C/ t—s)7% max PY Ky (o) 05~ 2G40~
v (1—6)t( ) e > <v) 1(E2l)

o

_Q(L_l)__llﬁ—W
2\n q 2

x K1 (Kz|8 — 4)P~71%s ds

t
<omps 30 ()bi=A1e -1 /( (t—s)~2s"HH ds

0<y<p i Lot

We now use Kahane’s lemma in [21, Lemma 2.1] to get
By < CoR2KF-20pk—04=3 (=D~ 3 1 (e).

Here I(e) := fl_ ( —T)_%T_%(%_é)_i_%dT, and Cy is a constant depending only on C7 and
§ (independent of k). Moreover,, and the dependence of Cy w.r.t. §is Co ~ > 22| j~1/279/2,

so we need 6 > 1/2.
Define b, by

be := Cs5(Cok/e)*? + CoKT K5~ kF~°I(e).

Here C5 and Cg are constants. Gathering estimates above, we obtain

t
IV u(®)]lq < bt~ 2G5 4 5’8/ (t = 5) /2572 Vru(s) g ds.
(1—e)t

Here Cy is a constant independent of k. By Gronwall’s type inequality in [15, Lemma 2.4],
there exists a €, € (0,1) such that

n

IVFu(t)|ly < 2b.,t 3G—735, ¢ (0,T). (4.4)


http://www.river-valley.com

This is possible if we take e small enough. Indeed, there exists ko (depending only on
n, p, M, My, Ms) such that I(1/k) < 2%‘: for all k > ko.

Finally, we verify 2b; ;, < K3 (K3k)*=9 for suitable choice of K; and K5. Fix a constant
Title Page Ko > 0 (depending only on n,p, M, My, Ms) so that ||[VFu(t)|, < Ko holds for k < kq. For
k> 2, since I(1/k) < 2, 2by/, < 2{C5CE=° + 20y K2 K52 k*=%. Therefore, we choose

K7 := max (K0,4C’5) and K5 := max (6’6, (409K1)6),
then (2.3) holds true for all m.
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