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OSCILLATION CRITERIA FOR HALF-LINEAR PARTIAL
DIFFERENTIAL EQUATIONS VIA PICONE’S IDENTITY™

NORIO YOSHIDAT

Abstract. A Picone’s identity is established for a class of half-linear partial differential equations,
and oscillation criteria are obtained by using the Picone’s identity. By reducing the oscillation problem for
half-linear partial differential equations to a one-dimensional oscillation problem for half-linear ordinary
differential equations, we derive various oscillation results.
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1. Introduction. Recently there has been much interest in studying the oscilla-
tory behavior of solutions of half-linear differential equations. There are many papers
(or books) dealing with oscillations of half-linear partial differential equations, see, e.g.
Bognar and Dosly [2], Dosly [3, 4], Dosly and Maifk [5], Dosly and Rehdk [6] Dunninger
[7], Kusano, Jaro§ and Yoshida [10], Mafik [13, 14] and Yoshida [15]. Picone identity
plays an important role in Sturmian comparison theory and oscillation theory of differ-
ential equations. We mention the papers [1, 2, 3, 5, 7, 10, 15] which deal with Picone
identity for half-linear partial differential equations. In particular, the paper [15] treats
the half-linear partial differential equation with first order term

V- (A()|Vo|* 7' Vo) 4+ (o + 1)|[Vo|* ' B(z) - Vv + C(2)v]* o = 0. (%)

The purpose of this paper is to establish a Picone identity for the half-linear partial
differential equation

Ppbl=Y g ((Az-<x>)2|w“§;> +(a+1)|Var]* ™ B(z) - Vav

7

(1.1)
+C(2)v]* v =0

and to derive oscillation results for (1.1) using the Picone identity, where o > 0 is a
constant and

ov v
VA'U = (Al(l')axl77An(.T)axn> .

We note that the half-linear partial differential equation (1.1) is a generalization of
(). In fact, if

Ai(2) = Az(a) = -+ = Ay(2) = Al@)¥ (A(x) > 0),
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we see that (1.1) reduces to

V- (A(x)\Vv|a_1Vv) + (o + 1) A(z) 5+ |[Vo|* I B(z) - Vv
+ C(2)|v|*tv = 0.

2. Picone identity. In this section we establish a Picone identity for (1.1), and
obtain a sufficient condition for every solution v of (1.1) to have a zero on G, where G is
a bounded domain in R™ with piecewise smooth boundary 0G.

It is assumed that A;(z) € C(G;(0,0)) (i = 1,2,....,n), B(z) € C(G;R") and
C(z) € C(G;R).

The domain Dp_ (G) of P, is defined to be the set of all functions v of class C1(G;R)

with the property that (A,;(x))z\VAv “’18‘% € CYG;R)NC(G;R) (i =1,2,...,n).

THEOREM 2.1 (Picone identity). If v € Dp, (G), v # 0 in G, then the following Picone
identity holds for any u € C*(G;R) :

n AlIL’ 2V vaflaiy
SN CICIE
i=1

o(v)
=~ [Vau—uB(@)|]*™ + C()]u|**!
a+1
+|VAufuB(x)|a+1+a'%VAv (2.1)
—(a+1)(Vau—uB(z)) & (%vAv)
up(u)
— P,|v],
o) T
where p(s) = [s|*"ts (s € R) and ®(€) = [£]*71¢ (€ e R™).
Proof. A direct calculation yields
_i 0 up(u) (Ai(@))"|Vavl*—* 22
2 5z, (0)
B K (Aule)) 9 vl
& on,” #(0)
n 2 a—1 0v
L ou (Ai(z) [Vav|*t B2
- - 2.2
;w o, ¢(v) 22)
_ - 790,(1)) v 4 2 o1 OV
n Biml ((AZ‘(.T))2|VA’U|(1_1%)
- Zug@(u) .
pt ¢(v)
It is easy to see that
— du (Ai(x))2|vz4“‘a_l,%)i U\ w 2 a1 OV Ou
5 e (§) D) Ve e
i=1 =1
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in view of the fact that p(u)/p(v) = ¢(u/v). Since up’(u) = ayp(u), it can be shown that

" ou (Ai@) Va2
> ug! (u) :
P Oz e(v)
. o (2.4)
U 2 a1 OV Ou
o (£) Skt L
i—1 7 i
Using the identity ¢'(v) = a(¢(v)/v), we obtain
- ¢ (v) dv 2 _1 0v
— A o
2o (-Eopas) ) w2
n oy \ 2 (2.5)
U (u 2 o v
=~ oy (5) Z@) ()
Combining (2.2)—(2.5), we observe that
n 2 o— v
_Z 0 up(u) (A=) IVavl*™ 5
2 g \ "7 (v)
_ aggo (g) Z(A-(x))2|VAv|O‘—1 ﬂ ’
v’ \v/ = ! Ox;
- o o (2.6)
_ Y S (2) 2|V gt 2V 0
(a+ 1) (= ;(Al(x)) Vol oo
up(u) ¢~ 9 2 _, 0v
— A; o
SD(U) i=1 81'1 ( (x)) |VAU| axz
It is easily verified that
a E(p (E) i(A,(a?DQIVA,U'a—l v 2
v v/ = ’ Ox;
w|atl —l e 5 (v \?
-« ]; Va0l (Ai(x) ((%> (2.7)
i=1 ¢
a+1
=« ‘EVA'U
v
A simple computation shows that
U\ 2 a1 OV Ou
—(a+1)e (;) > (4i(2)) |V avl 1%%
i=1 v
_ U a-1 oy Ou u, . Ov (2.8)

i=1
a—1

= —(a+1) ‘%VAU

(Vau) - (%VA’U) .
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Hence, combining (2.6)—(2.8) yields the following :

" Ai(@))"|Vav|* 1 2
-3 2 (vt L)

=1

a—1

a+1
=«

U
—Vav
v

up(u) - i o)) va—lﬂ
p(v) ;8% <(A’( )) IV av] 8zi>.

—(a+1) ‘%VAU

(V at0) - (%VM) (2.9)

We easily obtain

120 [ 4 1))V 0] Bla) - Vac]
#(v) - (2.10)
= (a+1)‘%v,4v uB(x) - (%VAU).
Combining (2.9) and (2.10), we find that
n 2 o— v
-3 O up(u) (i) IV avl* ™ 5
— Ow; 4 w(v)
u a+1 a—1 u
=« EVA’U —(a+1) ‘*VAU (Vau —uB(z)) - (EVA’U)
n (2.11)
up(u) 9 2 _1 0v
_ A; a=127
o(v) ; Ox; (( @) Vel O
+ (a4 1)|Vav|* ' B(x) - VAU] .
Since
U@(U) a—1 a+1
C(x)|v v=C(x)|u ,
@l (@)l
we conclude that (2.11) is equivalent to the desired Picone identity (2.1). |

THEOREM 2.2. Assume that there exists a nontrivial function u € C'(G;R) such that
u=0 on G and

Mu] = /G [V A — uB(@)|** — O()[u]*+'] dz < 0.

Then every solution v € Dp_(G) of (1.1) must vanish at some point of G.

Proof. Suppose to the contrary that there exists a solution v € Dp(G) of (1.1) satisfying
v # 0 on G. THEOREM 2.1 implies that the Picone-type inequality (2.1) holds for the
nontrivial function u. Integrating (2.1) over G, we obtain

a+1

0= —MG[u]+/ [|VAu—uB(x)|o‘+1+a’%VAv
G

—(a+1)(Vau—uB(x))-® (%VA’U)} dz

it (2.12)

> / [|VAu—uB(x)|O‘+1 +a ‘EVAU
G v

—(a+1)(Vau—uB(z)) - ® (%VAU)} dz.
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It is easily seen that

Vau—uB(x) — %VAU =ovVy (%) —uB(z)=v {VA (%) - %B(m)} .

If
u u
Va (5) - ;B(x) =0 in G,
then we obtain the following
u U
V(E) —;BA(JZ):O in G,

where

s (8 25).

It follows from a result of Jaros, Kusano and Yoshida [9, Lemma] that
U J—
— = Cpexph(x) on G
v

for some constant Cj and some continuous function h(z). Since u = 0 on G, we obtain
Cy = 0, and hence u = 0. This contradicts the fact that u is nontrivial, and therefore we
find

Vau—uB(z) # %VA’U in G.

Hence, it follows from a result of Kusano, Jaro§ and Yoshida [10, Lemma 2.1] that

a+1
/ DVAU —uB(x)|*™ 4+ « ’%VA’U
G

—(a+1)(Vau—uB(x)) - ® (%VAU)} dz > 0,

which, combined with (2.12), yields a contradiction. The proof is complete. 0

3. Oscillation results. We consider the half-linear partial differential equation

Pylv] = Z % ((Ai(a:))2|VAva1§;_> + (a+1)|Vav|* tB(x) - Vav

?

(3.1)
+C(2)|v]* T =0

in an unbounded domain 2 C R", where a > 0 is a constant, 4;(xz) € C(£;(0,00))
(i=1,2,...,n), B(z) € C(%R) and C(x) € C(4;R).

The domain Dp, () of P, is defined to be the set of all functions v of class C1(Q2; R)
with the property that (Ai(x))z\VAvW_lg—; € CHLR) (i=1,2,...,n).

A solution v € Dp_(£2) of (3.1) is said to be oscillatory in 2 if it has a zero in Q,. for
any r > 0, where

Q. =0n{xeR" x| >r}.

THEOREM 3.1. Assume that for any r > 0 there exists a bounded and piecewise smooth
domain G with G C Q... If there is a nontrivial function u € C1(G;R) such that u =0 on
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O0G and Mg|u] < 0, where Mg is defined in Theorem 2.2, then every solution v € Dp, (2)
of (3.1) is oscillatory in .

Proof. Let r > 0 be an arbitrary number. THEOREM 2.2 implies that every solution
v € Dp, (2) of (3.1) has a zero on G C ., that is, every solution v of (3.1) is oscillatory
in Q. O

LEMMA 3.2. Let 0 < a < 1. Then we obtain the inequality

IVt W

|Vu — uW (z)]*T! < - 1

Jul**! (3.2)

for any function u € C*(G;R) and any n-vector function W (z) € C(G;R).
Proof. The following inequality holds:
(Vu) - ®(Vu) + a (Vu — ulW(x)) - & (Vu —ulW (x))
—(a+1)(Vu) - @ (Vu —uW(z)) >0
(see, e.g., Kusano, Jaro§ and Yoshida [10, Lemma 2.1]). Hence, we have
(Vu) - ®(Vu) + a(Vu —uW(x)) - © (Vu — ulV (x))
—(a+1)(Vu—uW(z) + uW(z)) - ® (Vu — uW(z)) >0,
and therefore
|Vu|*T + | Vu — uW (z)]* !
—(a+1) [[Vu = uW (2)|*T + uW (2) - @ (Vu — ulW (z))] > 0,
or
|Vu*T — (a4 DuW (2) - @ (Vu — uW (2)) > |[Vu — uW (z)|*T. (3.3)
Using Schwarz’s inequality and Young’s inequality, we find that

[(a+ DuW(z) - & (Vu —ulW(z))|

< (a+ DuW(2)||Vu — uW (z)|*

|uW (z)|o+1 N |Vu — uW (z)|>+L (3.4)
a+1 atl

[e3%

= |uW ()" + | Vu — ulW (2)|*T.

< (a+1)

Combining (3.3) with (3.4) yields the following

|Vu — uW (2)|*T! < [Vu|*™ + | (a + DuW (2) - @ (Vu — uW (z)) |
< |Vl * T+ [uW (2) [T + o Vu — uW () |*T

and hence
(1= )| Vu — uW (2)[*F <[ Vu|*T 4 W (2)| a2,

which is equivalent to (3.2). The proof is complete. |
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THEOREM 3.3. Let 0 < a < 1. Assume that for any v > 0 there exist a bounded and
piecewise smooth domain G with G C €, and a nontrivial function u € C*(G;R) such
that u =0 on 0G and

/ [K(x)wurlﬂ —_ {C(m) - K(”T)BAW} |u|a“} dz <0,
G

11—« l—«a

a+1
and

o (3 25)

where K(z) = (maX1§i§n Az(x))

Then every solution v € Dp_(Q) of (3.1) is oscillatory in Q.
Proof. Tt is easy to see that

|[Vau—uB(x)| <,/ max (4;(x))? |Vu —uBa(z)| < ( max. Ai(x)> |[Vu — uBa(z)|

1<i<n 1<i<
and hence
|Vau — uB(z)|*" < K(2)|Vu — uBa(z)|*". (3.5)
Combining (3.2) with (3.5), we obtain

|V au — uBa(z)|*T! < f{ﬂ\vw“ +
—

K(z)|Ba(z)|**!

|u|a+1.
1—

Therefore, we observe that
/ [|VAu —uB(x)|*T! - C’(m)|u\a+1] dx
G
K K(x)|B o+l
S/ |: (l’) ‘vu|a+1 _ {C(.T) _ (:ZJ)| A(‘T)| }|u|o¢+1] dz
cll—«a l-—a
and consequently, the conclusion follows from THEOREM 3.1. O
LEMMA 3.4. Let E(x) € C(G;(0,00)) satisfy E(x) > . Then the inequality

|E (@)W (z)[**+

wlot! .
el (3.

|Vu — uW (x)]* < E(Z;x—)a

|Vu|* T 4
holds for any function u € C*(G;R) and any n-vector function W(x) € C(G;R).

Proof. Proceeding as in the proof of LEMMA 3.2, we see that the inequality (3.3) holds.
Applying Schwarz’s inequality and Young’s inequality, we have

[(a+ DuW(z) & (Vu —ulW(z))|

1 o
= B (a + D)|uB ()W (z)||Vu — uW (z)] .
< E(lx) (IuE(x)W(x)|a+1 +a|Vu - uW(x)‘aH)

Combining (3.3) with (3.7) yields the following
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«@ o @
Jul* T+ By Ve W @) o

| E ()W ()|

|Vu — uW (2)|*T < |Vl + Bl)

and therefore

0 fpu e < g+ EQT@E
(1- o ) 1vu— @+t < et OO o,

which is equivalent to (3.6). The proof is complete. 0

THEOREM 3.5. Let K(x) > a. Assume that for any v > 0 there exist a bounded and
piecewise smooth domain G with G C Q, and a nontrivial function u € C*(G;R) such
that u =0 on 0G and

(@) ul**t — z) — (K(z avz|Ba(@)|*t wlett | de
/G[K(x)_QIVH {C() (K (@) K(I)_Q}H 1d <0.

Then every solution v € Dp_ () of (3.1) is oscillatory in Q.
Proof. We see from (3.5) and (3.6) with F(z) = K(z) that

/G [[Vau— u B(z)|*T! — C(x)|u|°‘+1] dx

(K@) oo
: /G[Kw)—a'v .

_ {C(:I?) _ (K(I))aJrQ |f{fz(x:§)f; } u|a+1] de.

Hence, the conclusion follows from THEOREM 3.1. The proof is complete. O

Let {Q(z)}s(r) denote the spherical mean of Q(x) over the sphere S, = {z € R™ :
|x| = 7}, that is,

(QE)stn = — [ Qs == [ Quop.
n S n JS;

where w,, is the surface area of the unit sphere S; and (r, 8) is the hyperspherical coordi-
nates on R”.

THEOREM 3.6. Let 0 < a < 1. If the half-linear ordinary differential equation

(- {f@}s 7) |y’|a1y'>'

(3.8)
} ) lyl*1y = 0
S

is oscillatory, then every solution v € Dp_(R™) of (3.1) is oscillatory in R™.

Proof. Let {ry} be the zeros of a nontrivial solution y(r) of (3.8) such that r; < ry <
<o+ limg_ oo 7 = 00. Letting

Gr={xeR"%rp <|z|<rg+1} (k=1,2,..)
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and ug(z) = y(|z|), we find that

Mg, [uk] < /Gk [K(QU)|VU;€|“+1 - {C(m) — K(QC”BAW} |uk|a+1} dx

1—«a l1—«

—on [ l{f_@}s )l ()[4

B {C(.T) B K($)|BA(-T)|O‘+ }S (r)|y(T)|a+1] ’rn_ldT

11—«
Tk+1
= —wn/
Tk

(m {2 }S <r>|y'<r>a-1y/<r>)/

Ll {C’(x) _ W}S (r)|y(T)|a_1y(T)] y(r)dr

11—«
=0.
Hence, the conclusion follows from THEOREM 3.3. 0

THEOREM 3.7. Let K(x) > « in R™. If the half-linear ordinary differential equation

({8 o)
|a+1

4 (3.9)
o) - et BB ety o

is oscillatory, then every solution v € Dp_(R™) of (3.1) is oscillatory in R™.
Proof. The proof is quite similar to that of Theorem 3.6, and hence will be omitted. 0O

Oscillation results for the half-linear ordinary differential equation

(MY 121y + q(r)lyl* "ty =0

have been derived by numerous authors (see, e.g., Kusano and Naito [11] and Kusano,
Naito and Ogata [12]). Various oscillation results for (3.1) can be obtained by combining
THEOREMS 3.6 and 3.7 with the results of [11, 12].

The following THEOREMS 3.8 and 3.9 follow by combining THEOREMS 3.3 and 3.5
with the fact that the half-linear ordinary differential equation

(Ko?ﬁn71|y/|a71y/)/ + C«Orn71|y|a71y =0

is oscillatory for any n € N, a > 0, Ky > 0 and Cy > 0 (see Kusano, Jaros and Yoshida

[10, Example]).

THEOREM 3.8. Let 0 < a < 1. If there are positive constants Ko and Cy satisfying
K(x) K(z)|Ba(z)[**!

—= < K, Cl(x) —
l—a " () 11—«

2 OOa

then every solution v € Dp_(R™) of (3.1) is oscillatory in R™.

THEOREM 3.9. Let K(x) > « in R™. If there are positive constants Ko and Cy satisfying
(K (x))*
- <K
Kz)y—a ="

cto) - (w22 5 ¢
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then every solution v € Dp_(R™) of (3.1) is oscillatory in R™.

ExAMPLE. We consider the half-linear partial differential equation

0 ov 0 ov
e ('VA”'aJ * 903 (4'VA“'ax2)

ov ov 4
v = 16— S x40 +1 =
+ 3|V 40| (38m1+ 68x2>+<3x 0® + )|v|v 0

(3.10)

for x = (z1,22) € R?, where

ov ov
VAU - <a‘r1728x2> .
Here n = a = 2, A1(z) = 1, As(z) = 2, K(z) = 8, B(z) = (3,8), Ba(z) = (3,4),
C(x) = (4/3) x 403 + 1. Since

(K@)" 32 wrz|Bala)[oH!

- Cz) - (K(2))

W) —1
K@)—a 3’

K(z) — « ’

we can take Ky = 32/3 and Cyp = 1. It is easy to see that K(z) > «, and hence
THEOREM 3.9 implies that every solution v of (3.10) is oscillatory in R?.
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