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Abstrakt

HALUŠŤOKOVÁ, Kristína: Niektoré neštandardné DEA modely: vlastnosti a porov-

nania [Bakalárska práca], Univerzita Komenského v Bratislave, Fakulta matematiky,

fyziky a informatiky, Katedra aplikovanej matematiky a štatistiky; vedúci práce: doc.

RNDr. Margaréta Halická, CSc., Bratislava, 2016, 82 s.

Teória DEA modelovania je kľúčovou zložkou v určovaní miery efektivity jednotli-

vých útvarov vrámci celej skupiny. Doteraz sa na tento účel používali tradičné modely,

ktorých vlastnosti sú dobre popísané. V našej práci sa zaoberáme dvoma neštandard-

nými neorientovanými modelmi, ktoré sú založené na koeficientoch skracovania vstu-

pov, prípadne predlžovania výstupov. Cieľom práce je tieto nové modely dôkladne

preskúmať, popísať ich vlastnosti a následne ich porovnať so štandardnými modelmi

na praktických príkladoch. V úvodnej kapitole sme definovali základné pojmy a tra-

dičné modely z DEA. V ďalších dvoch kapitolách sme predstavili dva neštandardné

modely – radiálny neorientovaný model a neradiálny neorientovaný model. Podarilo sa

nám popísať ich vlastnosti a na základe praktických príkladov odvodiť vzťahy medzi

efektivitami modelov.

Kľúčové slová: Data Envelopment Analysis (DEA), neštandardné DEA modely,

radiálny neorientovaný model, neradiálny neorientovaný model



Abstract

HALUŠŤOKOVÁ, Kristína: Some non-standard DEA models: properties and compa-

risons [Bachelor Thesis], Comenius University in Bratislava, Faculty of Mathematics,

Physics and Informatics, Department of Applied Mathematics and Statistics; Supervi-

sor: doc. RNDr. Margaréta Halická, CSc., Bratislava, 2016, 82 p.

Theory of DEA modeling is the key component in determining the level of the

efficiency of individual units within the whole group. For this purpose were used tra-

ditional models so far, whose characteristics are described very well in literature. In

our thesis we deal with two non-standard unoriented models, which are based on the

coefficients of shortening the inputs or extension of the outputs. Main aim is to explore

these new models carefully, describe their characteristics and then compare them with

the standard models on practical examples. In the first chapter we define the basic

concepts and traditional models of DEA. In the next two chapters we introduce two

non-standard models – radial unoriented model and non-radial unoriented model. We

have been able to describe their features and derive the relations between efficiencies

of models based on practical examples.

Keywords: Data Envelopment Analysis (DEA), non-standard DEA models, radial

unoriented model, non-radial unoriented model
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ÚVOD ÚVOD

Úvod

Podľa odhadov Organizácie OSN pre výživu a poľnohospodárstvo [1] skončí ako odpad

až okolo tretiny celosvetovo vyprodukovaných potravín, čo predstavuje asi 1,3 miliárd

ton ročne. V Európe je to 95 - 115 kg na človeka. K plytvaniu však nedochádza iba

v oblasti potravín, ale aj v oblasti využívania financií. Na Slovensku fungujú projekty

ako iness (Institue of Economic and Social Studies), ktoré poukazujú na plytvanie štát-

nymi zdrojmi. Napríklad implementácia nefunkčného daňového systému KONS stála

Slovensko 29 miliónov eur, pričom už najbližší rok by sa mal tento systém opäť meniť.

Aj z týchto dôvodov sa ukazuje byť problematika plytvania a problematika efektív-

neho využívania zdrojov v časoch súčasnej konzumnej spoločnosti kľúčová. Efektívnym

využíva- ním zdrojov a meraním efektivity sa ľudia začali zaoberať aj na poli matema-

tiky, čo v sedemdesiatych rokoch minulého storočia vyústilo do vzniku matematickej

disciplíny Data Envelopment Analysis, skrátene DEA.

Ide o riešenie súboru úloh matematického programovania, pričom zo skupiny viace-

rých útvarov sa na základe vzájomného porovnávania vyberajú tie s najlepším výko-

nom.

V súčasnosti je teória DEA veľmi dobre popísaná napríklad v [2] a [4], pričom pre

našu prácu vychádzame najmä zo skrípt [5], kde sú podrobne rozobrané základné obál-

kové modely CCR a BCC a neorientovaný aditívny model.

V tejto práci sa zameriame na dva doteraz málo preskúmané modely. Prvým z nich

je radiálny neorientovaný model, ktorý je špecifický skracovaním, prípadne predlžo-

vaním všetkých zložiek vstupov a výstupov súčasne rovnakou hodnotou. Druhým je

neradiálny neorientovaný model, ktorý je taktiež typický predlžovaním a skracovaním,

avšak každého vstupu a výstupu zvlášť.

Cieľom našej práce je uchopiť vlastnosti spomínaných dvoch modelov a porovnať ich

na praktických príkladoch s vlastnosťami štandardných modelov, identifikovať možné

prípady pseudoefektivity a správne nájsť efektívne vzory.

Prácu sme rozdelili do 4 kapitol. V prvej kapitole sa zameriame na definovanie zá-

kladných pojmov v DEA modelovaní, popíšeme tri štandardné modely a vysvetlíme

hľadanie efektívnych vzorov. V druhej kapitole predstavíme radiálny neorientovaný

model, odvodíme jeho základné vlastnosti a uvedieme geometrickú interpretáciu hľa-

11



ÚVOD ÚVOD

dania λ-vzorov. Ďalej sa budeme venovať porovnaniu vlastností s už známymi modelmi

CCR a BCC, popísanými v [5] a v [2]. Na praktickom príklade demonštrujeme možné

výhody a nevýhody radiálneho neorientovaného modelu oproti riešeniu danej úlohy po-

mocou CCR a BCC. V tretej časti sa budeme venovať druhému netypickému modelu

– neradiálnemu neorientovanému modelu. Podobne ako v predchádzajúcej kapitole sa

sústredíme na jeho definíciu a základné vlastnosti. Skúmaný model budeme porovná-

vať s neorientovaným aditívnym modelom, a to na základe dvojrozmerného praktického

príkladu. V poslednej kapitole využijeme súbor reálnych dát z článku [6] a postupne

naň aplikujeme všetky spomínané modely a vyhodnotíme výsledky.

12



1 ÚVOD DO DEA MODELOVANIA

1 Úvod do DEA modelovania

V prvej kapitole zavedieme označenia, uvedieme základné pojmy a niektoré modely,

ktorých vlastnosti sú v DEA podrobne zanalyzované. Konkrétne sú to CCR, BCC a

aditívny model. Prvý odpovedá konštantným výnosom z rozsahu, druhý variabilným a

z posledného existujú verzie pre obidva typy.

Ako prvý zavedieme pojem Decision Making Unit, alebo skráteneDMUj, j = 1, . . . , n.

Toto označenie sa zaužívalo pre jednotlivé firmy, ktoré rozhodujú o veľkosti produkcie a

množstve vstupov nezávisle na ostatných vrámci našej skupiny, ktorú vyhodnocujeme.

Teraz definujeme vektor vstupov xj a výstupov yj pre j-tu DMU nasledovne:

(vstupy) xj =



x1j
...

xij
...

xmj


, (výstupy) yj =



y1j
...

yrj
...

ysj


pre j = 1, . . . , n.

Pre j-ty útvar DMU budeme teda hovoriť o i-tom vstupe xij a r-tom výstupe yrj.

Občas potrebujeme pracovať s maticami, najmä pri programovaní modelov to môže

byť užitočné, takže vytvoríme maticu vstupov X a maticu výstupov Y .

 matica

vstupov

 X =



x11 . . . x1j . . . x1n
... . . . ...

xi1 xij xin
... . . . ...

xm1 . . . xmj . . . xmn



 matica

výstupov

 Y =



y11 . . . y1j . . . y1n
... . . . ...

yr1 yrj yrn
... . . . ...

ys1 . . . ysj . . . ysn


Analogicky ako v [5] budeme žiadať splnenie nasledujúceho predpokladu o dátach

úlohy.

Predpoklad: ∀j = 1, . . . , n : xj ≥ 0m, xj 6= 0m a yj ≥ 0s, yj 6= 0s. (1.1)

13



1 ÚVOD DO DEA MODELOVANIA

Dôležitú úlohu v DEA modelovaní hrá pojem množiny produkčných možností. Pred-

pokladajme, že máme daných n DMUj, j = 1. . . . , n, kde každé DMUj premieňa

svoje vstupy xj na výstupy yj. Potom podľa skrípt [5] pod množinou MCRS, ktorá

odpovedá konštantným výnosom z rozsahu rozumieme množinu

MCRS = {(x, y) ∈ Rm+s |
n∑
j=1

λjxj ≤ x,
n∑
j=1

λjyj ≥ y, λ ≥ 0},

kde vektor λ = (λ1, . . . , λn)T .

Podobne, množinuMV RS, odpovedajúcu variabilným výnosom z rozsahu, definujeme

ako

MV RS = {(x, y) ∈ Rm+s |
n∑
j=1

λjxj ≤ x,
n∑
j=1

λjyj ≥ y,
n∑
j=1

λj = 1, λ ≥ 0}.

Vidíme, že MCRS je konvexný kužel generovaný vektormi jednotlivých DMUj rozší-

rený o dvojice, ktoré majú väčšie vstupy alebo menšie výstupy. Množina MV RS je kon-

vexnou množinou opäť generovanou vektormi jednotlivých DMUj rozšírenou o dvojice,

ktoré majú väčšie vstupy alebo menšie výstupy.

Dvojicu (x, y) ∈ M nazývame Pareto-efektívnou v M práve vtedy, keď neexistuje

taký bod (x′, y′) ∈M , že (x′, y′) 6= (x, y) a zároveň x ≥ x′ a y ≤ y′.

Je zrejmé, že efektívna dvojica musí byť z hranice M . Na hranici však môžu ležať

aj také body, ktoré nie sú efektívne. Takéto dvojice nazývame pseudoefektívne. Body

ležiace vo vnútri množiny M nazývame neefektívne.

Vo všeobecnosti máme k DEA modelom dva prístupy – multiplikatívny (MM) a

obálkový (OM). Multiplikatívny priradzuje jednotlivým druhom vstupov a výstupov

rôzne váhy a na základe toho nájde najlepšieho kandidáta. Obálkový prístup sa opiera

o predtým spomínané množinyMCRS aMV RS. V princípe vyhodnocuje, kde v množine

M sa jednotlivé DMU nachádzajú. Dôležité je tiež spomenúť, že dané prístupy sú k

sebe navzájom duálne úlohy.

Pomocou obálkového prístupu k úlohám dostaneme pre každé z DMU optimálne

premenné λ∗j , j = 1, . . . , n a pomocou nich dopočítame projekciu na hranicu množiny

M , tzv. λ∗-vzor. Môže však nastať prípad, že sa projekcia uskutoční na pseudoefektívnu

časť hranice množiny M a na nájdenie skutočného efektívneho vzoru pre daný útvar

budeme musieť použiť tzv. dvojfázovú metódu podrobnejšie popísanú v [5]. V princípe

ide o vytvorenie druhej úlohy, ktorá sa ponáša na našu pôvodnú, avšak so zmenenou

14



1 ÚVOD DO DEA MODELOVANIA

účelovou funkciou a priamo sa v nej využíva výsledok získaný z prvej úlohy. Pôjde

o maximalizačný typ úlohy a podstatou bude maximalizovať súčet všetkých rezerv,

tzv. slackov. Taktiež dostaneme premenné λ∗, no tieto nám už zaručia, že vzor bude z

efektívnej časti hranice.

Ako prvý zo štandardných modelov poznáme CCR model. Odpovedá konštantným

výnosom z rozsahu a rozlišujeme jeho dve verzie – vstupne orientovaný (Input – I) a

výstupne orientovaný (Output – O).

Obálkový vstupne orientovaný CCR-I-OM geometricky predstavuje radiálne skraco-

vanie vstupov na hranicu množiny MCRS, pričom výstupy ostávajú nezmenené. Skra-

covanie prebieha prostredníctvom koeficientu θ, ktorý v úlohe minimalizujeme. Z toho

prirodzene vyplýva, že θ sa pohybuje v intervale [0, 1] a predstavuje mieru efektivity,

pričom pre hodnotu 1 identifikujeme efektívnosť, prípadne pseudoefektívnosť.

(CCR-I-OM)o : min
θ,λ

θ

s.t.
n∑
j=1

λjxj ≤ θxo,

n∑
j=1

λjyj ≥ yo,

λ ≥ 0n.

(1.2)

Dualizáciou vznikne úloha:

(CCR-I-MM)o : max
u,v

uTyo = Uo

s.t. vTxo = 1,

uTyj − vTxj ≤ 0, j = 1, . . . , n,

v ≥ 0m, u ≥ 0s.

(1.3)

Interpretácia optimálneho riešenia duálnej úlohy u∗, v∗ s optimálnou hodnotou úče-

lovej funkcie u∗Tyo = U∗o , pričom pod pojmom kladné optimálne riešenie sa rozumie

u∗ > 0s a zároveň v∗ > 0m, bude z definície zo skrípt [5] nasledujúca:

• Ak existuje kladné optimálne riešenie úlohy (CCR-I-MM)o a platí U∗o = 1, útvar

DMUo je efektívny a U∗o = 1 je jeho efektivitou.

• Ak existuje kladné optimálne riešenie úlohy (CCR-I-MM)o a platí U∗o < 1, útvar

DMUo je neefektívny a U∗o je jeho efektivitou.
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1 ÚVOD DO DEA MODELOVANIA

• Ak neexistuje kladné optimálne riešenie úlohy (CCR-I-MM)o a platí U∗o = 1,

útvar DMUo je pseudoefektívny a U∗o = 1 je jeho pseudoefektivitou.

• Ak neexistuje kladné optimálne riešenie úlohy (CCR-I-MM)o a platí U∗o < 1,

útvar DMUo je neefektívny a U∗o je jeho pseudoefektivitou.

Obálkový výstupný model CCR-O-OM zase geometricky predstavuje radiálne predlžo-

vanie výstupov pomocou koeficientu ψ. Koeficient musí spĺňať podmienku ψ ≥ 1. Miera

efektivity bude zaznamenaná ako prevrátená hodnota ψ, 1
ψ
. Hodnoty koeficinetov θ a

1
ψ
sa pre spoločnú skupinu DMUj, j = 1, . . . , n, rovnajú.

(CCR-O-OM)o : max
ψ,λ

ψ

s.t.
n∑
j=1

λjxj ≤ xo,

n∑
j=1

λjyj ≥ ψyo,

λ ≥ 0n,

(1.4)

(CCR-O-MM)o : min
u,v

vTxo

s.t. uTyo = 1,

uTyj − vTxj ≤ 0, j = 1, . . . , n,

v ≥ 0m, u ≥ 0s.

(1.5)

Interpretácia riešení je úplne analogická ako pre model CCR-I, ibaže v tomto prípade

optimálnu hodnotu účelovej funkcie označíme v∗Txo = V ∗o a efektivitu ako 1
V ∗

o
.

Pre zopakovanie zdôrazníme, že všetky tieto modely odpovedajú konštantným vý-

nosom z rozsahu. Teraz CCR model modifikujeme na úlohu odpovedajúcu variabilným

výnosom z rozsahu pomocou pridania ohraničenia
n∑
j=1

λj = 1. Vznikne tak BCC model

pomenový podľa autorov Bankera, Charnesa a Coopera. Opäť rozlišujeme vstupne a

výstupne orientovanú verziu pre obálkový aj multiplikatívny prístup:

(BCC-I-OM)o : min
θ,λ

θ

s.t.
n∑
j=1

λjxj ≤ θxo,

n∑
j=1

λjyj ≥ yo,

n∑
j=1

λj = 1, λ ≥ 0n,

(1.6)
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1 ÚVOD DO DEA MODELOVANIA

(BCC-I-MM)o : max
u,v,z

uTyo + z

s.t. vTxo = 1,

uTyj − vTxj + z ≤ 0, j = 1, . . . , n,

v ≥ 0m, u ≥ 0s, z ∈ R,

(1.7)

(BCC-O-OM)o : max
ψ,λ

ψ

s.t.
n∑
j=1

λjxj ≤ xo,

n∑
j=1

λjyj ≥ ψyo,

n∑
j=1

λj = 1, λ ≥ 0n,

(1.8)

(BCC-O-MM)o : min
u,v,z

vTxo − z

s.t. uTyo = 1,

uTyj − vTxj + z ≤ 0, j = 1, . . . , n,

v ≥ 0m, u ≥ 0s, z ∈ R.

(1.9)

Pre tieto druhy modelov však už neplatí rovnosť medzi koeficientami θ a 1
ψ
a teda

θ 6= 1
ψ
.

Platia však obdobné definície (pseudo)efektívnosti a (pseudo)efektivity ako pri CCR,

to znamená optimálna hodnota θ pre BCC-I a prevrátená optimálna hodnota ψ, 1
ψ
, pri

BCC-O vyjadrujú mieru (pseudo)efektivity. V prípade, ak neexistuje kladné optimálne

riešenie multiplikatívnej úlohy a optimálna hodnota účelovej funkcie vyšla rovná 1,

hovoríme, že útvar je pseudoefektívny a ak vyšla menšia ako 1, útvar nazveme neefek-

tívnym. Ak existuje kladné optimálne riešenie a hodnota účelovej funkcie je rovná 1,

hovoríme, že útvar je efektívny a ak menšia ako 1, neefektívny.

Všetky doteraz spomenuté modely spadajú do kategórie orientovaných modelov, to

značí, že modifikujú len vstupy alebo len výstupy. Ako ďalšie dva spomenieme tzv.

neorientované, čo znamená, že budú súčasne upravovať vstupy aj výstupy. Konkrétne,

ako prvý je to aditívny model s konštantnými výnosmi z rozsahu. Geometricky sa sna-

žíme daný útvar posunúť o najväčšiu možnú časť vo vertikálnom alebo horizontálnom
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1 ÚVOD DO DEA MODELOVANIA

smere až na efektívnu hranicu.

(AD-OM-CRS)o : min
λ,sx,sy

−(1Tmsx + 1
T
s s

y) ⇐⇒ max
λ,sx,sy

(1Tmsx + 1
T
s s

y)

s.t.
n∑
j=1

λjxj + sx = xo,

n∑
j=1

λjyj − sy = yo,

λ ≥ 0n, sx ≥ 0m, sy ≥ 0s.

(1.10)

Podobne, ako tomu bolo pri BCC modeli, pridaním ohraničenia
n∑
j=1

λj = 1 dostaneme

model odpovedajúci variabilným výnosom z rozsahu:

(AD-OM-VRS)o : min
λ,sx,sy

−(1Tmsx + 1
T
s s

y) ⇐⇒ max
λ,sx,sy

(1Tmsx + 1
T
s s

y)

s.t.
n∑
j=1

λjxj + sx = xo,

n∑
j=1

λjyj − sy = yo,

n∑
j=1

λj = 1, λ ≥ 0n, sx ≥ 0m, sy ≥ 0s.

(1.11)

Obidve verzie aditívneho modelu sú vlastne úlohou na maximalizáciu slackov, teda

druhou fázou v dvojfázovej metóde. Preto, na rozdiel od orientovaných modelov CCR

a BCC, optimálny λ∗-vzor je vždy efektívny, to znamená, že leží na efektívnej časti

hranice množiny M .

Nevýhodou oproti orientovaným modelom je, že optimálnu hodnotu účelovej funkcie

nevieme rovno prehlásiť za mieru efektivity, keďže nadobúda ľubovoľné hodnoty z in-

tervalu (−∞, 0]. Efektivitu preto musíme dopočítavať pomocou vzorca (1.12) pomocou

priemeru parciálnych efektivít:

E = 1
m+ s

(
m∑
i=1

x̂i
xio

+
s∑
r=1

yro
ŷr

)
. (1.12)
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2 MODEL A

2 Radiálny neorientovaný model

Ako prvý z netradičných DEA modelov si predstavíme radiálny neorientovaný model,

ktorý budeme skrátene označovať Model A.

Pri tradičnom obálkovom prístupe k modelom s konštantnými výnosmi z rozsahu

(CRS) sme sa orientovali buď na výstupy alebo na vstupy. V úlohách matematického

programovania sme teda ponechali vstup rovnaký a výstup sme sa pokúšali čo najviac

predĺžiť, alebo opačne, ponechali sme výstup a snažili sa čo najviac šetriť - zmenšovať

vstupy.

Pri radiálnom neorientovanom modeli budeme skracovať vstupy a predlžovať vý-

stupy súčasne, pričom koeficient radiálneho skracovania vstupov a radiálneho predlžo-

vania výstupov vyjadríme pomocou rovnakej premennej δ ako (1 − δ), resp. (1 + δ).

Matematicky zapísaný model teda bude vyzerať:

(Model A1)o : max
δ,λ

δ

s.t.
n∑
j=1

λjxj ≤ (1− δ)xo,
n∑
j=1

λjyj ≥ (1 + δ)yo,

λ ≥ 0n.

(2.1)

Ak je útvar efektívny, nachádza sa na hranici množiny MCRS a teda nie je možné

jeho vstupy zmenšovať a výstupy zväčšovať. To značí, že optimálna hodnota δ∗ bude

rovná 0. Ukážeme, že optimálna δ∗ je z intervalu [0,1]. Kedže δ = 0 je určite prípustným

riešením úlohy a úloha je maximalizačná, tak optimálna hodnota δ∗ spĺňa vzťah δ∗ ≥ 0.

Horné ohraničenie získame z nerovnosti:
n∑
j=1

λjxj ≤ (1− δ)xo.

Súčet
n∑
j=1

λjxj nemôže byť záporný, kvôli požiadavke na nezápornosť všetkých λj a

Predpokladu (1.1). Z toho vyplýva:

(1− δ) ≥ 0 ⇐⇒ δ ≤ 1,

v každom prípustnom riešení δ a teda aj v optimálnom δ∗. Následne vyvstáva otázka

čo pri takomto modeli považovať za efektivitu? Hlavným kritériom, ktoré musí byť
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2 MODEL A

splnené je, že pri efektívnom útvare potrebujeme mať hodnotu účelovej funkcie rovnú

1. Ponúkajú sa nám dvaja kandidáti:

a) (1− δ∗) b) 1
1+δ∗ .

Prvá možnosť odpovedá analógii so vstupným CCR modelom, druhá odpovedá ana-

lógii s výstupným. Obidve možnosti spadajú do intervalu [0,1] a pri efektívnom útvare,

resp. keď δ∗ je 0, sú rovné 1. Pozrieme sa bližšie na ich vzájomný vzťah. Funkcia 1
1+δ

má kladnú druhú deriváciu, takže je konvexnou funkciou. Funkcia (1 − δ) je lineárna

a leží pod touto konvexnou funkciou, pričom bod dotyku je práve prípad efektívneho

útvaru, teda bod 0. Tým pádom platí vzťah:

1
1 + δ

≥ (1− δ) ∀δ. (2.2)

Za efektivitu zvolíme nižšiu z týcho dvoch hodnôt, aby model zbytočne nenadhod-

nocoval. Vzhľadom na všeobecne zaužívané identifikovanie efektívnosti v hodnote 1 v

skriptách [5], upravíme model A1 do vhodnejšej podoby.

Definícia 1. Pod Modelom A odpovedajúcom CRS aplikovaným na DMU = (xo, yo)

rozumieme nasledujúcu úlohu lineárneho programovania:

(Model A)o : min
δ,λ

1− δ

s.t.
n∑
j=1

λjxj ≤ (1− δ)xo,
n∑
j=1

λjyj ≥ (1 + δ)yo,

λ ≥ 0n.

(2.3)

Pod Modelom A odpovedajúcom VRS rozumieme úlohu:

(Model A s VRS)o : min
δ,λ

1− δ

s.t.
n∑
j=1

λjxj ≤ (1− δ)xo,
n∑
j=1

λjyj ≥ (1 + δ)yo,
n∑
j=1

λj = 1,

λ ≥ 0n.

(2.4)
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2 MODEL A

Definícia 2. Nech 1 − δ∗ = E∗ je optimálna hodnota účelovej funkcie v úlohe (2.3).

Potom:

• (xo, yo) je efektívne, ak hodnota efektivity E∗ = 1 a v každom optimálnom rie-

šení sú prvé dve nerovnice splnené ako rovnice,

• (xo, yo) je pseudoefektívne, ak hodnota pseudoefektivity E∗ = 1 a v niektorom

z optimálnych riešení nie je niektorá zložka vektorových nerovníc splnená ako

rovnica,

• (xo, yo) je neefektívne, ak hodnota efektivity E∗ < 1 a v každom optimálnom

riešení sú prvé dve nerovnice splnené ako rovnice,

• (xo, yo) je neefektívne, ak hodnota efektivity E∗ < 1 a v niektorom z optimálnych

riešení nie je niektorá zložka vektorových nerovníc splnená ako rovnica.

Úplne analogická definícia platí aj pre Model A s VRS (2.4).

Kedže pseudoefektívnosť je nežiadúca a vždy sa snažíme nájsť efektívny vzor, apli-

kujeme na Model A dvojfázovú metódu podrobnejšie popísanú v skriptách [5]. V prvej

fáze vyriešime klasickú úlohu (2.3) a získame optimálnu hodnotu δ∗. V druhej fáze

riešime tzv. MS (MaxSlack) úlohu, ktorá v tomto prípade vyzerá nasledovne:

(MS)o : max
λ,sx,sy

1
T sx + 1

T sy = S

s.t.
n∑
j=1

λjxj + sx = (1− δ∗)xo,
n∑
j=1

λjyj − sy = (1 + δ∗)yo,

λ ≥ 0n.

(2.5)

Takto získame optimálnu hodnotu λ∗, pričom vzory pre vstupy a výstupy dopočítané

s λ∗ už budú efektívne. Ak optimálna hodnota S∗ vyšla väčšia ako 0, išlo o pseudoefek-

tivitu. Ak S∗ = 0 išlo o efektivitu. V prípade Modelu A s VRS (2.4) bude dvojfázová

metóda prebiehať rovnako, ibaže v úlohe (MS)o pribudne ohraničenie
n∑
j=1

λj = 1.

K úlohe, ktorá je podobná tradičným úlohám v obálkovom prístupe, teraz podľa

schémy popísanej v [5] vytvoríme duálnu úlohu v tzv. multiplikatívnom tvare. Ne-

známymi budú vektory váh u a v. Ako prvé prenásobíme nerovnice (-1), aby sme pri

minimalizačnej úlohe dostali ohraničenie v súlade so schémou - to znamená ohraničenie
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zdola. Ďalej už postupujeme tradičným spôsobom. Na záver je dobré si uvedomiť, že

kedže sme k účelovej funkcii v minimalizačnej úlohe prirátali 1, rovnako tak musíme

urobiť aj pri duálnej maximalizačnej úlohe. Pre Model A tak dostaneme nasledujúce

dve úlohy:

PRIMÁRNA ÚLOHA: DUÁLNA ÚLOHA:

min
δ,λ

1− δ + 0Tλ max
v,u

1 + yTo u− xTo v

s.t. −xoδ −Xλ ≥ −xo, s.t. yTo u+ xTo v = 1,

−yoδ + Y λ ≥ yo, Y Tu−XTv ≤ 0,

δ ∈ R, λ ≥ 0n, v ≥ 0m, u ≥ 0s.

Pre Model A s VRS budú úlohy vyzerať:

PRIMÁRNA ÚLOHA: DUÁLNA ÚLOHA:

min
δ,λ

1− δ + 0Tλ max
v,u

1 + yTo u− xTo v + z

s.t. −xoδ −Xλ ≥ −xo, s.t. yTo u+ xTo v = 1,

−yoδ + Y λ ≥ yo, Y Tu−XTv + z ≤ 0,

0δ + 1
Tλ = 1, v ≥ 0m, u ≥ 0s, z ∈ R.

δ ∈ R, λ ≥ 0n,

Motiváciou pre vytvorenie duálnej úlohy bolo uľahčenie dokazovania existencie optimál-

neho riešenia, ktoré uvádzame ďalej.

Tvrdenie 1. Úloha (Model A)o a (Model A s VRS)o má optimálne riešenie pre aký-

koľvek súbor dát spĺňajúci Predpoklad (1.1).

Dôkaz. Na existenciu optimálneho riešenia musí duálna úloha spĺňať nasledujúce pod-

mienky. Prvou je ohraničenosť účelovej funkcie zhora a druhou je existencia prípustného

riešenia a teda aj prípustnosť samotnej úlohy. Najprv vytvoríme dôkaz pre úlohu

(Model A)o.

(i) OHRANIČENOSŤ funkcie 1 + yTo u− xTo v

Ako prvé je potrebné uvedomiť si, že hodnoty neznámych váh u a v musia spĺňať

podmienku yTj u − xTj v ≤ 0 pre všetky j = 1, . . . , n, to značí, že aj pre xo a yo platí

yTo u− xTo v ≤ 0. Teraz len k danej nerovnici stačí pripočítať 1 a dostaneme požadované
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ohraničenie

1 + yTo u− xTo v ≤ 1.

(ii) PRÍPUSTNOSŤ duálnej úlohy

Na dokázanie tejto vlastnosti budeme vychádzať z Predpokladu (1.1), ktorý hovorí o

tom, že žiaden z vektorov xj ani yj nemôže byť celý nulový, aj keď sa môže stať, že

niektoré zložky bude mať nulové. Z toho môžeme tvrdiť, že existuje l ∈ {1, . . . ,m} :

xlo > 0. Teraz zvolíme naše prípustné riešenie v̄ a ū nasledovne:

v̄i =


1
xlo
, ak i = l,

0 inak,
ū = 0s.

Ľahko sa ukáže, že naše nájdené riešenie spĺňa podmienku v tvare rovnosti:

yTo ū+ xTo v̄ = xlov̄i = xlo
1
xlo

= 1.

Ako posledné ešte potrebujeme splniť podmienku v tvare nerovnosti yTj u − xTj v ≤ 0

pre všetky j = 1, . . . , n. Zvolené riešenie dosadíme:

yTj ū− xTj v̄ ≤ 0 ⇐⇒ −xlj v̄i ≤ 0 ⇐⇒ xlj v̄i ≥ 0 ⇐⇒ xlj
1
xlo
≥ 0,

čo vidíme, že musí platiť, nakoľko sme vybrali xlo > 0 a pre všetky j = 1, . . . , n, platí

xj ≥ 0.

Zo silnej vety o dualite zo skrípt [3]: primárna úloha má optimálne riešenie, potom

k nej duálna úloha má optimálne riešenie a optimálne hodnoty účelových funkcií sa

rovnajú.

V duálnej úlohe k úlohe (Model A s VRS)o pribudla navyše voľná premenná z, ktorú

zvolíme ako z̄ = 0 a ďalej v dôkaze postupujeme úplne analogicky ako pri (Model A)o.

Týmto sme dokázali Tvrdenie 1.

Geometrická interpretácia modelu

Aby sme boli schopní si celú situáciu predstaviť geometricky, prípadne zobraziť ju na

obrázku, sme zvolili len prípad jedného vstupu a jedného výstupu.

Pri modeli CCR-O posúvame jednotlivé DMUj vertikálne nahor, zatiaľčo pri CCR-I

vodorovne doľava na hranicu množiny MCRS. Podobne tomu je pri BBC-O a BBC-I a

príslušnej MV RS.
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2 MODEL A

Model A však hýbe s oboma typmi premenných súčasne takýmto spôsobom:

x→ (1− δ)x,

y → (1 + δ)y.

Tento posun je platný aj pre dimenziu väčšiu ako 2. Pre lepšiu predstavu sme do

Obrázku 1 zakreslili všeobecný bod [x, y] a posúvali ho na hranicu množiny M . Je

dôležité uvedomiť si, že sklon hranice vôbec neovplyvní smer posunu. To znamená, že

podobne ako pri predošlých modeloch, medzi množinami MCRS a MV RS nie je rozdiel

z hľadiska smeru posúvania.

[x,y]

S=(-x,y)

}δ (-x,y)

α

Obr. 1: Geometrická interpretácia modelu A

Nás zaujíma najmä smerový vektor posunu ~s a uhol α.

bod posunieme: [x, y]→ [(1− δ)x, (1 + δ)y]

smer posunu: ~s = ((1− δ)x− x, (1 + δ)y − y) = (−δx, δy) = δ(−x, y)

veľkosť vektora posunu: |~s| =
√
δ2x2 + δ2y2 = δ ·

√
x2 + y2

sinα = δy

δ
√
x2+y2

= y√
x2+y2

podmienka pre uhol: α = sin−1 y√
x2+y2

24



2.1 Základné vlastnosti 2 MODEL A

Ako vidíme veľkosť uhla α, ktorý zviera vektor smeru posunu s vodorovnou osou,

nezávisí od parametra δ.

2.1 Základné vlastnosti

Invariantnosť modelu na zmenu jednotiek

Pri testovaní efektívnosti jednotlivých útvarov potrebujeme častokrát zvoliť iné jed-

notky, ktoré vyjadrujú vhodnejšie množstvo daného vstupu alebo výstupu. Napríklad

hmotnosť sa v rôznych krajinách meria inak - na Slovensku je miera hmotnosti uvá-

dzaná v kilogramoch, v USA v librách a pod. Na to aby sme v rámci modelu mohli

voľne prechádzať z jedných jednotiek do druhých, musíme preňho overiť invariantnosť

na zmenu jednotiek. Teda ukázať, že úloha matematického programovania je po zmene

jednotiek ekvivaletná pôvodnej úlohe.

Nech matice A a B sú maticami transformácií jednotiek. Nové vstupy a výstupy

prislúchajúce j-tej DMU označíme x′j a y′j a budú vyzerať nasledovne:

Axj =


α1 0

. . .

0 αm




x1j
...

xmj

 =


x′1j
...

x′mj

 = x′j, αi > 0 i = 1, . . . ,m,

Byj =


β1 0

. . .

0 βs




y1j
...

ysj

 =


y′1j
...

y′sj

 = y′j, βr > 0 r = 1, . . . , s.

Teraz sa sústredíme na porovnanie pôvodného modelu s novým transformovaným

modelom a zistíme, či majú dané úlohy matematického programovania rovnakú mno-

žinu prípustných riešení a rovnaké hodnoty účelových funkcií.

úloha pred transformáciou: úloha po transformácii:

min
δ,λ

1− δ min
δ,λ

1− δ
n∑
j=1

λjxj ≤ (1− δ)xo,
n∑
j=1

λjAxj ≤ (1− δ)Axo,
n∑
j=1

λjyj ≥ (1 + δ)yo,
n∑
j=1

λjByj ≥ (1 + δ)Byo,

λ ≥ 0, λ ≥ 0.
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2.1 Základné vlastnosti 2 MODEL A

Tvar účelovej funkcie sa zachoval, podobne aj požiadavka na dolné ohraničenie pre

λ. Vidíme, že zvyšné dve ohraničenia sú ekvivalentné. Pridaním ohraničenia na λ v

tvare
n∑
j=1

λj = 1 sa ekvivalencia úloh nepokazí a teda môžeme vyhlásiť, že Model A s

CRS aj VRS je invariantný na zmenu jednotiek.

Invariantnosť modelu na posun

Pri tvorbe modelov sme sa primárne sústredili len na kladné vstupy a výstupy, avšak

niekedy v ekonomických úlohách potrebujeme pracovať aj so zápornými dátami. Vlast-

nosť, ktorá nám umožní posunúť sa až do záporných čísiel, nazývame invariantnosť

na posun. Ku každému vstupu prirátame vektor posunu vstupov ∆x a ku každému

výstupu zase vektor ∆y, pričom niektoré zložky týchto dvoch vektorov môžu byť aj

nulové – teda zachovajú pôvodné dáta. Pre všetky j = 1, . . . , n definujeme vektory

posunu ∆x a ∆y nasledovne:


x1j
...

xmj

→


x1j
...

xmj

+


∆x1
...

∆xm

 = xj + ∆x =


x′1j
...

x′mj

 = x′j,


y1j
...

ysj

→

y1j
...

ysj

+


∆y1
...

∆ys

 = yj + ∆y =


y′1j
...

y′sj

 = y′j.

Je dôležité všimnúť si, že vektorom posunu ovplyvníme vstupy a výstupy pre všetky

DMU rovnako. Opäť si porovnáme pôvodnú úlohu s úlohou po transformácii:

pôvodná úloha: úloha po transformácii:

min
δ,λ

1− δ min
δ,λ

1− δ
n∑
j=1

λjxj ≤ (1− δ)xo,
n∑
j=1

λj(xj + ∆x) ≤ (1− δ)(xo + ∆x),
n∑
j=1

λjyj ≥ (1 + δ)yo,
n∑
j=1

λj(yj + ∆y) ≥ (1 + δ)(yo + ∆y),

λ ≥ 0, λ ≥ 0,
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2.1 Základné vlastnosti 2 MODEL A

čo je ekvivalentné:

pôvodná úloha: úloha po transformácii:

min
δ,λ

1− δ min
δ,λ

1− δ
n∑
j=1

λjxj ≤ (1− δ)xo,
n∑
j=1

λjxj + ∆x
n∑
j=1

λj ≤ (1− δ)xo + (1− δ)∆x,
n∑
j=1

λjyj ≥ (1 + δ)yo,
n∑
j=1

λjyj + ∆y
n∑
j=1

λj ≥ (1 + δ)yo + (1 + δ)∆y,

λ ≥ 0, λ ≥ 0.

Znovu nastáva prípad, keď je tvar účelovej funkcie rovnaký, podobne aj dolné ohra-

ničenie na premennú λ. Pozrieme sa bližšie na zvyšné dvojice nerovníc. Aby boli úlohy

úplne ekvivalentné, potrebujeme aby platilo:

∆x
n∑
j=1

λj = (1− δ)∆x ⇐⇒
n∑
j=1

λj = (1− δ),

∆y
n∑
j=1

λj = (1 + δ)∆y ⇐⇒
n∑
j=1

λj = (1 + δ).

Dané rovnice majú riešenie len vtedy, ak δ zvolíme nulové a súčet všetkých λ po-

ložíme rovný 1. Vidíme, že v prípade Modelu A s VRS (2.4) a aj to iba pre efektívne

útvary, sú tieto podmienky splnené. To znamená, že model pri posune zachováva roz-

delenie útvarov na efektívne a nefektívne. Hranica sa síce posunie, ale kvalitatívne sa

nezmení. Pri CRS sa však zmení aj hranica, analogicky ako pri všetkých ostatných štan-

dardných modeloch, čo je ukázané aj na príklade zo skrípt [5]. Teda môžeme prehlásiť,

že radiálny neorientovaný model nie je invariantný na posun jednotiek.

Porovnanie vlastností s CCR a BCC modelom

Model zmena I zmena O posun I posun O

CCR-I áno áno nie nie

CCR-O áno áno nie nie

Model A CRS áno áno nie nie

BCC-I áno áno nie áno

BCC-O áno áno áno nie

Model A VRS áno áno nie (+) nie (+)

Tabuľka 2.1: Prehľad invariantností modelov na zmenu alebo posun jednotiek.
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2.2 Porovnanie modelov A a CCR 2 MODEL A

Legenda: nie (+) znamená, že model nie je invariantný, avšak zachováva rozdelenie

útvarov na efektívne a neefektívne.

2.2 Porovnanie modelov A a CCR

V tejto podkapitole sa budeme venovať porovnaniu dvoch modelov - nášho Modelu A a

známejšieho modelu CCR. Obidva odpovedajú konštatným výnosom z rozsahu (CRS).

Pre jednoduchosť sme zvolili príklad s jednorozmernými vstupmi aj výstupmi. Budeme

tak mať lepšiu geometrickú predstavu o tom, čo sa deje pri riešení úloh matematického

programovania. Všetky časti programu vytvoreného v Matlabe sú však uspôsobené aj

na väčšie rozmery a prechod do nich je pomerne jednoduchý.

Príklad 1. Majme 5 útvarov s jednorozmerným vstupom a jednorozmerným výstupom.

Dáta sú uvedené v Tabuľke 2.2. Postupne na ne aplikujme modely CCR-I, CCR-O,

Model A, BCC-I, BCC-O a Model A s VRS.

A B C D E

vstupy 20 30 30 65 60

výstupy 20 50 10 60 30

Tabuľka 2.2: Vstupy a výstupy 5 DMU v Príklade 1.
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2.2 Porovnanie modelov A a CCR 2 MODEL A

Obr. 2: Dáta zakreslené spolu s hranicou množiny MCRS pre Príklad 1.

Kedže Model A je neorientovaný a mení súčasne vstupy aj výstupy, je potrebné ho

porovnávať s CCR orientovaným na vstupy a aj s druhým, orientovaným na výstupy.

Výsledky našich výpočtov zaokrúhlené na dve desatinné miesta uvádzame v Tabuľke

2.3. Nulové hodnoty ostatných λ a slackov sme kvôli rozsahu tabuľky vypustili.
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2.2 Porovnanie modelov A a CCR 2 MODEL A

Model Premenná A B C D E

CCR-I θ 0,6 1 0,2 0,55 0,3

λ2 0,4 1 0,2 1,2 0,6

efektívny vzor (vstupy) 12 30 6 36 18

efektívny vzor (výstupy) 20 50 10 60 30

CCR-O ψ 1,67 1 5 1,81 3,33

λ2 0,67 1 1 2,17 2

efektívny vzor (vstupy) 20 30 30 65 60

efektívny vzor (výstupy) 33,33 50 50 108,33 100

Model A 1− δ 0,75 1 0,33 0,71 0,46

λ2 0,5 1 0,33 1,54 0,92

efektívny vzor (vstupy) 15 30 10 46,34 27,69

efektívny vzor (výstupy) 25 50 16,67 77,23 46,15

Tabuľka 2.3: Výsledky výpočtov Model A vs. CCR v Príklade 1.

Všetky premenné uvedené v Tabuľke 2.3 sú optimálnymi riešeniami a teda správne

by pri každom z nich malo byť označenie ∗, pre jednoduchšiu podobu tabuliek to však

neuvádzame ani tu, ani v ďalších kapitolách, no stále budeme mať na mysli optimálne

riešenia.

Z predchádzajúcich poznatkov z teórie DEA modelovania vieme, že pri vstupne

orientovanom CCR modeli je efektivita daného útvaru reprezentovaná optimálnou hod-

notou θ∗ a pri výstupne orientovanom je to prevrátená hodnota k optimálnemu ψ∗, teda
1
ψ∗ . Model A sa však zaoberá obidvoma premennými súčasne, a teda za efektívny útvar

sme podľa Definície 2 vyhlásili taký, ktorého optimálna hodnota δ∗ vyšla rovná 0 a

zároveň v každom optimálnom riešení sú prvé dve nerovnice v Modeli A splnené ako

rovnice. Ako sme odvodili na začiatku tejto kapitoly, mieru efektivity zaznamenáme

ako číslo 1− δ∗.
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2.2 Porovnanie modelov A a CCR 2 MODEL A

Model Premenná A B C D E

CCR-I θ (efektivita) 0,6 1 0,2 0,55 0,3

CCR-O ψ 1,67 1 5 1,81 3,33
1
ψ

(efektivita) 0,6 1 0,2 0,55 0,3

Model A 1− δ (efektivita) 0,75 1 0,33 0,71 0,46

δ 0,25 0 0,67 0,29 0,54

1 + δ 1,25 1 1,67 1,29 1,54
1

1+δ 0,8 1 0,6 0,78 0,65

Tabuľka 2.4: Porovnanie efektivít modelov s CRS v Príklade 1.

Všimnime si, že Model A dáva vyššie hodnoty efektivít ako dávajú CCR-I, resp.

CCR-O. V nasledujúcom tvrdení dokážeme, že toto je všeobecná vlastnosť.

Tvrdenie 2. Nech δ∗ je optimálnym riešením pre (xo, yo) v Modeli A pre CRS. Nech θ∗

je optimálnym riešením v CCR-I a nech ψ∗ je optimálnym riešením v CCR-O. Potom

platí vzťah:
1
ψ∗

= θ∗ ≤ 1− δ∗ ≤ 1
1 + δ∗

. (2.6)

To znamená, že Model A pre CRS nadhodnocuje efektivitu každého útvaru v porovnaní

s CCR modelmi.

Dôkaz. Nech δ∗ a λ∗ je optimálne riešenie Modelu A, teda nutne platia vzťahy
n∑
j=1

λ∗jxj ≤

(1− δ∗)xo,
n∑
j=1

λ∗jyj ≥ (1 + δ∗)yo. Potom θ̄ a λ̄, zvolené ako:

θ̄ = 1− δ∗, λ̄ = λ∗,

je určite riešením systému:
n∑
j=1

λ̄jxj ≤ (1− δ∗)xo = θ̄xo,

n∑
j=1

λ̄jyj ≥ (1 + δ∗)yo ≥ yo.

Z toho vyplýva, že θ̄ a λ̄ je prípustné riešenie pre CCR-I. Hodnotu θ v úlohe minima-

lizujeme, takže všetky prípustné riešenia úlohy sú väčšie, nanajvýš rovné optimálnej
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2.3 Porovnanie modelov A a BCC 2 MODEL A

hodnote θ∗ a teda platí θ̄ = 1 − δ∗ ≥ θ∗ = 1
ψ∗ . Platnosť druhej časti nerovnosti nám

zabezpečí vzťah (2.2), ktorý sme odvodili na začiatku kapitoly. Týmto sme dokázali,

že oba vzťahy (2.6) platia.

Na Obrázku 3 sme zakreslili pozície útvarov a ich efektívne vzory určené CCR-I,

CCR-O a Modelom A, ktoré sme od seba farebne odlíšili.

Obr. 3: Efektívne vzory označené * na hranici množiny MCRS pre Príklad 1.

2.3 Porovnanie modelov A a BCC

Doteraz sme sa zaoberali Modelom A odpovedajúcom konštatným výnosom z rozsahu.

Prechod k variabilným výnosom z rozsahu (VRS) nám umožní priadanie nového ohra-

ničenia na premenné λ v tvare:
n∑
j=1

λj = 1, podobne ako je tomu pri prechode z CCR ku

BCC modelom alebo aditívneho modelu k aditívnemu modelu s VRS. Naše výsledné

modely, ktoré porovnávame budú vyzerať nasledovne:
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2.3 Porovnanie modelov A a BCC 2 MODEL A

Model BCC-I Model BCC-O Model A s VRS

min
θ,λ

θ max
ψ,λ

ψ min
δ,λ

1− δ
n∑
j−1

λjxj ≤ θxo,
n∑
j=1

λjxj ≤ xo,
n∑
j=1

λjxj ≤ (1− δ)xo,
n∑
j=1

λjyj ≥ yo,
n∑
j=1

λjyj ≥ ψyo,
n∑
j=1

λjyj ≥ (1 + δ)yo,
n∑
j=1

λj = 1,
n∑
j=1

λj = 1,
n∑
j=1

λj = 1,

λ ≥ 0, λ ≥ 0, λ ≥ 0.

Praktický príklad na porovnanie sme zvolili rovnaký ako v predošlej podkapitole,

dáta použijeme z Tabuľky 2.2. Dáta sme vybrali tak, aby nám v prípade BCC modelov

vyšli nejaké pseudoefektívne riešenia. Je to z dôvodu, aby sme zistili, ako si s nimi

Model A poradí a ako ich vyhodnotí on. Na Obrázku 4 je zakreslená nová hranica

množiny.

Obr. 4: Dáta zakreslené spolu s hranicou množiny MV RS pre Príklad 1.
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V Tabuľke 2.5 uvádzame výsledky našich výpočtov. Ako si môžeme všimnúť, za efek-

tívne označili všetky modely rovnaké útvary. Značkou P sú označené pseudoefektivity.

Model Premenná A B C D E

BCC-I θ 1 1 0, 67P 1 0,39

λ1 1 0 1 0 0,67

λ2 0 1 0 0 0,33

λ4 0 0 0 1 0

sy 0 0 10 0 0

efektívny vzor (vstupy) 20 30 20 65 23,33

efektívny vzor (výstupy) 20 50 20 60 30

BCC-O ψ 1 1 5 1 1,95

λ1 1 0 0 0 0

λ2 0 1 1 0 0,14

λ4 0 0 0 1 0,86

efektívny vzor (vstupy) 20 30 30 65 60

efektívny vzor (výstupy) 20 50 50 60 58,57

Model A s VRS 1− δ 1 1 0, 67P 1 0,48

λ1 1 0 1 0 0,14

λ2 0 1 0 0 0,86

λ4 0 0 0 1 0

sy 0 0 6,67 0 0

efektívny vzor (vstupy) 20 30 20 65 28,57

efektívny vzor (výstupy) 20 50 20 60 45,71

Tabuľka 2.5: Výsledky výpočtov Model A vs. BCC v Príklade 1.

34



2.3 Porovnanie modelov A a BCC 2 MODEL A

V ďalšej Tabuľke 2.6 sme ešte zhrnuli hodnoty efektivít a ďalších premenných našich

troch modelov.

Model Premenná A B C D E

BCC-I θ (efektivita) 1 1 0, 67P 1 0,39

BCC-O ψ 1 1 5 1 1,95
1
ψ

(efektivita) 1 1 0,2 1 0,51

Model A s VRS 1− δ (efektivita) 1 1 0, 67P 1 0,48

δ 0 0 0,33 0 0,52

1 + δ 1 1 1,33 1 1,52
1

1+δ 1 1 0,75 1 0,66

Tabuľka 2.6: Porovnanie efektivít modelov s VRS v Príklade 1.

Keďže pri tomto type výnosov z rozsahu neplatí, že optimálna hodnota θ∗ sa rovná

hodnote 1
ψ∗ , tak aj vzťah medzi efektivitou Modelu A s VRS a efektivitami BCC

modelov bude komplikovanejší v porovnaní s Modelom A pre CRS a CCR. Ukazujú

to aj výsledky z Tabuľky 2.6. Vidíme, že vzťah 1
ψ∗ ≤ 1 − δ∗ z Tvrdenia 2 už nemusí

platiť pre každé DMU . Konkrétne v našom Príklade 1 pre DMUC platí a pre DMUE

nie. Všimnime si však, že stále platí θ∗ ≤ 1− δ∗ a ψ∗ ≥ 1 + δ∗. V nasledujúcom tvrdení

sformulujeme a dokážeme, že posledné dva vzťahy platia vo všeobecnosti.

Tvrdenie 3. Nech δ∗ je optimálnym riešením pre (xo, yo) v Modeli A pre VRS. Nech θ∗

je optimálnym riešením v BCC-I a nech ψ∗ je optimálnym riešením v BCC-O. Potom

platia vzťahy:

θ∗ ≤ 1− δ∗ a 1
ψ∗
≤ 1

1 + δ∗
. (2.7)

Dôkaz. Dôkaz prvého vzťahu v (2.7) je rovnaký ako v Tvrdení 2. Pri dôkaze druhej

nerovnosti budeme postupovať podobne ako v predošlej podkapitole. Nech hodnoty δ∗

a λ∗ sú optimálnym riešením Modelu A. Zvolíme premenné ψ̄ = 1 + δ∗, λ̄ = λ∗. Tým
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2.3 Porovnanie modelov A a BCC 2 MODEL A

pádom budú splnené nasledujúce podmienky:
n∑
j=1

λ̄jxj =
n∑
j=1

λ∗jxj ≤ (1− δ∗)xo ≤ xo,

n∑
j=1

λ̄jxj =
n∑
j=1

λ∗jxj ≥ (1 + δ∗)yo = ψ̄yo,

n∑
j=1

λ̄j =
n∑
j=1

λ∗j = 1.

Ukázali sme, že ψ̄ = 1 + δ∗ je prípustným riešením BCC-O modelu. Prípustné riešenie

v maximalizačnej úlohe bude menšie, nanajvýš rovné ako optimálne riešenie a teda

dostávame platnosť vzťahov (2.7).

Z uvedených vzťahov (2.7) pre optimálne hodnoty vyplýva, že efektívny vzor v prí-

pade Modelu A sa nachádza medzi efektívnym vzorom pri vstupnom BCC a efektívnym

vzorom pri výstupnom modeli BCC, prípadne sa môžu zhodovať. Táto situácia je vidieť

aj na Obrázku 5.

V prípade Modelu A s VRS aj modelu BCC-I dostaneme projekciu na pseudoefek-

tívnu časť hranice na Obrázku 5 označenú ako C ′. Až po dopočítaní druhej fázy sa

dostaneme do skutočného efektívneho vzoru – bodu A. Všimnime si, že v prípade

Modelu A je pseudoefektívny vzor bližšie k efektívnemu ako v prípade BCC-I. Je to

z dôvodu posunu v smere doľava nahor a nielen doľava, teda úpravou aj vstupov aj

výstupov oproti len skráteniu vstupov. Z tohto hľadiska je Model A výhodnejší.
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Obr. 5: Efektívne vzory označené * na hranici množiny MV RS pre Príklad 1.
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3 MODEL B

3 Neradiálny neorientovaný model

Ako druhý netradičný model vytvoríme neradiálny neorientovaný model a pracovne ho

nazveme Model B. Podobne ako Model A sa sústreďuje na vstupy aj výstupy súčasne.

Rozdiel medzi nimi spočíva v koeficientoch. Pri Modeli A sme vstupy skracovali pomo-

cou čísla (1− δ) a výstupy predlžovali pomocou (1+ δ). Pri Modeli B budeme používať

rôzny koeficient pre každý typ vstupu a výstupu zvlášť. Preto vzniklo pomenovanie

neradiálny. Premenné xo a yo prenásobené koeficientami budú vyzerať nasledovne:

(1− σ1)x1o
...

(1− σi)xio
...

(1− σm)xmo


,



(1 + γ1)y1o
...

(1 + γr)yro
...

(1 + γs)yso


.

Kedže uvažujeme len posun v smere zmenšenia vstupov a zväčšenia výstupov, po-

žadujeme aby koeficienty σi, i = 1, . . . ,m a γr, r = 1, . . . , s, boli nezáporné.

Aby sme dosiahli tohto javu, vytvoríme maticu, kde na diagonále budeme mať ko-

eficienty a násobíme zľava. Model tak bude vyzerať:

(Model B1)o : min
σ,γ,λ

−( 1
m

m∑
i=1

σi + 1
s

s∑
r=1

γr)

s.t.
n∑
j=1

λjxj ≤


1− σ1 . . . 0

... . . . ...

0 . . . 1− σm

xo,

n∑
j=1

λjyj ≥


1 + γ1 . . . 0

... . . . ...

0 . . . 1 + γr

 yo,
σ ≥ 0m, γ ≥ 0s, λ ≥ 0n,

(3.1)

kde σ = (σ1, . . . , σm)T a γ = (γ1, . . . , γs)T . K modelu B1 vzápätí vytvoríme duálnu

úlohu a podľa nej ešte doupravíme niektoré ohraničenia a podmienky.
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3 MODEL B

PRIMÁRNA ÚLOHA: DUÁLNA ÚLOHA:

min
σ,γ,λ

−( 1
m

m∑
i=1

σi + 1
s

s∑
r=1

γr) max
v,u

yTo u− xTo v,

s.t. −diag(xo)σ −Xλ ≥ −xo, s.t. −diag(xo)v ≤ − 1
m
· 1m,

−diag(yo)γ + Y λ ≥ yo, −diag(yo)u ≤ −1
s
· 1s,

σ ≥ 0m, γ ≥ 0s, λ ≥ 0n, Y Tu−XTv ≤ 0n,

v ≥ 0m, u ≥ 0s.

V ďalšom kroku odstránime požiadavku na kladnosť váh u a v. Dôvod je jednoduchý

– po úpravách dostaneme požiadavku na dolné ohraničenie váh u aj v a je celkom

zbytočné ohraničovať aj nulou:

−diag(xo)v ≤ −
1
m
· 1m ⇐⇒ v ≥ 1

m
(diag(xo))−1 · 1m,

−diag(yo)u ≤ −
1
s
· 1s ⇐⇒ u ≥ 1

s
(diag(yo))−1 · 1s.

V primárnej úlohe sa to prejaví v podobe zmeny ohraničení z nerovností na rovnosti.

PRIMÁRNA ÚLOHA: DUÁLNA ÚLOHA:

min
σ,γ,λ

−( 1
m

m∑
i=1

σi + 1
s

s∑
r=1

γr) max
v,u

yTo u− xTo v

s.t. −diag(xo)σ −Xλ = −xo, s.t. −diag(xo)v ≤ − 1
m
· 1m,

−diag(yo)γ + Y λ = yo, −diag(yo)u ≤ −1
s
· 1s,

σ ≥ 0m, γ ≥ 0s, λ ≥ 0n, Y Tu−XTv ≤ 0n,

v, u ∈ Rm+s.

Definícia 3. Pod Modelom B odpovedajúcom CRS aplikovaným na DMU = (xo, yo)

rozumieme nasledujúcu úlohu LP:

(Model B)o : min
σ,γ,λ

−( 1
m

m∑
i=1

σi + 1
s

s∑
r=1

γr)

s.t. diag(xo)σ +
n∑
j=1

λjxj = xo,

−diag(yo)γ +
n∑
j=1

λjyj = yo,

σ ≥ 0m, γ ≥ 0s, λ ≥ 0n.

(3.2)
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3 MODEL B

Pod Modelom B odpovedajúcom VRS rozumieme úlohu:

(Model B s VRS)o : min
σ,γ,λ

−( 1
m

m∑
i=1

σi + 1
s

s∑
r=1

γr)

s.t. diag(xo)σ +
n∑
j=1

λjxj = xo,

−diag(yo)γ +
n∑
j=1

λjyj = yo,

n∑
j=1

λj = 1, σ ≥ 0m, γ ≥ 0s, λ ≥ 0n.

(3.3)

V tomto prípade máme obe premenné σ a γ nezáporné, to znamená, že optimálna

hodnota účelovej funkcie −( 1
m

m∑
i=1

σi+ 1
s

s∑
r=1

γr) spadá do intervalu (−∞, 0] podobne ako

pri aditívnom modeli. Nevieme sa obmedziť len na interval [0, 1] ani po pripočítaní 1

k hodnote účelovej funkcie, čo potvrdzujú aj príklady ďalej v kapitole. Preto optimálnu

hodnotu účelovej funkcie nemôžeme interpretovať ako efektivitu, i keď môže poskytovať

určitú mieru neefektivity – čím je hodnota menšia, tým je útvar menej efektívny. Ak

chceme mať hodnotu interpretovateľnú ako efektivitu, môžeme ju napríklad dopočítať

pomocou vzorca (1.12) rovnako ako pri aditívnom modeli.

Dalo by sa povedať, že Model B je istou modifikáciou klasického aditívneho modelu,

prípadne, že sa ponáša na aditívny model s váhami bližšie popísaný v skriptách [5]. Vý-

sledný λ∗-vzor bude teda rovno efektívnym vzorom. Ak je optimálna hodnota účelovej

funkcie rovná 0, tak je útvar efektívny, ak je < 0, tak je útvar neefektívny.

Aditívny model: Model B:

min
λ,sx,sy

−(1Tmsx + 1
T
s s

y) min
σ,γ,λ
−( 1

m

m∑
i=1

σi + 1
s

s∑
r=1

γr)
n∑
j=1

λjxj + sx = xo,
n∑
j=1

λjxj + diag(xo)σ = xo,

n∑
j=1

λjyj − sy = yo,
n∑
j=1

λjyj − diag(yo)γ = yo,

sx ≥ 0m, sy ≥ 0s, λ ≥ 0n, σ ≥ 0m, γ ≥ 0s, λ ≥ 0n.

Vidíme, že v Modeli B posúvame (xo, yo) v smere (−diag(xo)σ, diag(yo)γ), to zna-

mená v smere zmenšovania vstupov a zväčšovania výstupov. Rovnakým spôsobom

sme posúvali pri aditívnom modeli, ibaže sme mali vektor posunu vyjadrený pomocou

(−sx, sy). To značí, že množina prípustných posunov je rovnaká pre obidva modely.

Rozdiel však bude v účelovej funkcii. Zatiaľ čo v aditívnom modeli sa posun vyko-

nával tak, aby sa maximalizovala hodnota súčtu zložiek vektorov sx a sy, v Modeli B
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3 MODEL B

sa maximalizuje vážený normovaný súčet zložiek vektorov posunu. Ak totiž označíme

diag(xo)σ = sx a diag(yo)γ = sy, tak účelovú funkciu v Modeli B vieme prepísať do

tvaru −( 1
m

m∑
i=1

sx
i

xio
+ 1

s

s∑
r=1

sy
r

yro
).

Aby sme vedeli dokázať nasledujúce Tvrdenie 4, vytvoríme duálnu úlohu aj k

Modelu B s VRS:

PRIMÁRNA ÚLOHA: DUÁLNA ÚLOHA:

min
σ,γ,λ

−( 1
m

m∑
i=1

σi + 1
s

s∑
r=1

γr) max
v,u,z

yTo u− xTo v + z

s.t. −diag(xo)σ −Xλ = −xo, s.t. −diag(xo)v ≤ − 1
m
· 1m,

−diag(yo)γ + Y λ = yo, −diag(yo)u ≤ −1
s
· 1s,

0σ + 0γ + 1
Tλ = 1, Y Tu−XTv + z ≤ 0n,

σ ≥ 0m, γ ≥ 0s, λ ≥ 0n, v, u, z ∈ Rm+s+1.

Tvrdenie 4. Úloha (Model B)o a (Model B s VRS)o má optimálne riešenie pre aký-

koľvek súbor dát spĺňajúci Predpoklad (1.1).

Dôkaz. Podobne ako v predchádzajúcej kapitole, aj tu odvodíme existenciu optimál-

neho riešenia z duálnej úlohy. Opäť ukážeme dve vlastnosti:

(i) OHRANIČENOSŤ funkcie 1 + yTo u− xTo v

Ohraničenosť účelovej funkcie zhora vyplýva z podmienky yTj u − xTj v ≤ 0 pre všetky

j = 1, . . . , n.

(ii) PRÍPUSTNOSŤ duálnej úlohy

V tejto časti hľadáme kandidátov na váhy v a u spĺňajúce podmienky v tvare:

v ≥ 1
m

(diag(xo))−1 · 1,

u ≥ 1
s

(diag(yo))−1 · 1,

yTj u− xTj v ≤ 0 j = 1, . . . , n.

Pre jednotlivé zložky vektorov budú prvé dve podmienky vyzerať vi ≥ 1
m
· 1
xio
, ur ≥ 1

s
· 1
yro

.

Položme ūr rovné 1
s·yro

pre všetky r = 1, . . . , s a v̄i rovné 1
m·xio

pr všetky i = 1, . . . ,m.

Na to aby bola splnená nerovnosť yTj u − εxTj v ≤ 0 j = 1, . . . , n, potrebujeme nájsť

kandidáta na ε, ktorý spĺňa podmienku ε ≥ yT
j ū

xT
j v̄

pre všetky j = 1, . . . , n. Zvolíme ho
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3.1 Základné vlastnosti 3 MODEL B

teda ako:

ε̄ = max
j

yTj ū

xTj v̄
.

Takýmto spôsobom sme ukázali, že úloha má prípustné riešenie a teda, že duálna

úloha má optimálne riešenie. Zo silnej vety o dualite vyplýva, že aj primárna úloha má

optimálne riešenie.

V duálnej úlohe k úlohe (Model B s VRS)o opäť pribudla premenná z, ktorú zvolíme

ako z̄ = 0 a ďalej v dôkaze postupujeme analogicky ako pri úlohe (Model B)o. Týmto

sme dokázali existenciu optimálneho riešenia pre obe úlohy.

3.1 Základné vlastnosti

Invariantnosť modelu na zmenu jednotiek

Definujeme matice transformácií jednotiek A a B. Rovnako ako v predošlej kapitole

nové vstupy a výstupy prislúchajúce j-tej DMU označíme x′j a y′j a budú vyzerať

nasledovne:

Axj =


α1 0

. . .

0 αm




x1j
...

xmj

 =


x′1j
...

x′mj

 = x′j, αi > 0 i = 1, . . . ,m,

Byj =


β1 0

. . .

0 βs




y1j
...

ysj

 =


y′1j
...

y′sj

 = y′j, βr > 0 r = 1, . . . , s.

Nové premenné dosadíme do Modelu B a porovnávame s pôvodnou úlohou:

úloha pred transformáciou: úloha po transformácii:

min
σ,γ,λ
−( 1

m

m∑
i=1

σi + 1
s

s∑
r=1

γr) min
σ,γ,λ
−( 1

m

m∑
i=1

σi + 1
s

s∑
r=1

γr)

diag(xo)σ +
n∑
j=1

λjxj = xo, A · diag(xo)σ +
n∑
j=1

λjAxj = Axo,

−diag(yo)γ +
n∑
j=1

λjyj = yo, −B · diag(yo)γ +
n∑
j=1

λjByj = Byo,

σ ≥ 0m, γ ≥ 0s, λ ≥ 0n, σ ≥ 0m, γ ≥ 0s, λ ≥ 0n.

Vidíme, že účelová funkcia a požiadavky na nezápornosť σ, γ, λ sa zachovajú a obi-

dve ohraničenia sú ekvivalentné. Pri Modeli B odpovedajúcom variabiným výnosom z
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3.1 Základné vlastnosti 3 MODEL B

rozsahu, by nám k ohraničeniam pribudla ešte požiadavka
n∑
j=1

λj = 1, ktorá by bola

rovnaká pre úlohu s pôvodnými aj zmenenými jednotkami. Môžeme teda vyhlásiť, že

Model B s CRS aj s VRS je invariantný na zmenu jednotiek. Je to výhodou oproti

aditívnemu modelu.

Invariantnosť modelu na posun

Nové premenné x′j a y′j, j = 1, . . . , n, dostaneme pripočítaním vektorov posunu ∆x a

∆y:

xj → xj + ∆x = x′j,

yj → yj + ∆y = y′j.

úloha pred transformáciou: úloha po transformácii:

min
σ,γ,λ
−( 1

m

m∑
i=1

σi + 1
s

s∑
r=1

γr) min
σ,γ,λ
−( 1

m

m∑
i=1

σi + 1
s

s∑
r=1

γr)

diag(xo)σ +
n∑
j=1

λjxj = xo, (diag(xo) + diag(∆x))σ +
n∑
j=1

λj(xj + ∆x) = xo + ∆x,

−diag(yo)γ +
n∑
j=1

λjyj = yo, −(diag(yo) + diag(∆y))γ +
n∑
j=1

λj(yj + ∆y) = yo + ∆y,

σ ≥ 0m, γ ≥ 0s, λ ≥ 0n, σ ≥ 0m, γ ≥ 0s, λ ≥ 0n.

Na ekvivalenciu oboch úloh by sme potrebovali platnosť rovníc:

diag(∆x)σ +
n∑
j=1

λj∆x = ∆x ⇐⇒ ∆xiσi + ∆xi
n∑
j=1

λj = ∆xi, i = 1, . . . ,m,

−diag(∆y)γ +
n∑
j=1

λj∆y = ∆y ⇐⇒ −∆yrγr + ∆yr
n∑
j=1

λj = ∆yr, r = 1, . . . , s,

čo by znamenalo:
σi +

n∑
j=1

λj = 1, i = 1, . . . ,m,

−γr +
n∑
j=1

λj = 1, r = 1, . . . , s.
(3.4)

Žiadne takéto ohraničenia v Modeli B nemáme, to znamená, že Model B nie je

invariantný na posun jednotiek. Ak však vezmeme do úvahy variabilné výnosy z

rozsahu, to značí pridáme ohraničenie
n∑
j=1

λj = 1, tak v prípade efektívnych útvarov

budú koeficienty σi, i = 1, . . . ,m a γr, r = 1, . . . , s, rovné 0 a budú splnené rovnice

(3.4). Model B s VRS teda zachováva rozdelenie útvarov na efektívne a neefektívne.
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3.2 Porovnanie modelov B a AD s CRS 3 MODEL B

Porovnanie vlastností s aditívnym modelom

Model zmena I zmena O posun I posun O

Aditívny model s CRS nie (+) nie (+) nie nie

Model B s CRS áno áno nie nie

Aditívny model s VRS nie (+) nie (+) áno áno

Model B s VRS áno áno nie (+) nie (+)

Tabuľka 3.1: Prehľad invariantností modelov na zmenu alebo posun jednotiek.

Legenda: nie (+) znamená, že model nie je invariantný, avšak zachováva rozdelenie

útvarov na efektívne a neefektívne.

3.2 Porovnanie modelov B a AD s CRS

V tejto podkapitole sa venujeme porovnávaniu dvoch neorientovaných modelov – Mo-

delu B a aditívnemu modelu na konkrétnom príklade. Oba odpovedajú konštantným

výnosom z rozsahu.

Aditívny model: Model B:

min
λ,sx,sy

−(1Tmsx + 1
T
s s

y) min
σ,γ,λ
−( 1

m

m∑
i=1

σi + 1
s

s∑
r=1

γr)
n∑
j=1

λjxj + sx = xo,
n∑
j=1

λjxj + diag(xo)σ = xo,

n∑
j=1

λjyj − sy = yo,
n∑
j=1

λjyj − diag(yo)γ = yo,

sx ≥ 0m, sy ≥ 0s, λ ≥ 0n, σ ≥ 0m, γ ≥ 0s, λ ≥ 0n.

Na porovnanie sme v tejto kapitole vybrali trochu odlišný príklad ako v predošlej.

Je to z dôvodu, že s týmito dátami vychádzajú iné efektívne vzory pre Model B ako

pre aditívny model.

Príklad 2. Majme 5 útvarov s jednorozmerným vstupom a jednorozmerným výstupom.

Dáta sú uvedené v Tabuľke 3.2. Postupne na ne aplikujme aditívny model, Model B,

aditívny model s VRS a Model B s VRS.
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A B C D E

vstupy 20 30 45 65 70

výstupy 20 50 30 60 15

Tabuľka 3.2: Vstupy a výstupy 5 DMU v Príklade 2.

Výsledky výpočtov sme zaznamenali do Tabuľky 3.3.

Model Premenná A B C D E

Aditívny model −(1Tmsx + 1
T
s s

y) -13,33 0 -45 -48,33 -101,67

λ2 0,67 1 1,5 2,17 2,33

sx 0 0 0 0 0

sy 13,33 0 45 48,33 101,67

efektívny vzor (vstupy) 20 30 45 65 70

efektívny vzor (výstupy) 33,33 50 75 108,33 116,67

efektivita 0,8 1 0,7 0,78 0,56

Model B −( 1
m

m∑
i=1

σi + 1
s

s∑
r=1

γr) -0,67 0 -1,5 -0,81 -6,78

λ2 0,67 1 1,5 2,17 2,33

σ1 0 0 0 0 0

γ1 0,67 0 1,5 0,81 6,78

efektívny vzor (vstupy) 20 30 45 65 70

efektívny vzor (výstupy) 33,33 50 75 108,33 116,67

efektivita 0,8 1 0,7 0,78 0,56

Tabuľka 3.3: Výsledky výpočtov Model B vs. aditívny model s CRS v Príklade 2.

Efektivitu pri aditívnom modeli aj pri Modeli B sme dopočítali podľa vzorca (1.12)

pomocou priemeru parciálnych efektivít. Keďže pri oboch vyšli rovnaké efektívne vzory,

ktoré sa používajú na dopočítanie efektivity, aj hodnoty efektivít vyšli rovnaké.

Na Obrázku 6 sme vyznačili efektívne vzory. V tomto špeciálnom dvojrozmernom

prípade vyšli identické ako tie, čo navrhol aditívny model.
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3.3 Porovnanie modelov B a AD s VRS 3 MODEL B

Obr. 6: Efektívne vzory označené * na hranici množiny MCRS pre Príklad 2.

3.3 Porovnanie modelov B a AD s VRS

V poslednej podkapitole sa zameriame na rovnaké modely ako v minulej, ibaže ten-

toraz pre prípad variabilných výnosov z rozsahu, to značí že k ohraničeniam pribudla

požiadavka na λ:

Aditívny model s VRS: Model B s VRS:

min
λ,sx,sy

−(1Tmsx + 1
T
s s

y) min
σ,γ,λ
−( 1

m

m∑
i=1

σi + 1
s

s∑
r=1

γr)
n∑
j=1

λjxj + sx = xo,
n∑
j=1

λjxj + diag(xo)σ = xo,

n∑
j=1

λjyj − sy = yo,
n∑
j=1

λjyj − diag(yo)γ = yo,

n∑
j=1

λj = 1,
n∑
j=1

λj = 1,

sx ≥ 0m, sy ≥ 0s, λ ≥ 0n, σ ≥ 0m, γ ≥ 0s, λ ≥ 0n.

46



3.3 Porovnanie modelov B a AD s VRS 3 MODEL B

Porovnanie budeme opäť robiť na dvojrozmernom príklade s dátami z Tabuľky 3.2.

V Tabuľke 3.4 uvádzame výsledky výpočtov, pričom nulové λ sme neuviedli, kvôli

rozmerom tabuľky.

Model Premenná A B C D E

AD model s VRS −(1Tmsx + 1
T
s s

y) 0 0 -35 0 -75

λ1 1 0 0 0 0

λ2 0 1 1 0 1

λ4 0 0 0 1 0

sx 0 0 15 0 40

sy 0 0 20 0 35

efektívny vzor (vstupy) 20 30 30 65 30

efektívny vzor (výstupy) 20 50 50 60 50

efektivita 1 1 0,63 1 0,36

Model B s VRS −( 1
m

m∑
i=1

σi + 1
s

s∑
r=1

γr) 0 0 -1 0 -3,07

λ1 1 0 0 0 0

λ2 0 1 1 0 0

λ4 0 0 0 1 1

σ1 0 0 0,33 0 0,07

γ1 0 0 0,67 0 3

efektívny vzor (vstupy) 20 30 30 65 65

efektívny vzor (výstupy) 20 50 50 60 60

efektivita 1 1 0,63 1 0,59

Tabuľka 3.4: Výsledky výpočtov Model B vs. aditívny model s VRS v Príklade 2.

Hodnoty efektivít sme pri aditívnom modeli aj pri Modeli B opäť dorátali pomocou

vzorca (1.12). Na Obrázku 7 sme graficky znázornili nájdené efektívne vzory. Tentoraz

sa už všetky nezhodujú ako v prípade CRS, takže to skutočne nie je pravidlom.
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Obr. 7: Efektívne vzory označené * na hranici množiny MV RS pre Príklad 2.

Rozoberieme si hlbšie tento dvojrozmerný prípad a hľadanie efektívnych vzorov.

Kedže máme len jeden vstup a jeden výstup, modely vieme upraviť do tvaru:

Aditívny model s VRS: Model B s VRS:

min
λ,sx,sy

−(sx + sy) ⇐⇒ max
λ,sx,sy

(sx + sy) min
σ,γ,λ
−(σ + γ) ⇐⇒ max

σ,γ,λ
(σ + γ)

5∑
j=1

λjxj + sx = xo,
5∑
j=1

λjxj + xoσ = xo,

5∑
j=1

λjyj − sy = yo,
5∑
j=1

λjyj − yoγ = yo,

5∑
j=1

λj = 1,
5∑
j=1

λj = 1,

sx ≥ 0, sy ≥ 0, λ ≥ 05, σ ≥ 0, γ ≥ 0, λ ≥ 05.

Označme teraz xoσ = sx a yoγ = sy. Dostávame:
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3.3 Porovnanie modelov B a AD s VRS 3 MODEL B

Model B s VRS:

min
σ,γ,λ
−(σ + γ) ⇐⇒ max

σ,γ,λ
(σ + γ) ⇐⇒ max

sx,sy

sx

xo
+ sy

yo

5∑
j=1

λjxj + sx = xo,

5∑
j=1

λjyj − sy = yo,

5∑
j=1

λj = 1,

σ ≥ 0, γ ≥ 0, λ ≥ 05.

Pre oba modely mnohouholník E’ABDE”E tvorí množinu prípustných bodov, do

ktorých môže byť bod E posunutý pomocou vektorov sx a sy. Na Obrázku 8 sme

ju vykreslili zelenou. Na tejto množine smerov pri aditívnom modeli maximalizujeme

(sx + sy) a pri Modeli B s VRS maximalizujeme výraz ( sx

70 + sy

15).

Obr. 8: Rôzne efektívne vzory pre Príklad 2.
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4 JAPONSKÉ BANKY

4 Japonské banky

Ako praktický viacrozmerný príklad sme si vybrali porovnanie jednotlivých japonských

bánk. Zozbierané dáta sú reálne dáta z roku 1999 z článku [6]. Budeme pracovať s tromi

vstupmi – celkovým kapitálom banky, počtom pobočiek a počtom zamestnancov. Ako

dva výstupy nám bude slúžiť celkový zisk a vklady. Údaje, s ktorými ďalej pracujeme,

sú uvedené v Tabuľke 4.1.

Názov banky Kapitál Pobočky Zamestnanci Zisk Vklady

1 Daiichikangyou 859 371 15 788 218 938 28 910

2 Sakura 1 043 436 14 930 159 932 29 804

3 Fuji 1 040 327 13 567 223 340 27 405

4 Tokyo Mitsubishi 786 374 17 412 218 989 39 653

5 Asahi 605 369 12 148 88 091 20 146

6 Sanwa 843 338 13 020 175 483 28 254

7 Sumitomo 753 353 14 394 176 477 27 388

8 Daiwa 465 193 7 315 37 611 9 998

9 Toukai 723 281 10 750 118 963 18 546

10 Hokkaido 71 135 2 584 12 765 3 286

11 Gunma 49 173 3 714 20 308 4 753

12 Ashikaga 132 189 4 073 17 666 4 986

13 Chiba 107 163 4 569 29 830 6 610

14 Yokohama 185 186 5 323 51154 8 648

15 Hokuriku 121 191 3 976 10194 5 289

16 Shizuoka 91 189 4 509 42982 6 578

17 Kyoto 27 115 2 862 8 633 3 749

18 Hiroshima 52 222 3 832 7 606 4 917

19 Hukuoka 59 177 4 261 9 733 5 585

20 Nishinihon 51 194 3 492 5 765 3 763

Tabuľka 4.1: Údaje o japonských bankách.
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4.1 Model A vs. CCR 4 JAPONSKÉ BANKY

4.1 Model A vs. CCR

V prvej podkapitole sme na dáta aplikovali modely odpovedajúce konštantným výno-

som z rozsahu – dva CCR modely a Model A. Všetky tri vyhodnotili ako efektívne

banky Daiichikangyou (1), Fuji (3), Tokyo Mitsubishi (4), Shizuoka (16) a Kyoto (17).

V nasledujúcej Tabuľke 4.2 uvádzame hodnoty týchto efektivít, pričom veľkým P sú

označené pseudoefektivity. Všimnime si, že Model A opäť vracia vyššie optimálne hod-

noty.

CCR-I CCR-O Model A Model A

θ 1
ψ 1− δ 1

1+δ

1 1 1 1 1

2 0, 877P 0, 877P 0, 934P 0,938

3 1 1 1 1

4 1 1 1 1

5 0, 728P 0, 728P 0, 843P 0,864

6 0, 985P 0, 985P 0, 992P 0,992

7 0, 908P 0, 908P 0, 952P 0,954

8 0, 600P 0, 600P 0, 750P 0,800

9 0, 790P 0, 790P 0, 883P 0,895

10 0, 707P 0, 707P 0, 828P 0,853

11 0, 998P 0, 998P 0, 999P 0,999

12 0, 634P 0, 634P 0, 776P 0,817

13 0, 871P 0, 871P 0, 931P 0,936

14 0, 849P 0, 849P 0, 919P 0,925

15 0, 708P 0, 708P 0, 829P 0,854

16 1 1 1 1

17 1 1 1 1

18 0, 902P 0, 902P 0, 949P 0,951

19 0, 917P 0, 917P 0, 957P 0,958

20 0, 743P 0, 743P 0, 853P 0,872

Tabuľka 4.2: Porovnanie efektivít jednotlivých modelov s CRS.

Ďalej ešte uvádzame dve tabuľky obsahujúce efektívne vzory. Kvôli rozsahu kapitoly

sme sa rozhodli podrobnejšie výsledky uviesť až v prílohe. V Tabuľke 4.3 sú hodnoty

efektívnych vstupov a v Tabuľke 4.4 zase efektívne výstupy. Pri všetkých efektívnych
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4.1 Model A vs. CCR 4 JAPONSKÉ BANKY

útvaroch sa pochopiteľne zachovali pôvodné hodnoty. Model CCR-I šetrí najviac aj

na vstupoch aj na výstupoch, model CCR-O dáva najväčšie hodnoty efektívnych vzo-

rov a Model A je niekde uprostred. Z tohto dôvodu ho môžeme považovať za dobrý

kompromis – nenúti nás ani prehnane šetriť a ani prehnane zvyšovať produkciu.

CCR-I A CCR-O CCR-I A CCR-O CCR-I A CCR-O

Kapitál Kapitál Kapitál Pob Pob Pob Zam Zam Zam

1 859 859 859 371 371 371 15 788 15 788 15 788

2 590,77 629,63 673,96 281,11 299,60 320,69 13 087,21 13 948 14 930

3 1 040 1 040 1 040 327 327 327 13 567 13 567 13 567

4 786 786 786 374 374 374 17 412 17 412 17 412

5 399,33 462,13 548,38 190,01 219,90 260,93 8 846,30 10 237,52 12 148

6 694,24 699,59 705,03 285 287,19 289,42 12 820,74 12 919,60 13 020

7 683,36 716,49 753 293,75 308 323,69 13 062,83 13 696,14 14 394

8 198,18 247,70 330,21 94,30 117,86 157,12 4 390,21 5 487,20 7 315

9 481,75 538,17 609,56 190,67 213 241,25 8 495,98 9 491 10 750

10 50,20 58,81 71 56,14 65,78 79,41 1 826,82 2 140,42 2 584

11 48,91 48,95 49 141,50 141,64 141,77 3 456 3 459,33 3 462,67

12 83,62 102,38 132 72,63 88,93 114,65 2 580,25 3 159,17 4 073

13 93,24 99,65 107 136,71 146,11 156,89 3 981,43 4 255,03 4 569

14 157,12 169,92 185 136,93 148,09 161,23 4 520,86 4 889,25 5 323

15 85,67 100,31 121 82,15 96,20 116,03 2 815,04 3 296,28 3 976

16 91 91 91 189 189 189 4 509 4 509 4 509

17 27 27 27 115 115 115 2 862 2 862 2 862

18 46,92 49,33 52 131,45 138,20 145,68 3 457,86 3 635,33 3 832

19 54,10 56,44 59 147,96 154,37 161,37 3 907,04 4 076,35 4 261

20 37,90 43,49 51 97,25 111,58 130,86 2 595,14 2 977,50 3 492

Tabuľka 4.3: Efektívne vzory pre vstupy CCR modelov a Modelu A s CRS.
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4.2 Model A s VRS vs. BCC 4 JAPONSKÉ BANKY

CCR-I A CCR-O CCR-I A CCR-O

Zisk Zisk Zisk Vklady Vklady Vklady

1 218 938 218 938 218 938 28 910 28 910 28 910

2 164 596,58 175 422,66 187 773,13 29 804 31 764,31 34 000,65

3 223 340 223 340 223 340 27 405 27 405 27 405

4 218 989 218 989 218 989 39 653 39 653 39 653

5 111 258,98 128 756,32 152 784,19 20 146 23 314,30 27 665,10

6 175 483 176 836,14 178 210,31 28 254 28 471,87 28 693,12

7 176 477 185 033,03 194 460,96 27 388 28 715,84 30 178,99

8 55 215,29 69 011,96 92 000,03 9 998 12 496,20 16 658,72

9 118 963 132 895,55 150 524,46 18 546 20 718,05 23 466,34

10 14 335,61 16 796,53 20 277,44 3 286 3 850,09 4 647,98

11 20 308 20 327,57 20 347,17 4 753 4 757,58 4 762,17

12 23 655,13 28 962,49 37 340,31 4 986 6 104,68 7 870,55

13 29 830 31 879,87 34 232,26 6 610 7 064,23 7 585,49

14 51 154 55 322,36 60 230,32 8 648 9 352,70 10 182,43

15 24 318,32 28 475,66 34 347,53 5 289 6 193,18 7 470,25

16 42 982 42 982 42 982 6 578 6 578 6 578

17 8 633 8 633 8 633 3 749 3 749 3 749

18 14 259,55 14 991,41 15 802,45 4 917 5 169,36 5 449,02

19 16 401,21 17 111,96 17 887,10 5 585 5 827,03 6 090,98

20 11 420,95 13 103,67 15 367,92 3 763 4 317,43 5 063,46

Tabuľka 4.4: Efektívne vzory pre výstupy CCR modelov a Modelu A s CRS.

4.2 Model A s VRS vs. BCC

V tejto podkapitole sa venujeme dvom orientovaným modelom BCC a Modelu A s

variabilnými výnosmi z rozsahu. Spomíname aj tento typ výnosov, nakoľko nemáme

žiadnu ďalšiu informáciu o charaktere bánk.

V Tabuľke 4.5 sú spísané efektivity. Opäť platí, že P sú označené pseudoefektivity.

V tomto prípade Model A vždy vrátil vyššiu optimálnu hodnotu efektivity ako model

BCC-O, čo však nemusí byť pravidlom, ako sme ukázali v druhej kapitole. K efektívnym

útvarom okrem tých, ktoré boli efektívne pri CRS – Daiichikangyou (1), Fuji (3), Tokyo

Mitsubishi (4), Shizuoka (16) a Kyoto (17), pribudli aj banky Sanwa (6), Hokkaido (10),
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4.2 Model A s VRS vs. BCC 4 JAPONSKÉ BANKY

Gunma (11) a Hukuoka (19).

BCC-I BCC-O Model A s VRS Model A s VRS

θ 1
ψ 1− δ 1

1+δ

1 1 1 1 1

2 0, 897P 0, 888P 0, 943P 0,946

3 1 1 1 1

4 1 1 1 1

5 0, 779P 0, 753P 0, 868P 0,883

6 1 1 1 1

7 0, 910P 0, 909P 0, 952P 0,955

8 0, 829P 0, 687P 0, 876P 0,890

9 0, 852P 0, 824P 0, 912P 0,919

10 1 1 1 1

11 1 1 1 1

12 0, 805P 0, 723P 0, 870P 0,885

13 0,902 0, 879P 0, 937P 0,941

14 0,961 0,943 0,976 0,977

15 0, 858P 0, 797P 0, 909P 0,917

16 1 1 1 1

17 1 1 1 1

18 0, 940P 0, 958P 0, 975P 0,975

19 1 1 1 1

20 0, 814P 0, 760P 0, 873P 0,887

Tabuľka 4.5: Porovnanie efektivít jednotlivých modelov s VRS.

Pri efektívnych vzoroch opäť platí isté pravidlo, že model BCC zameraný na vstupy

dáva najnižšie hodnoty efektívnych vzorov, model BCC orientovaný na výstupy naj-

vyššie a Model A s VRS sa pohybuje medzi týmito dvoma. Kompletné efektívne vzory

nájdeme v Tabuľke 4.6 a v Tabuľke 4.7. Zvyšné údaje o λ a slackoch sú uvedené v

prílohe.
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4.2 Model A s VRS vs. BCC 4 JAPONSKÉ BANKY

BCC-I A s VRS BCC-O BCC-I A s VRS BCC-O BCC-I A s VRS BCC-O

Kap Kap Kap Pob Pob Pob Zam Zam Zam

1 859 859 859 371 371 371 15 788 15 788 15 788

2 592,36 625,55 666,32 309,27 320,37 333,99 13 396,24 14 084,46 14 930

3 1 040 1 040 1 040 327 327 327 13 567 13 567 13 567

4 786 786 786 374 374 374 17 412 17 412 17 412

5 402,48 454,80 532,17 245,80 263,29 289,15 9 458,37 10 543,37 12 148

6 843 843 843 338 338 338 13 020 13 020 13 020

7 684,89 717,14 753 315,93 325,60 336,36 13 092,11 13 708,51 14 394

8 159,10 185,35 255,58 160,08 169,03 193 5 394,39 5 897,51 7 243,85

9 500,98 546,09 645,27 239,41 256,14 281 9 158,84 9 798,76 10 750

10 71 71 71 135 135 135 2 584 2 584 2 584

11 49 49 49 173 173 173 3 714 3 714 3 714

12 104,42 114,88 132 146,17 149,44 154,39 3 277,14 3 544,66 4 073

13 96,52 100,28 107 147,04 150,48 159,36 4 121,50 4 281,98 4 569

14 177,86 180,65 185 178,82 181,63 186 5 117,63 5 197,84 5 323

15 103,83 109,98 121 145,32 147,04 150,13 3 411,70 3 613,76 3 976

16 91 91 91 189 189 189 4 509 4 509 4 509

17 27 27 27 115 115 115 2 862 2 862 2 862

18 48,90 50,69 52 143,40 150,33 155,44 3 603,61 3 735,11 3 832

19 59 59 59 177 177 177 4 261 4 261 4 261

20 41,53 44,53 51 121,28 121,64 134,24 2 843,75 3 049,09 3 492

Tabuľka 4.6: Efektívne vzory pre vstupy BCC modelov a Modelu A s VRS.
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4.3 Model B vs. aditívny model s CRS 4 JAPONSKÉ BANKY

BCC-I A s VRS BCC-O BCC-I A s VRS BCC-O

Zisk Zisk Zisk Vklady Vklady Vklady

1 218 938 218 938 218 938 28 910 28 910 28 910

2 163 138,91 172 710,43 184 469,98 29 804 31 491,91 33 565,67

3 223 340 223 340 223 340 27 405 27 405 27 405

4 218 989 218 989 218 989 39 653 39 653 39 653

5 108 371,91 123 461,92 145 778,65 20 146 22 807,08 26 742,57

6 175 483 175 483 175 483 28 254 28 254 28 254

7 176 477 184 881,47 194 228,03 27 388 28 692,32 30 142,84

8 45 244,93 52 518,72 71 983,46 9 998 11 239,51 14 561,79

9 118 963 129 489,69 144 378,66 18 546 20 187,08 22 508,23

10 12 765 12 765 12 765 3 286 3 286 3 286

11 20 308 20 308 20 308 4 753 4 753 4 753

12 22 405,08 25 784,86 31 968,99 4 986 5 632,78 6 896,74

13 29 830 31 703,86 33 928,08 6 610 7 025,23 7 518,09

14 51 154 52 356,77 54 233,45 8 648 8 851,34 9 168,61

15 23 289,33 25 598,75 29 738,98 5 289 5 770,87 6 634,74

16 42 982 42 982 42 982 6 578 6 578 6 578

17 8 633 8 633 8 633 3 749 3 749 3 749

18 11 520,62 11 053,01 10 708,47 4 917 5 041,33 5 132,93

19 9 733 9 733 9 733 5 585 5 585 5 585

20 10 526,67 12 420,68 13 604,15 3 763 4 240,29 4 954,01

Tabuľka 4.7: Efektívne vzory pre výstupy BCC modelov a Modelu A s VRS.

4.3 Model B vs. aditívny model s CRS

V tejto podkapitole sme porovnávali ako dáta vyhodnotí Model B oproti aditívnemu

modelu. Najprv sme sa zamerali na prípad konštantných výnosov z rozsahu. Pri oboch

modeloch nám vyšlo rovnakých 5 efektívnych útvarov ako aj pri CCR – banky Daii-

chikangyou (1), Fuji (3), Tokyo Mitsubishi (4), Shizuoka (16) a Kyoto (17).

Do Tabuľky 4.8 sme zaznamenali efektivity jednotlivých útvarov, ktoré sme aj pre

aditívny model aj pre Model B dopočítali pomocou vzorca (1.12). V ľavej časti tabuľky

uvádzame aj optimálne hodnoty účelových funkcií a vpravo sme všetky útvary usporia-

dali od najefektívnejších po najmenej efektívne, aby sme zistili, či spolu korešpondujú.
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4.3 Model B vs. aditívny model s CRS 4 JAPONSKÉ BANKY

AD B AD B AD B

Hodnota Hodnota Efektivita Efektivita Efektivita Efektivita

1 0 0 1 1 1 1 3 1

2 -74 602,791 -0,364 0,891 0,822 16 1 16 1

3 0 0 1 1 17 1 1 1

4 0 0 1 1 3 1 4 1

5 -78 833,621 -0,683 0,802 0,784 4 1 17 1

6 -9 484,433 -0,124 0,944 0,928 11 0,949 11 0,949

7 -21 865,722 -0,198 0,934 0,910 6 0,944 6 0,928

8 -76 590,318 -1,265 0,772 0,772 7 0,934 7 0,910

9 -49 569,706 -0,397 0,888 0,826 13 0,916 13 0,889

10 -15 310,138 -0,827 0,782 0,782 14 0,909 19 0,855

11 -350,823 -0,085 0,949 0,949 2 0,891 14 0,832

12 -29 882,094 -1,135 0,748 0,748 9 0,888 9 0,826

13 -14 140,376 -0,277 0,916 0,889 19 0,855 2 0,822

14 -10 736,914 -0,296 0,909 0,832 5 0,802 18 0,787

15 -34 584,139 -1,878 0,735 0,735 18 0,787 5 0,784

16 0 0 1 1 10 0,782 10 0,782

17 0 0 1 1 8 0,772 8 0,772

18 -14 649,654 -1,078 0,787 0,787 12 0,748 12 0,748

19 -15 337,533 -0,814 0,855 0,855 15 0,735 15 0,735

20 -19 134,352 -1,807 0,708 0,708 20 0,708 20 0,708

Tabuľka 4.8: Porovnanie efektivít pre aditívny model a Model B s CRS.

V Tabuľke 4.9 uvádzame efektívne vzory pre tri vstupy – kapitál, pobočky a za-

mestnanci, nájdené najprv pomocou aditívneho modelu a potom pomocou Modelu B.

Červenou sú zvýraznené vyššie hodnoty vstupov, modrou nižšie. V tomto prípade nám

vždy pri aditívnom modeli vyšli vyššie efektívne vstupy, čo môže byť isté plus, pretože

nás nenútiť až toľko šetriť v porovnaní s Modelom B.
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4.3 Model B vs. aditívny model s CRS 4 JAPONSKÉ BANKY

AD B AD B AD B

Kapitál Kapitál Pobočky Pobočky Zamestnanci Zamestnanci

1 859 859 371 371 15 788 15 788

2 1 043 673,96 351,40 320,69 14 930 14 930

3 1 040 1 040 327 327 13 567 13 567

4 786 786 374 374 17 412 17 412

5 605 548,38 265,65 260,93 12 148 12 148

6 758,80 682,91 293,90 287,58 13 020 13 020

7 753 649,76 317,77 309,18 14 394 14 394

8 465 465 168,34 168,34 7 315 7 315

9 723 485,27 250,69 230,90 10 750 10 750

10 71 71 92,88 92,88 2 584 2 584

11 49 49 141,47 141,47 3 454,90 3 454,90

12 132 132 129,95 129,95 4 073 4 073

13 107 107 163 139,78 4 288,28 3 890,87

14 185 185 159,60 88,03 5 323 4 098,24

15 121 121 133,29 133,29 3 976 3 976

16 91 91 189 189 4 509 4 509

17 27 27 115 115 2 862 2 862

18 52 52 145,97 145,97 3 558,72 3 558,72

19 59 59 165,82 165,82 4 042,95 4 042,95

20 51 51 108,43 108,43 2 591,84 2 591,84

Tabuľka 4.9: Efektívne vzory pre vstupy aditívneho modelu a Modelu B s CRS.

Čo sa týka efektívnych výstupov, v tomto prípade sú modely trochu rozpoltené a

nemôžeme jasne povedať, že nám jeden alebo druhý model dáva vždy vyššie hodnoty

vzorov. Ako vidíme v Tabuľke 4.10 pri výstupe zisk ponúka vyššie efektívne vzory

aditívny model, pri vkladoch zase Model B. Táto rozpoltenosť však nastáva len v

prípade 3 bánk, inak oba modely vracajú identické návrhy na efektívne výstupy.
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4.4 Model B s VRS vs. aditívny model s VRS 4 JAPONSKÉ BANKY

AD B AD B

Zisk Zisk Vklady Vklady

1 218 938 218 938 28 910 28 910

2 233 267,23 187 773,13 30 986,96 34 000,65

3 223 340 223 340 27 405 27 405

4 218 989 218 989 39 653 39 653

5 159 764,57 152 784,19 27 202,69 27 665,10

6 184 839,13 175 483 28 254 28 873,78

7 193 758,55 181 031,91 31 936,94 32 780

8 108 616,68 108 616,68 15 557,98 15 557,98

9 164 508,40 135 201,69 22 540 24 481,38

10 26 931,18 26 931,18 4 387,83 4 387,83

11 20 368,19 20 368,19 4 753 4 753

12 44 900,07 44 900,07 7 574,97 7 574,97

13 43 372,90 40 562,93 6 926,75 6 610

14 60 203,24 51 543,21 10 309,28 9 333,09

15 42 872,48 42 872,48 7 136,94 7 136,94

16 42 982 42 982 6 578 6 578

17 8 633 8 633 3 749 3 749

18 21 906,34 21 906,34 4 917 4 917

19 24 841,30 24 841,30 5 585 5 585

20 23 913,62 23 913,62 3 763 3 763

Tabuľka 4.10: Efektívne vzory pre výstupy aditívneho modelu a Modelu B s CRS.

4.4 Model B s VRS vs. aditívny model s VRS

Na úplne posledné porovnanie sme si zvolili aditívny model s VRS a Model B, taktiež

verziu s VRS. Efektívne útvary vyšli rovnaké banky ako pri BCC modeloch – Daiichi-

kangyou (1), Fuji (3), Tokyo Mitsubishi (4), Sanwa (6), Hokkaido (10), Gunma (11),

Shizuoka (16), Kyoto (17) a Hukuoka (19).

V Tabuľke 4.11 sa nachádzajú efektivity jednodlivých bánk, dopočítané podľa vzorca

(1.12) a v pravej časti opäť usporiadané efektivity. Ani v tomto prípade spolu po-

stupnosti nekorešpondujú, avšak celkom často sa stáva, že pri rovnakom útvare vyjde

rovnaká hodnota efektivity.
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AD B AD B AD B

Hodnota Hodnota Efektivita Efektivita Efektivita Efektivita

1 0 0 1 1 3 1 3 1

2 -63 993,757 -0,340 0,872 0,830 4 1 11 1

3 0 0 1 1 6 1 4 1

4 0 0 1 1 10 1 17 1

5 -77 273,917 -0,605 0,830 0,830 16 1 10 1

6 0 0 1 1 17 1 1 1

7 -21 180,268 -0,169 0,946 0,921 19 1 16 1

8 -53 052,255 -0,858 0,804 0,804 1 1 19 1

9 -47 376,903 -0,303 0,921 0,857 11 1 6 1

10 0 0 1 1 14 0,979 14 0,950

11 0 0 1 1 7 0,946 13 0,937

12 -21 654,099 -0,744 0,836 0,787 13 0,937 7 0,921

13 -8 418,718 -0,191 0,937 0,937 9 0,921 9 0,857

14 -4 763,045 -0,093 0,979 0,950 2 0,872 5 0,830

15 -26 629,401 -1,370 0,813 0,813 12 0,836 2 0,830

16 0 0 1 1 5 0,830 18 0,829

17 0 0 1 1 18 0,829 15 0,813

18 -13 048,327 -0,927 0,829 0,829 15 0,813 8 0,804

19 0 0 1 1 8 0,804 12 0,787

20 -16 859,375 -1,594 0,757 0,757 20 0,757 20 0,757

Tabuľka 4.11: Porovnanie efektivít pre aditívny model a Model B s VRS.

Doteraz sme sa stretávali len s prípadom, keď jeden model ponúkal pre všetky banky

väčší efektívny vzor pre vstup, prípadne pre všetky menší efektívny výstup. V prípade

týchto dvoch modelov to však také jasné nie je – ako vidíme v Tabuľke 4.12, prípadne v

Tabuľke 4.13, nie vždy nastáva takáto situácia a pri niektorých bankách sú odporúčania

Modelu B väčšie ako pri aditívnom modeli, pri niektorých menšie. Dané skutočnosti sú

opäť farebne vyznačené – červenou väčšie čísla, modrou menšie. Ďalším zaujímavým

javom je, že efektívne vzory pre vstup zamestnanci sú pre oba modely rovnaké.
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4.4 Model B s VRS vs. aditívny model s VRS 4 JAPONSKÉ BANKY

AD B AD B AD B

Kapitál Kapitál Pobočky Pobočky Zamestnanci Zamestnanci

1 859 859 371 371 15 788 15 788

2 949,96 656,53 343,66 329,82 14 930 14 930

3 1 040 1 040 327 327 13 567 13 567

4 786 786 374 374 17 412 17 412

5 605 605 300,33 300,33 12 148 12 148

6 843 843 338 338 13 020 13 020

7 753 637,06 333,01 320,68 14 394 14 394

8 399,71 399,71 193 193 6 800,63 6 800,63

9 723 438,48 281 255,41 10 750 10 750

10 71 71 135 135 2 584 2 584

11 49 49 173 173 3 714 3 714

12 132 86,47 170,59 176,77 4 073 4 073

13 107 107 163 163 4 562,33 4 562,33

14 185 146,52 186 186 5 323 5 323

15 121 121 169,22 169,22 3 976 3 976

16 91 91 189 189 4509 4 509

17 27 27 115 115 2862 2 862

18 52 52 174,16 174,16 3 801,06 3 801,06

19 59 59 177 177 4261 4 261

20 51 51 142,75 142,75 3479,63 3 479,63

Tabuľka 4.12: Efektívne vzory pre vstupy aditívneho modelu a Modelu B s VRS.
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4.4 Model B s VRS vs. aditívny model s VRS 4 JAPONSKÉ BANKY

AD B AD B

Zisk Zisk Vklady Vklady

1 218 938 218 938 28 910 28 910

2 221 797,63 183 105,59 31 746,75 33 528,35

3 223 340 223 340 27 405 27 405

4 218 989 218 989 39 653 39 653

5 159 814,65 159 814,65 25 627,60 25 627,60

6 175 483 175 483 28 254 28 254

7 193 780,56 176 477 31 244,72 32 154,10

8 87 628,97 87 628,97 12 452,62 12 452,62

9 163 763,87 122 673,42 21 122,03 23 213,66

10 12 765 12 765 3 286 3 286

11 20 308 20 308 4 753 4 753

12 38 171,08 36 138,05 6 116,60 5 832,38

13 37 397,47 37 397,47 7 454,58 7 454,58

14 55 695,09 51 154 8 869,95 9 049,27

15 36 202,28 36 202,28 5 888,34 5 888,34

16 42 982 42 982 6 578 6 578

17 8 633 8 633 3749 3 749

18 20 575,55 20 575,55 4917 4 917

19 9 733 9 733 5585 5 585

20 21 513,87 21 513,87 4 809,87 4 809,87

Tabuľka 4.13: Efektívne vzory pre výstupy aditívneho modelu a Modelu B s VRS.
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Záver

Hlavným cieľom tejto bakalárskej práce bola analýza dvoch nových neštandardných

modelov v teórii DEA modelovania, ktoré boli doteraz v literatúre spomenuté len veľmi

okrajovo. Tieto dva modely sme následne porovnávali s troma štandardnými modelmi.

Na začiatok sme zhrnuli pár známych základných pojmov z DEA modelovania, pri-

čom sme vychádzali najmä z [2] a [5] a predstavili sme štandardné modely – CCR,

BCC a aditívny model.

V ďalšej časti sme definovali prvý neštandarný model – radiálny neorientovaný mo-

del, skrátene nazývaný aj ako Model A. V Definícii 2 sme objasnili kedy vyhlásime

útvar za efektívny, pseudoefektívny alebo neefektívny. Podarilo sa nám dokázať exis-

tenciu optimálneho riešenia v Tvrdení 1 a na základe jednoduchého dvojrozmerného

príkladu sme v Tvrdení 2 a Tvrdení 3 sformulovali a dokázali všeobecné vzťahy

medzi efektivitami CCR modelov a Modelu A a BCC modelov a Modelu A s VRS.

Taktiež sme zhrnuli jeho základné vlastnosti a porovnávali v Tabuľke 2.1. Za hlavnú

výhodu Modelu A oproti tradičným orientovaným modelom považujeme fakt, že upra-

vuje aj vstupy aj výstupy súčasne, čo sa z praktického hľadiska ukazuje ako veľké plus,

nakoľko nás nenúti ani prehnane šetriť a ani prehnane zväčšovať produkciu. Táto vlast-

nosť sa pekne odzrkadlila aj v poslednej kapitole, kde sme Model A porovnávali s CCR

a BCC modelmi na príklade s reálnymi dátami z článku [6] s troma vstupmi a dvoma

výstupmi. Ďalším pozitívom je, že hoci aj pri tomto druhu modelu sa stretávame s

prípadom pseudoefektívneho vzoru, takýto vzor sa nachádza bližšie k efektívnemu, než

je tomu napríklad v prípade BCC-I alebo BCC-O modelu. Táto situácia je vidieť na

Obrázku 5.

Druhý model, ktorému sme sa podrobne venovali v tretej časti našej práce je ne-

radiálny neorientovaný model, skrátene sme ho nazvali Model B. Aj pre tento model

sme dokázali existenciu optimálneho riešenia v Tvrdení 4. Hlavnou výhodou Modelu

B oproti aditívnemu modelu, s ktorým sme ho porovnávali, je invariantnosť na zmenu

jednotiek pri konštantných aj variabilných výnosoch z rozsahu. Na druhú stranu ne-

výhodou je, že Model B s VRS nie je invariantný na posun, len zachováva rozdelenie

útvarov na efektívne a neefektívne, kým aditívny model s VRS je. Okrem týchto roz-

dielov sú si tieto dva modely svojimi vlastnosťami dosť podobné. Oba sú neorientované,
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to znamená upravujú aj vstupy aj výstupy naraz a pri obidvoch mieru efektivity ne-

dostaneme priamo ako optimálnu hodnotu účelovej funkcie, ale musíme ju dopočítať

pomocou vzorca (1.12). Tak isto výhodou je, že sa ani pri jednom nemusíme potý-

kať s otázkou pseudoefektívneho vzoru, nakoľko oba nájdu rovno efektívny vzor. Tieto

efektívne vzory sa však nemusia zhodovať a ani nevieme nájsť nejaké jasný všeobecný

vzťah medzi nimi, čo je vidieť aj na praktickom príklade zo štvrtej kapitoly, napríklad

v Tabuľke 4.12 alebo 4.13.

Hlavný prínos tejto práce vidíme v analyzovaní celkom nových modelov v DEA a

v tom, že sa nám podarilo objaviť mnohé pozitívne vlastnosti týchto modelov. Do

budúcna by sa ešte dala skúmať vlastnosť monotónnosti, superefektivity, prípadne vy-

tvoriť tretí neštandardný model ako kombináciu týchto dvoch. Bol by to istý prechod

medzi nimi – štruktúrou by sa podobal na Model B, avšak namiesto m + s rôznych

koeficientov σ a γ by sa použili len dva – jeden pre skrátenie vstupov a jeden pre

predlžovanie výstupov.
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Zdrojové kódy naprogramovaných funkcií Príloha A

Príloha A: Zdrojové kódy naprogramovaných funkcií

Zdrojové kódy k funkciám z Matlabu.

CCR-I:
function [VysledkyP, HodP, VysledkyD, HodD, V3, H3]=CCR_I(X,Y)
[m,n] = size(X); % n = pocet DMU, m = pocet vstupov
[s,n] = size(Y); % n = pocet DMU, s = pocet vystupov
%%% primarna uloha - MM:
VysledkyP = zeros(m+s,n);
HodP = zeros(s,n);
beqP = 1;
bP = zeros(n,1);
AP = [-X’ Y’];
lbP = zeros(m+s,1);
FP = [zeros(n,m) Y’];
AeqP = [X’ zeros(n,s)];
for j = 1:n
[VysledkyP(:,j), HodP(1,j)] = linprog(-FP(j,:),AP,bP,AeqP(j,:),beqP,lbP,[]); end
HodP = -HodP;
%%% dualna uloha - OM:
VysledkyD = zeros(1+n+m+s,n);
HodD = zeros(1,n);
beqD = [zeros(m,n); Y];
AeqD = [zeros(m,1) X eye(m) zeros(m,s);
zeros(s,1) Y zeros(s,m) -eye(s)];
lbD = zeros(1+n+m+s,1);
lbD(1,1) = - Inf;
FD = [1 zeros(1,n+m+s)];
for j = 1:n
AeqD(:,1)=[-X(:,j); zeros(s,1)];
[VysledkyD(:,j), HodD(1,j)] = linprog(FD,[],[],AeqD,beqD(:,j),lbD,[]); end
%%% maximalizacia slackov:
V3 = zeros(n+m+s,n);
H3 = zeros(1,n);
F3 = [zeros(1,n) ones(1,m) ones(1,s)];
Aeq3 = [X eye(m) zeros(m,s);
Y zeros(s,m) -eye(s)];
beq3 = zeros(m+s,n);
lb3 = zeros(n+s+m,1);
for j=1:n
beq3(:,j) = [HodD(j) * X(:,j);
Y(:,j)];
[V3(:,j), H3(1,j)] = linprog(-F3, [], [], Aeq3, beq3(:,j), lb3, []); end
H3 = -H3; end

CCR-O:
function [VysledkyP, HodP, VysledkyD, HodD, V3, H3]=CCR_O(X,Y)
[m,n] = size(X); % n = pocet DMU, m = pocet vstupov
[s,n] = size(Y); % n = pocet DMU, s = pocet vystupov
%%% primarna uloha - MM:
VysledkyP = zeros(m+s,n);
HodP = zeros(m,n);
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beqP = 1;
bP = zeros(n,1);
AP = [-X’ Y’];
lbP = zeros(m+s,1);
FP = [X’ zeros(n,s)];
AeqP = [zeros(n,m) Y’];
for j = 1:n
[VysledkyP(:,j), HodP(1,j)] = linprog(FP(j,:),AP,bP,AeqP(j,:),beqP,lbP,[]); end
%%% dualna uloha - OM:
VysledkyD = zeros(1+n+m+s,n);
HodD = zeros(1,n);
beqD = [X; zeros(s,n)];
AeqD = [zeros(m,1) X eye(m) zeros(m,s);
zeros(s,1) Y zeros(s,m) -eye(s)];
lbD = zeros(1+n+m+s,1);
lbD(1,1) = - Inf;
FD = [1 zeros(1,n+m+s)];
for j = 1:n
AeqD(:,1)=[zeros(m,1); -Y(:,j)];
[VysledkyD(:,j), HodD(1,j)] = linprog(-FD,[],[],AeqD,beqD(:,j),lbD,[]); end
HodD = -HodD;
%%% maximalizacia slackov:
V3 = zeros(n+m+s,n);
H3 = zeros(1,n);
F3 = [zeros(1,n) ones(1,m) ones(1,s)];
Aeq3 = [X eye(m) zeros(m,s);
Y zeros(s,m) -eye(s)];
beq3 = zeros(m+s,n);
lb3 = zeros(n+s+m,1);
for j=1:n
beq3(:,j) = [X(:,j);
HodD(j) * Y(:,j)];
[V3(:,j), H3(1,j)] = linprog(-F3, [], [], Aeq3, beq3(:,j), lb3, []); end
H3 = -H3; end

BCC-I:
function [VysledkyP, HodP, VysledkyD, HodD, V3, H3]=BCC_I(X,Y)
[m,n] = size(X); % n = pocet DMU, m = pocet vstupov
[s,n] = size(Y); % n = pocet DMU, s = pocet vystupov
%%% primarna uloha - MM:
VysledkyP = zeros(m+s+1,n);
HodP = zeros(m,n);
beqP = 1;
bP = zeros(n,1);
AP = [-X’ Y’ ones(n,1)];
lbP = zeros(m+s+1,1);
lbP(m+s+1,1) = -Inf;
FP = [zeros(n,m) Y’ ones(n,1)];
AeqP = [X’ zeros(n,s) zeros(n,1)];
for j = 1:n
[VysledkyP(:,j), HodP(1,j)] = linprog(-FP(j,:),AP,bP,AeqP(j,:),beqP,lbP,[]); end
HodP = -HodP;
%%% dualna uloha - OM:
VysledkyD = zeros(1+n+m+s,n);
HodD = zeros(1,n);
beqD = [zeros(m,n); Y; ones(1,n)];
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AeqD = [zeros(m,1) X eye(m) zeros(m,s);
zeros(s,1) Y zeros(s,m) -eye(s);
zeros(1,1) ones(1,n) zeros(1,m+s)];
lbD = zeros(1+n+m+s,1);
lbD(1,1) = - Inf;
FD = [1 zeros(1,n+m+s)];
for j = 1:n
AeqD(:,1)=[-X(:,j); zeros(s,1); 0];
[VysledkyD(:,j), HodD(1,j)] = linprog(FD,[],[],AeqD,beqD(:,j),lbD,[]); end
%%% maximalizacia slackov:
V3 = zeros(n+m+s,n);
H3 = zeros(1,n);
F3 = [zeros(1,n) ones(1,m) ones(1,s)];
Aeq3 = [X eye(m) zeros(m,s);
Y zeros(s,m) -eye(s);
ones(1,n) zeros(1,m+s)];
lb3 = zeros(n+s+m,1);
for j=1:n
beq3 = [HodD(1,j) * X(:,j);
Y(:,j);
1];
[V3(:,j), H3(1,j)] = linprog(-F3, [], [], Aeq3, beq3, lb3, []); end
H3 = -H3; end

BCC-O:
function [VysledkyP, HodP, VysledkyD, HodD, V3, H3]=BCC_O(X,Y)
[m,n] = size(X); % n = pocet DMU, m = pocet vstupov
[s,n] = size(Y); % n = pocet DMU, s = pocet vystupov
%%% primarna uloha - MM:
VysledkyP = zeros(m+s+1,n);
HodP = zeros(m,n);
beqP = 1;
bP = zeros(n,1);
AP = [-X’ Y’ ones(n,1)];
lbP = zeros(m+s+1,1);
lbP(m+s+1,1) = -Inf;
FP = [X’ zeros(n,s) -ones(n,1)];
AeqP = [zeros(n,m) Y’ zeros(n,1)];
for j = 1:n
[VysledkyP(:,j), HodP(1,j)] = linprog(FP(j,:),AP,bP,AeqP(j,:),beqP,lbP,[]); end
%%% dualna uloha - OM:
VysledkyD = zeros(1+n+m+s,n);
HodD = zeros(1,n);
beqD = [X; zeros(s,n); ones(1,n)];
AeqD = [zeros(m,1) X eye(m) zeros(m,s);
zeros(s,1) Y zeros(s,m) -eye(s);
zeros(1,1) ones(1,n) zeros(1,m+s)];
lbD = zeros(1+n+m+s,1);
lbD(1,1) = - Inf;
FD = [1 zeros(1,n+m+s)];
for j = 1:n
AeqD(:,1)=[zeros(m,1); -Y(:,j); 0];
[VysledkyD(:,j), HodD(1,j)] = linprog(-FD,[],[],AeqD,beqD(:,j),lbD,[]); end
HodD = -HodD;
%%% maximalizacia slackov:
V3 = zeros(n+m+s,n);
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H3 = zeros(1,n);
F3 = [zeros(1,n) ones(1,m) ones(1,s)];
Aeq3 = [X eye(m) zeros(m,s);
Y zeros(s,m) -eye(s);
ones(1,n) zeros(1,m+s)];
beq3 = [zeros(m+s,n); ones(1,n)];
lb3 = zeros(n+s+m,1);
for j=1:n
beq3(:,j) = [X(:,j);
HodD(j) * Y(:,j);
1];
[V3(:,j), H3(1,j)] = linprog(-F3, [], [], Aeq3, beq3(:,j), lb3, []); end
H3 = -H3; end

Model A s CRS:
function [VysledkyP, HodP, VysledkyD, HodD, V3, H3]=Model_A_CRS(X,Y)
[m,n] = size(X); % n = pocet DMU, m = pocet vstupov
[s,n] = size(Y); % n = pocet DMU, s = pocet vystupov
%%% primarna uloha - MM:
VysledkyP = zeros(m+s,n);
HodP = zeros(1,n);
bP = zeros(n,1);
beqP = 1;
AeqP = [X’ Y’];
AP = [-X’ Y’];
FP = [-X’ Y’];
lbP = zeros(m+s,1);
for j = 1:n
[VysledkyP(:,j), HodP(1,j)] = linprog(-FP(j,:), AP, bP, AeqP(j,:), beqP, lbP, []); end
HodP = -HodP;
HodP = ones(1,n) + HodP;
%%% dualna uloha - OM:
VysledkyD = zeros(1+n+m+s,n);
HodD = zeros(1,n);
beqD = [X; -Y];
AeqD = [zeros(m,1) X eye(m) zeros(m,s);
zeros(s,1) -Y zeros(s,m) eye(s)];
FD = [-1 zeros(1,n+m+s)];
lbD = zeros(1+n+m+s,1);
lbD(1,1) = - Inf;
for j = 1:n
AeqD(:,1) = [X(:,j); Y(:,j)];
[VysledkyD(:,j), HodD(1,j)] = linprog(FD, [], [], AeqD, beqD(:,j), lbD, []); end
HodD = ones(1,n) + HodD;
%%% maximalizacia slackov:
V3 = zeros(n+m+s,n);
H3 = zeros(1,n);
F3 = [zeros(1,n) ones(1,m) ones(1,s)];
Aeq3 = [X eye(m) zeros(m,s);
Y zeros(s,m) -eye(s)];
beq3 = zeros(m+s,n);
lb3 = zeros(n+s+m,1);
for j=1:n
beq3(:,j) = [HodD(j) * X(:,j);
(2-HodD(j)) * Y(:,j)];
[V3(:,j), H3(1,j)] = linprog(-F3, [], [], Aeq3, beq3(:,j), lb3, []); end
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H3 = -H3; end

Model A s VRS:
function [VysledkyP, HodP, VysledkyD, HodD, V3, H3]=Model_A_VRS(X,Y)
[m,n] = size(X); % n = pocet DMU, m = pocet vstupov
[s,n] = size(Y); % n = pocet DMU, s = pocet vystupov
%%% primarna uloha - MM:
VysledkyP = zeros(m+s+1,n);
HodP = zeros(1,n);
bP = zeros(n,1);
beqP = 1;
AeqP = [X’ Y’ zeros(n,1)];
AP = [-X’ Y’ ones(n,1)];
FP = [-X’ Y’ ones(n,1)];
lbP = zeros(m+s+1,1);
lbP(m+s+1,1) = -Inf;
for j = 1:n
[VysledkyP(:,j), HodP(1,j)] = linprog(-FP(j,:), AP, bP, AeqP(j,:), beqP, lbP, []); end
HodP = -HodP;
HodP = ones(1,n) + HodP;
%%% dualna uloha - OM:
VysledkyD = zeros(1+n+m+s,n);
HodD = zeros(1,n);
beqD = [X; -Y; ones(1,n)];
AeqD = [zeros(m,1) X eye(m) zeros(m,s);
zeros(s,1) -Y zeros(s,m) eye(s);
zeros(1,1) ones(1,n) zeros(1,m+s)];
FD = [-1 zeros(1,n+m+s)];
lbD = zeros(1+n+m+s,1);
lbD(1,1) = - Inf;
for j = 1:n
AeqD(:,1) = [X(:,j); Y(:,j); 0];
[VysledkyD(:,j), HodD(1,j)] = linprog(FD, [], [], AeqD, beqD(:,j), lbD, []); end
HodD = ones(1,n) + HodD;
%%% maximalizacia slackov:
V3 = zeros(n+m+s,n);
H3 = zeros(1,n);
F3 = [zeros(1,n) ones(1,m) ones(1,s)];
Aeq3 = [X eye(m) zeros(m,s);
Y zeros(s,m) -eye(s);
ones(1,n) zeros(1,m+s)];
beq3 = zeros(m+s+1,n);
lb3 = zeros(n+s+m,1);
for j=1:n
beq3(:,j) = [HodD(j) * X(:,j);
(2-HodD(j)) * Y(:,j);
1];
[V3(:,j), H3(1,j)] = linprog(-F3, [], [], Aeq3, beq3(:,j), lb3, []); end
H3 = -H3; end

Aditívny model s CRS:
function [VysledkyP, HodP, VysledkyD, HodD]=AD_OM_CRS(X,Y)
[m,n] = size(X); % n = pocet DMU, m = pocet vstupov
[s,n] = size(Y); % n = pocet DMU, s = pocet vystupov
%%% primarna uloha - MM:
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VysledkyP = zeros(m+s,n);
HodP = zeros(1,n);
bP = zeros(1,n);
AP = [-X’ Y’];
lbP = ones(m+s,1);
for j = 1:n
FP = [-(X(:,j))’ (Y(:,j))’];
[VysledkyP(:,j), HodP(1,j)] = linprog(-FP,AP,bP,[],[],lbP,[]); end
HodP = -HodP;
%%% dualna uloha - OM:
VysledkyD = zeros(n+m+s,n);
HodD = zeros(1,n);
beqD = [X; Y];
AeqD = [X eye(m) zeros(m,s);
Y zeros(s,m) -eye(s)];
lbD = zeros(n+m+s,1);
FD = [zeros(1,n) ones(1,m+s)];
for j = 1:n
[VysledkyD(:,j), HodD(1,j)] = linprog(-FD,[],[],AeqD,beqD(:,j),lbD,[]); end end

Aditívny model s VRS:
function [VysledkyP, HodP, VysledkyD, HodD]=AD_OM_VRS(X,Y)
[m,n] = size(X); % n = pocet DMU, m = pocet vstupov
[s,n] = size(Y); % n = pocet DMU, s = pocet vystupov
%%% primarna uloha - MM:
VysledkyP = zeros(m+s+1,n);
HodP = zeros(1,n);
bP = zeros(1,n);
AP = [-X’ Y’ ones(n,1)];
lbP = ones(m+s,1);
for j = 1:n
FP = [-(X(:,j))’ (Y(:,j))’ 1];
[VysledkyP(:,j), HodP(1,j)] = linprog(-FP,AP,bP,[],[],lbP,[]); end
HodP = -HodP;
%%% dualna uloha - OM:
VysledkyD = zeros(n+m+s,n);
HodD = zeros(1,n);
beqD = [X; Y; ones(1,n)];
AeqD = [X eye(m) zeros(m,s);
Y zeros(s,m) -eye(s);
ones(1,n) zeros(1,m) zeros(1,s)];
lbD = zeros(n+m+s,1);
FD = [zeros(1,n) ones(1,m+s)];
for j = 1:n
[VysledkyD(:,j), HodD(1,j)] = linprog(-FD,[],[],AeqD,beqD(:,j),lbD,[]); end end

Model B s CRS:
function [VysledkyP, HodP, VysledkyD, HodD] = Model_B_CRS(X,Y)
[m,n] = size(X); % n = pocet DMU, m = pocet vstupov
[s,n] = size(Y); % n = pocet DMU, s = pocet vystupov
%%% primarna uloha - MM:
VysledkyP = zeros(m+s,n);
HodP = zeros(1,n);
bP = [zeros(n,1);
-(1/m)*ones(m,1);
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-(1/s)*ones(s,1)];
FP = [-X’ Y’]
for j = 1:n
AP = [-X’ Y’;
-diag(X(:,j)) zeros(m,s);
zeros(s,m) -diag(Y(:,j))];
[VysledkyP(:,j), HodP(1,j)] = linprog(-FP(j,:), AP, bP, [], [], [], []); end
HodP = -HodP;
%%% dualna uloha - OM:
VysledkyD = zeros(n+m+s,n);
HodD = zeros(1,n);
beqD = [X; Y];
FD = [-zeros(1,n) -(1/m)*ones(1,m) -(1/s)*ones(1,s)];
lbD = zeros(n+m+s,1);
for j = 1:n
AeqD = [X diag(X(:,j)) zeros(m,s);
Y zeros(s,m) -diag(Y(:,j))];
[VysledkyD(:,j), HodD(1,j)] = linprog(FD, [], [], AeqD, beqD(:,j), lbD, []); end end

Model B s VRS:
function [VysledkyP, HodP, VysledkyD, HodD] = Model_B_VRS(X,Y)
[m,n] = size(X); % n = pocet DMU, m = pocet vstupov
[s,n] = size(Y); % n = pocet DMU, s = pocet vystupov
%%% primarna uloha - MM:
VysledkyP = zeros(m+s+1,n);
HodP = zeros(1,n);
bP = [zeros(n,1);
-(1/m)*ones(m,1);
-(1/s)*ones(s,1)];
FP = [-X’ Y’ ones(n,1)]
for j = 1:n
AP = [-X’ Y’ ones(n,1);
-diag(X(:,j)) zeros(m,s) zeros(m,1);
zeros(s,m) -diag(Y(:,j)) zeros(s,1)];
[VysledkyP(:,j), HodP(1,j)] = linprog(-FP(j,:), AP, bP, [], [], [], []); end
HodP = -HodP;
%%% dualna uloha - OM:
VysledkyD = zeros(n+m+s,n);
HodD = zeros(1,n);
beqD = [X; Y; ones(1,n)];
FD = [-zeros(1,n) -(1/m)*ones(1,m) -(1/s)*ones(1,s)];
lbD = zeros(n+m+s,1);
AeqD = [ones(1,n) zeros(1,m+s)];
for j = 1:n
AeqD = [X diag(X(:,j)) zeros(m,s);
Y zeros(s,m) -diag(Y(:,j));
ones(1,n) zeros(1,m) zeros(1,s)];
[VysledkyD(:,j), HodD(1,j)] = linprog(FD, [], [], AeqD, beqD(:,j), lbD, []); end end
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Príloha B: Japonské banky – výsledky výpočtov

CCR-I:

θ λ1 λ3 λ4 λ16 λ17 sx1 sx2 sx3 sy1

1 1 1 0 0 0 0 0 0 0 0

2 0,877 0 0 0,75 0 0 323,49 101,08 0 4 664,58

3 1 0 1 0 0 0 0 0 0 0

4 1 0 0 1 0 0 0 0 0 0

5 0,728 0 0 0,51 0 0 41,23 78,70 0 23 167,98

6 0,985 0 0,27 0,53 0 0 135,86 47,83 0 0

7 0,908 0,27 0,13 0,40 0 0 0 26,60 0 0

8 0,600 0 0 0,25 0 0 80,90 21,53 0 17 604,29

9 0,790 0 0,23 0,31 0 0 89,65 31,42 0 0

10 0,707 0 0 0,05 0 0,32 0 39,30 0 1 570,61

11 0,998 0 0 0 0,34 0,68 0 31,17 250,85 0

12 0,634 0 0 0,10 0 0,32 0 47,10 0 5 989,13

13 0,871 0 0 0,08 0,18 0,65 0 5,33 0 0

14 0,849 0,01 0 0,14 0,43 0 0 21,04 0 0

15 0,708 0 0 0,10 0 0,41 0 53,08 0 14 124,32

16 1 0 0 0 1 0 0 0 0 0

17 1 0 0 0 0 1 0 0 0 0

18 0,902 0 0 0,02 0 1,07 0 68,87 0 6 653,55

19 0,917 0 0 0,03 0 1,20 0 14,33 0 6 668,21

20 0,743 0 0 0,02 0 0,78 0 46,93 0 5 655,95

Tabuľka B.1: Výsledky výpočtov s modelom CCR-I.
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CCR-O:

ψ λ1 λ3 λ4 λ16 λ17 sx1 sx2 sx3 sy1

1 1 1 0 0 0 0 0 0 0 0

2 1,141 0 0 0,86 0 0 369,04 115,31 0 5 321,39

3 1 0 1 0 0 0 0 0 0 0

4 1 0 0 1 0 0 0 0 0 0

5 1,373 0 0 0,70 0 0 56,62 108,07 0 31 814,97

6 1,016 0 0,27 0,53 0 0 137,97 48,58 0 0

7 1,102 0,30 0,14 0,45 0 0 0 29,31 0 0

8 1,666 0 0 0,42 0 0 134,79 35,88 0 29 332,37

9 1,265 0 0,29 0,39 0 0 113,44 39,75 0 0

10 1,414 0 0 0,07 0 0,45 0 55,59 0 2 221,60

11 1,002 0 0 0 0,34 0,68 0 31,23 251,33 0

12 1,579 0 0 0,15 0 0,51 0 74,35 0 9 454,01

13 1,148 0 0 0,09 0,20 0,75 0 6,11 0 0

14 1,177 0,01 0 0,17 0,51 0 0 24,77 0 0

15 1,412 0 0 0,13 0 0,57 0 74,97 0 19 949,39

16 1 0 0 0 1 0 0 0 0 0

17 1 0 0 0 0 1 0 0 0 0

18 1,108 0 0 0,03 0 1,18 0 76,32 0 7 373,47

19 1,091 0 0 0,03 0 1,30 0 15,63 0 7 272,32

20 1,346 0 0 0,03 0 1,04 0 63,14 0 7 610,59

Tabuľka B.2: Výsledky výpočtov s modelom CCR-O.
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Model A:

1− δ λ1 λ3 λ4 λ16 λ17 sx1 sx2 sx3 sy1

1 1 1 0 0 0 0 0 0 0 0

2 0,934 0 0 0,80 0 0 344,77 107,73 0 4 971,38

3 1 0 1 0 0 0 0 0 0 0

4 1 0 0 1 0 0 0 0 0 0

5 0,843 0 0 0,59 0 0 47,72 91,07 0 26 811,53

6 0,992 0 0,27 0,53 0 0 136,91 48,20 0 0

7 0,952 0,29 0,13 0,42 0 0 0 27,89 0 0

8 0,750 0 0 0,32 0 0 101,11 26,91 0 22 003,08

9 0,883 0 0,26 0,35 0 0 100,15 35,09 0 0

10 0,828 0 0 0,06 0 0,37 0 46,05 0 1 840,23

11 0,999 0 0 0 0,34 0,68 0 31,20 251,09 0

12 0,776 0 0 0,12 0 0,39 0 57,67 0 7 332,87

13 0,931 0 0 0,08 0,19 0,70 0 5,69 0 0

14 0,919 0,01 0 0,15 0,46 0 0 22,75 0 0

15 0,829 0 0 0,11 0 0,47 0 62,15 0 16 538,94

16 1 0 0 0 1 0 0 0 0 0

17 1 0 0 0 0 1 0 0 0 0

18 0,949 0 0 0,02 0 1,12 0 72,41 0 6 995,04

19 0,957 0 0 0,03 0 1,25 0 14,96 0 6 957,18

20 0,853 0 0 0,02 0 0,89 0 53,84 0 6 489,28

Tabuľka B.3: Výsledky výpočtov s Modelom A.
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Aditívny model:

Hodnota λ1 λ3 λ4 λ16 λ17 sx1 sx2 sx3 sy1 sy1

1 0 1 0 0 0 0 0 0 0 0 0

2 -74 602,79 0 0,86 0,18 0 0 0 84,60 0 73 335,23 1 182,96

3 0 0 1 0 0 0 0 0 0 0 0

4 0 0 0 1 0 0 0 0 0 0 0

5 -78 833,62 0 0,13 0,59 0 0 0 103,35 0 71 673,57 7 056,69

6 -9 484,43 0 0,40 0,44 0 0 84,20 44,10 0 9 356,13 0

7 -21 865,72 0 0,24 0,64 0 0 0 35,23 0 17 281,55 4 548,94

8 -76 590,32 0 0,32 0,17 0 0 0 24,66 0 71 005,68 5 559,98

9 -49 569,71 0 0,56 0,18 0 0 0 30,31 0 45 545,40 3 994,00

10 -15 310,14 0 0 0,04 0,41 0 0 42,12 0 14 166,18 1 101,83

11 -350,823 0 0 0 0,34 0,67 0 31,53 259,10 60,19 0

12 -29 882,09 0 0 0,11 0,46 0 0 59,05 0 27 234,07 2 588,97

13 -14 140,38 0 0 0,05 0,77 0 0 0 280,72 13 542,90 316,75

14 -10 736,91 0 0 0,18 0,49 0 0 26,40 0 9 049,24 1 661,28

15 -34 584,14 0 0 0,09 0,52 0 0 57,71 0 32 678,48 1 847,94

16 0 0 0 0 1 0 0 0 0 0 0

17 0 0 0 0 0 1 0 0 0 0 0

18 -14 649,65 0 0 0 0,38 0,64 0 76,03 273,28 14 300,34 0

19 -15 337,53 0 0 0 0,43 0,73 0 11,18 218,05 15 108,30 0

20 -19 134,35 0 0 0 0,55 0,04 0 85,57 900,16 18 148,62 0

Tabuľka B.7: Výsledky výpočtov s aditívnym modelom.
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Japonské banky – výsledky výpočtov Príloha B

Model B:

Hodnota λ1 λ3 λ4 λ16 λ17 σ1 σ2 σ3 γ1 γ2

1 0 1 0 0 0 0 0 0 0 0 0

2 -0,364 0 0 0,86 0 0 0,35 0,26 0 0,17 0,14

3 0 0 1 0 0 0 0 0 0 0 0

4 0 0 0 1 0 0 0 0 0 0 0

5 -0,683 0 0 0,70 0 0 0,09 0,29 0 0,73 0,37

6 -0,124 0 0,22 0,57 0 0 0,19 0,15 0 0 0,02

7 -0,198 0 0 0,83 0 0 0,14 0,12 0 0,03 0,20

8 -1,265 0 0,32 0,17 0 0 0 0,13 0 1,89 0,56

9 -0,397 0 0 0,62 0 0 0,33 0,18 0 0,14 0,32

10 -0,827 0 0 0,04 0,41 0 0 0,31 0 1,11 0,34

11 -0,085 0 0 0 0,34 0,67 0 0,18 0,07 0 0

12 -1,135 0 0 0,11 0,46 0 0 0,31 0 1,54 0,52

13 -0,277 0 0 0,07 0,61 0 0 0,14 0,15 0,36 0

14 -0,296 0 0 0,24 0 0 0 0,53 0,23 0,01 0,08

15 -1,878 0 0 0,09 0,52 0 0 0,30 0 3,21 0,35

16 0 0 0 0 1 0 0 0 0 0 0

17 0 0 0 0 0 1 0 0 0 0 0

18 -1,078 0 0 0 0,38 0,64 0 0,34 0,07 1,88 0

19 -0,814 0 0 0 0,43 0,73 0 0,06 0,05 1,55 0

20 -1,807 0 0 0 0,55 0,04 0 0,44 0,26 3,15 0

Tabuľka B.8: Výsledky výpočtov s Modelom B.
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