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Abstrakt

HALUSTOKOVA, Kristina: Niektoré nestandardné DEA modely: vlastnosti a porov-
nania [Bakalarska pracal, Univerzita Komenského v Bratislave, Fakulta matematiky,
fyziky a informatiky, Katedra aplikovanej matematiky a statistiky; vedici prace: doc.
RNDr. Margaréta Halicka, CSc., Bratislava, 2016, 82 s.

Teoria DEA modelovania je klticovou zlozkou v urcovani miery efektivity jednotli-
vych utvarov vramci celej skupiny. Doteraz sa na tento tcel pouzivali tradi¢né modely,
ktorych vlastnosti sii dobre popisané. V nasej praci sa zaoberame dvoma nestandard-
nymi neorientovanymi modelmi, ktoré s zalozené na koeficientoch skracovania vstu-
pov, pripadne predlZzovania vystupov. Cielom prace je tieto nové modely dokladne
presktimat, popisat ich vlastnosti a nasledne ich porovnat so standardnymi modelmi
na praktickych prikladoch. V tvodnej kapitole sme definovali zdkladné pojmy a tra-
dicné modely z DEA. V dalsich dvoch kapitolach sme predstavili dva nestandardné
modely — radidlny neorientovany model a neradidlny neorientovany model. Podarilo sa
nam popisat ich vlastnosti a na zaklade praktickych prikladov odvodit vztahy medzi

efektivitami modelov.

Kliacové slova: Data Envelopment Analysis (DEA), nestandardné DEA modely,

radialny neorientovany model, neradialny neorientovany model



Abstract

HALUSTOKOVA, Kristina: Some non-standard DEA models: properties and compa-
risons [Bachelor Thesis|, Comenius University in Bratislava, Faculty of Mathematics,
Physics and Informatics, Department of Applied Mathematics and Statistics; Supervi-
sor: doc. RNDr. Margaréta Halickd, CSc., Bratislava, 2016, 82 p.

Theory of DEA modeling is the key component in determining the level of the
efficiency of individual units within the whole group. For this purpose were used tra-
ditional models so far, whose characteristics are described very well in literature. In
our thesis we deal with two non-standard unoriented models, which are based on the
coefficients of shortening the inputs or extension of the outputs. Main aim is to explore
these new models carefully, describe their characteristics and then compare them with
the standard models on practical examples. In the first chapter we define the basic
concepts and traditional models of DEA. In the next two chapters we introduce two
non-standard models — radial unoriented model and non-radial unoriented model. We
have been able to describe their features and derive the relations between efficiencies

of models based on practical examples.

Keywords: Data Envelopment Analysis (DEA), non-standard DEA models, radial

unoriented model, non-radial unoriented model
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UVOD UVOD

Uvod

Podla odhadov Organizicie OSN pre vyzivu a polnohospodarstvo [1] skonéi ako odpad
az okolo tretiny celosvetovo vyprodukovanych potravin, ¢o predstavuje asi 1,3 miliard
ton ro¢ne. V Eurépe je to 95 - 115 kg na cloveka. K plytvaniu vsak nedochadza iba
v oblasti potravin, ale aj v oblasti vyuzivania financii. Na Slovensku funguju projekty
ako iness (Institue of Economic and Social Studies), ktoré poukazuji na plytvanie Stat-
nymi zdrojmi. Napriklad implementacia nefunkéného danového systému KONS stala
Slovensko 29 miliénov eur, pricom uz najblizsi rok by sa mal tento systém opéf menit.

Aj z tychto dovodov sa ukazuje byt problematika plytvania a problematika efektiv-
neho vyuzivania zdrojov v ¢asoch stucasnej konzumnej spoloc¢nosti kltcova. Efektivnym
vyuziva- nim zdrojov a meranim efektivity sa Iudia zacali zaoberat aj na poli matema-
tiky, ¢o v sedemdesiatych rokoch minulého storocia vyustilo do vzniku matematickej
discipliny Data Envelopment Analysis, skratene DEA.

Ide o riesenie stiboru tloh matematického programovania, pricom zo skupiny viace-
rych dtvarov sa na zaklade vzajomného porovnavania vyberaju tie s najlepsim vyko-
nom.

V sicasnosti je teéria DEA velmi dobre popisana napriklad v [2] a [4], pricom pre
nasu pracu vychadzame najmé zo skript [5], kde st podrobne rozobrané zakladné obal-
kové modely CCR a BCC a neorientovany aditivny model.

V tejto préci sa zameriame na dva doteraz malo preskiimané modely. Prvym z nich
je radidlny neorientovany model, ktory je Specificky skracovanim, pripadne predlzo-
vanim vsetkych zloziek vstupov a vystupov stcasne rovnakou hodnotou. Druhym je
neradialny neorientovany model, ktory je taktiez typicky predlzovanim a skracovanim,
avsak kazdého vstupu a vystupu zvlast.

Cielom nasej prace je uchopit vlastnosti spominanych dvoch modelov a porovnat ich
na praktickych prikladoch s vlastnostami standardnych modelov, identifikovat mozné
pripady pseudoefektivity a spravne najst efektivne vzory.

Pracu sme rozdelili do 4 kapitol. V prvej kapitole sa zameriame na definovanie za-
kladnych pojmov v DEA modelovani, popiseme tri standardné modely a vysvetlime
hladanie efektivnych vzorov. V druhej kapitole predstavime radidlny neorientovany

model, odvodime jeho zakladné vlastnosti a uvedieme geometrickti interpretaciu hla-

11



UVOD UVOD

dania A-vzorov. Dalej sa budeme venovat porovnaniu vlastnost{ s uz zndimymi modelmi
CCR a BCC, popisanymi v [5] a v [2]. Na praktickom priklade demonstrujeme mozné
vyhody a nevyhody radialneho neorientovaného modelu oproti rieseniu danej tlohy po-
mocou CCR a BCC. V tretej casti sa budeme venovat druhému netypickému modelu
— neradidlnemu neorientovanému modelu. Podobne ako v predchadzajtcej kapitole sa
sustredime na jeho definiciu a zakladné vlastnosti. Skiimany model budeme porovna-
vat s neorientovanym aditivnym modelom, a to na zaklade dvojrozmerného praktického
prikladu. V poslednej kapitole vyuzijeme stibor realnych dat z ¢lanku [6] a postupne

nan aplikujeme vSetky spominané modely a vyhodnotime vysledky:.

12



1 UVOD DO DEA MODELOVANIA

1 Uvod do DEA modelovania

V prvej kapitole zavedieme oznacenia, uvedieme zadkladné pojmy a niektoré modely,
ktorych vlastnosti si v DEA podrobne zanalyzované. Konkrétne st to CCR, BCC a
aditivny model. Prvy odpoveda konstantnym vynosom z rozsahu, druhy variabilnym a
z posledného existuju verzie pre obidva typy.

Ako prvy zavedieme pojem Decision Making Unit, alebo skrdtene DMU;,j = 1,...,n.
Toto oznacenie sa zauzivalo pre jednotlivé firmy, ktoré rozhodujt o velkosti produkcie a
mnozstve vstupov nezavisle na ostatnych vramci nasej skupiny, ktort vyhodnocujeme.

Teraz definujeme vektor vstupov x; a vystupov y; pre j-tu DMU nasledovne:

L1 Y15
(vstupy) x;=| =z |, (vystupy) y;=| y,; |pre j=1,...,n
Lmy Ysi

Pre j-ty utvar DMU budeme teda hovorit o i-tom vstupe z;; a r-tom vystupe y,;.
Obcas potrebujeme pracovat s maticami, najma pri programovani modelov to moze

byt uzitoéné, takze vytvorime maticu vstupov X a maticu vystupov Y.

r11 ... T .- T1n
matica
= Ti1 Tij Tin
vstupov
Tm1 -+ Tmj .. Tmn
Yir .- Y15 -+ Yin
matica
, Y = Yr1 Yrj Yrn
vystupov ] ]
Ys1 - ysj <o Ysn

Analogicky ako v [5] budeme ziadat splnenie nasledujiiceho predpokladu o détach

dlohy.
Predpoklad: Vj=1,...,n:2; >0,,2; #0, a y; >0, y; #O0s. (1.1)

13



1 UVOD DO DEA MODELOVANIA

Dolezita ulohu v DEA modelovani hra pojem mnoziny produkcnych moznosti. Pred-
pokladajme, Ze mame danych n  DMU;, 5 = 1....,n, kde kazdé DMU; premiena
svoje vstupy x; na vystupy y,;. Potom podla skript [5] pod mnozinou Mcps, ktord
odpoveda konstantnym vynosom z rozsahu rozumieme mnozinu

Megs = {(z,y) e R™* | Y Ny <z, > Ny; >y, >0},
j=1 j=1
kde vektor A = (Aq,..., \,)7.
Podobne, mnozinu My rg, odpovedajicu variabilnym vynosom z rozsahu, definujeme

ako
Mygs = {(z,y) e R™™ | Z)\j%‘ <z, Z)\jyj >y, Z)\j =1, A>0}
= j=1 j=1

Vidime, Ze Mcrs je konvexny kuZzel generovany vektormi jednotlivych DMU; rozsi-
reny o dvojice, ktoré maju vacsie vstupy alebo mensie vystupy. Mnozina My s je kon-
vexnou mnozinou opét generovanou vektormi jednotlivych DMU; rozsirenou o dvojice,
ktoré maju vacsie vstupy alebo mensie vystupy.

Dvojicu (z,y) € M nazyvame Pareto-efektivnou v M prave vtedy, ked neexistuje
taky bod (2',y") € M, ze (2',y') # (x,y) a zdroven x > 2’ a y < y.

Je zrejmé, ze efektivna dvojica musi byt z hranice M. Na hranici vSak mozu lezat
aj také body, ktoré nie su efektivne. Takéto dvojice nazyvame pseudoefektivne. Body
leziace vo vnuitri mnoziny M nazyvame neefektivne.

Vo vSeobecnosti mdme k DEA modelom dva pristupy — multiplikationy (MM) a
obdlkovy (OM). Multiplikativny priradzuje jednotlivym druhom vstupov a vystupov
rozne vahy a na zéklade toho najde najlepsieho kandidata. Obalkovy pristup sa opiera
o predtym spominané mnoziny Mcrs a My rs. V principe vyhodnocuje, kde v mnozine
M sa jednotlivé DMU nachadzaju. Dolezité je tiez spomentt, Ze dané pristupy su k
sebe navzajom dudlne tulohy.

Pomocou obélkového pristupu k tlohdm dostaneme pre kazdé z DMU optimélne
premenné A\, j = 1,...,n a pomocou nich dopocitame projekciu na hranicu mnoziny
M, tzv. \*-vzor. Moze vsak nastat pripad, Ze sa projekcia uskutoc¢ni na pseudoefektivnu
cast hranice mnoziny M a na najdenie skutocného efektivneho vzoru pre dany utvar
budeme musiet pouzit tzv. dvojfizovi metédu podrobnejsie popisant v [5]. V principe

ide o vytvorenie druhej tlohy, ktora sa ponasa na nasu pévodnt, avsak so zmenenou

14



1 UVOD DO DEA MODELOVANIA

ucelovou funkciou a priamo sa v nej vyuziva vysledok ziskany z prvej tlohy. Pojde
o maximalizacny typ ulohy a podstatou bude maximalizovat stucet vsSetkych rezerv,
tzv. slackov. Taktiez dostaneme premenné \*, no tieto nam uz zarucia, ze vzor bude z
efektivnej Casti hranice.

Ako prvy zo standardnych modelov pozname CCR model. Odpovedd konstantnym
vynosom z rozsahu a rozlisujeme jeho dve verzie — vstupne orientovany (Input — 1) a
vystupne orientovany (Output — O).

Obalkovy vstupne orientovany CCR-I-OM geometricky predstavuje radialne skraco-
vanie vstupov na hranicu mnoziny M¢cgrg, pricom vystupy ostavaji nezmenené. Skra-
covanie prebieha prostrednictvom koeficientu 6, ktory v tilohe minimalizujeme. Z toho
prirodzene vyplyva, ze 6 sa pohybuje v intervale [0, 1] a predstavuje mieru efektivity,

pricom pre hodnotu 1 identifikujeme efektivnost, pripadne pseudoefektivnost.

(CCR-I-OM), : min 0

s.t. Z)\jl’j < 0[)’}0,
T (1.2)
Z )‘jyj 2 Yo,

j=1

A>0,.
Dualizaciou vznikne tloha:

(CCR-I-MM),, : max u'y, = U,

b 0Tz, =1,
U (1.3)
uly; —vTz; <0, j=1,...,n,

v > 0, u > 0.

Interpretacia optimalneho riesenia dualnej ilohy u*, v* s optimalnou hodnotou tce-
lovej funkcie u*?y, = UZ, pricom pod pojmom kladné optimdlne rieSenie sa rozumie

u* > 0, a zéroven v* > 0,,, bude z definicie zo skript [5] nasledujica:

« Ak existuje kladné optimalne riesenie tlohy (CCR-I-MM), a plati U} = 1, atvar
DMU, je efektivny a U} =1 je jeho efektivitou.

« Ak existuje kladné optimalne riesenie tlohy (CCR-I-MM), a plati U} < 1, atvar
DMU, je neefektivny a U} je jeho efektivitou.

15



1 UVOD DO DEA MODELOVANIA

o Ak neexistuje kladné optimélne riesenie tlohy (CCR-I-MM), a plati U} = 1,

utvar DMU, je pseudoefektivny a U} =1 je jeho pseudoefektivitou.

o Ak neexistuje kladné optimdlne riesenie tulohy (CCR-I-MM), a plati U < 1,
utvar DMU, je neefektivny a U] je jeho pseudoefektivitou.

Obalkovy vystupny model CCR-O-OM zase geometricky predstavuje radidlne predlzo-
vanie vystupov pomocou koeficientu 1. Koeficient musi spliiat podmienku ¢» > 1. Miera
efektivity bude zaznamenana ako prevratena hodnota w, . Hodnoty koeficinetov 6 a

E sa pre spolocnt skupinu DMUj;,j = 1,...,n, rovnaju.
(CCR-O-OM), : max Y

Z ij]’ < o,
o (1.4)

Z Ajyj > wyoa
j=1

A 2 0p,
(CCR-O-MM), : min vz,
b uly, =1,
. (1.5)
uly; —oTz; <0, j=1,...,n,

v > 0, u > 0.
Interpretacia rieseni je iiplne analogicka ako pre model CCR-I, ibaze v tomto pripade

optimalnu hodnotu tcelovej funkcie oznac¢ime v*7'z, = V* a efektivitu ako W'

Pre zopakovanie zdoraznime, ze vSetky tieto modely odpovedaji konstantnym vy-

nosom z rozsahu. Teraz CCR model modifikujeme na tlohu odpovedajicu variabilnym

n

vynosom z rozsahu pomocou pridania ohranic¢enia > A\; = 1. Vznikne tak BCC model
i=1

pomenovy podla autorov Bankera, Charnesa a Coopera. Opéat rozliSujeme vstupne a

vystupne orientovanu verziu pre obalkovy aj multiplikativny pristup:

(BCC-I-OM), : rgiAn 6

DRVELER

it
Y NY = Yo
7j=1
n

ZAJ n

Jj=1

(1.6)

16



1 UVOD DO DEA MODELOVANIA

(BCC-I-MM), : max u'y,+ 2

U, 2

sit. vz, =1,
(1.7)
uTyj—vij+z§0, 7=1...,n,
v 2> 0p,u> 06,2 €R,
(BCC-O-OM), : max v
s.t. Z Az <z,
=1
Ta (1.8)
Z )‘jyj > ¢y07
j=1
Z )\j = 1, )\ Z On,
j=1
(BCC-O-MM),, : min vz, — 2
b uly, =1,
Sy (1.9)

uTyj—vT:Ej+z§0, 7=1...,n,
v > 0, u > 04,2z € R

Pre tieto druhy modelov vsak uz neplati rovnost medzi koeficientami 6 a i a teda

1
0+ —.
#Qb

Platia vSak obdobné definicie (pseudo)efektivnosti a (pseudo)efektivity ako pri CCR,
to znamena optimélna hodnota 6 pre BCC-I a prevratena optimélna hodnota 1), i, pri
BCC-O vyjadruju mieru (pseudo)efektivity. V pripade, ak neexistuje kladné optiméalne
riesenie multiplikativnej tlohy a optimalna hodnota tcelovej funkcie vysla rovna 1,
hovorime, ze utvar je pseudoefektivny a ak vysla mensia ako 1, itvar nazveme neefek-
tivnym. Ak existuje kladné optiméalne riesenie a hodnota tucelovej funkcie je rovna 1,
hovorime, ze utvar je efektivny a ak mensia ako 1, neefektivny.

Vsetky doteraz spomenuté modely spadaju do kategdrie orientovanych modelov, to
znaci, ze modifikuju len vstupy alebo len vystupy. Ako dalSie dva spomenieme tzv.
neorientované, ¢o znamena, ze budui sucasne upravovat vstupy aj vystupy. Konkrétne,
ako prvy je to aditivny model s konstantnymi vynosmi z rozsahu. Geometricky sa sna-

zime dany utvar posunit o najvacsiu moznu cast vo vertikalnom alebo horizontalnom
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1 UVOD DO DEA MODELOVANIA

smere az na efektivnu hranicu.

(AD-OM-CRS), : )\Iglxusly —(11s* +17s¥) <= )\rggi(y(ﬂgbsx + 17sY)
s.t. Zn: Az + 8" = x,,
=1 (1.10)
>Ny — 8" =y,
j=1
A>0,, 5 >0, s >0,

n

Podobne, ako tomu bolo pri BCC modeli, pridanim ohranic¢enia > A\; = 1 dostaneme
j=1

model odpovedajici variabilnym vynosom z rozsahu:

(AD-OM-VRS),: min —(1] s+ 17s¥) <= max (11 s* + 11s¥)

A,8T sY A,8T sY

st Y Nz 4 T =1,
i=1
n (1.11)
Z )‘jyj — 8" = Yo,
j=1
YA =1,1>0,,5" > 04,5 >0,
j=1

Obidve verzie aditivneho modelu st vlastne tilohou na maximalizaciu slackov, teda
druhou fazou v dvojfazovej metdde. Preto, na rozdiel od orientovanych modelov CCR
a BCC, optimalny A*-vzor je vzdy efektivny, to znamend, ze lezi na efektivnej casti
hranice mnoziny M.

Nevyhodou oproti orientovanym modelom je, ze optiméalnu hodnotu icelovej funkcie
nevieme rovno prehlasit za mieru efektivity, kedze nadobida Iubovolné hodnoty z in-
tervalu (—oo, 0]. Efektivitu preto musime dopocitavat pomocou vzorca (1.12) pomocou

priemeru parcialnych efektivit:

o (mx+z> (1.12)

m+ s\ Tie ;21 Yr

18



2 MODEL A

2 Radialny neorientovany model

Ako prvy z netradicnych DEA modelov si predstavime radialny neorientovany model,
ktory budeme skratene oznacovat Model A.

Pri tradi¢cnom obalkovom pristupe k modelom s konstantnymi vynosmi z rozsahu
(CRS) sme sa orientovali bud na vystupy alebo na vstupy. V tilohdch matematického
programovania sme teda ponechali vstup rovnaky a vystup sme sa pokusali ¢o najviac
predizit, alebo opacne, ponechali sme vystup a snazili sa ¢o najviac Setrit - zmensovat
vstupy.

Pri radialnom neorientovanom modeli budeme skracovat vstupy a predlzovat vy-
stupy sucasne, pricom koeficient radialneho skracovania vstupov a radialneho predlzo-
vania vystupov vyjadrime pomocou rovnakej premennej § ako (1 — 9), resp. (1 + 9).

Matematicky zapisany model teda bude vyzerat:
(Model A1), : max J

st Y Az < (1—6)w,,
it (2.1)

SNy > (14 8)yo,
j=1
A>0,.

Ak je utvar efektivny, nachadza sa na hranici mnoziny Mcgrs a teda nie je mozné
jeho vstupy zmensovat a vystupy zviacsovat. To znaci, Zze optimalna hodnota 0* bude
rovné 0. UkéZeme, ze optimalna 0* je z intervalu [0,1]. Kedze 6 = 0 je ur¢ite pripustnym
rieSenim dlohy a tloha je maximalizaéna, tak optimédlna hodnota §* spliia vztah 6* > 0.

Horné ohranicenie ziskame z nerovnosti:
n
Z Ajzy < (1= 0)a,.
j=1

n
Sucet Y. A\jx; nemoze byt zaporny, kvoli poziadavke na nezdpornost vSetkych A; a
j=1

Predpokladu (1.1). Z toho vyplyva:
(1-0)>0 <= 0<1,

v kazdom pripustnom rieSeni § a teda aj v optimalnom 0*. Nasledne vyvstava otazka

¢o pri takomto modeli povazovat za efektivitu? Hlavnym kritériom, ktoré musi byt
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2 MODEL A

splnené je, ze pri efektivnom ttvare potrebujeme mat hodnotu tcelovej funkcie rovnua

1. Poniikaji sa nam dvaja kandidati:

a) (1-07) b)

146"

Prva moznost odpoveda analdgii so vstupnym CCR modelom, druha odpoveda ana-
16gii s vystupnym. Obidve moznosti spadaju do intervalu [0,1] a pri efektivnom utvare,
resp. ked 6 je 0, st rovné 1. Pozrieme sa blizsie na ich vzdjomny vztah. Funkcia 5 + s
mé kladni druht derivaciu, takze je konvexnou funkciou. Funkcia (1 — §) je linearna

a lezi pod touto konvexnou funkciou, pricom bod dotyku je prave pripad efektivneho

utvaru, teda bod 0. Tym padom plati vztah:

1

gz (1-0) v (2.2)

Za efektivitu zvolime nizsiu z tycho dvoch hodndét, aby model zbytoc¢ne nenadhod-
nocoval. Vzhladom na vseobecne zauzivané identifikovanie efektivnosti v hodnote 1 v

skriptéch [5], upravime model A1l do vhodnejsej podoby.

Definicia 1. Pod Modelom A odpovedajiicom CRS aplikovangm na DMU = (z,,,)

rozumieme nasledujicu ulohu linedrneho programovania:
(Model A), - m&n 1-9

Z )\jxj S (1 — 6)1’0,

(2.3)
Z Ay = (1+0)yo,
)\ > 0,.
Pod Modelom A odpovedajiicom VRS rozumieme ulohu:
(Model A s VRS), : m:&\n 1-0
st Y Nzy < (1—6)w,,

j=1
>Ny = (14 0)yo, (2.4)
j=1
> A=1,
j=1
A>0,

20



2 MODEL A

Definicia 2. Nech 1 — 6* = E* je optimdlna hodnota icelovej funkcie v tilohe (2.3).

Potom:

e (z,y,) je efektivne, ak hodnota efektivity E* =1 a v kazdom optimdlnom rie-

sent su prvé dve nerovnice splnené ako rovnice,

e (z,,9,) je pseudoefektivne, ak hodnota pseudoefektivity E* = 1 a v niektorom
z optimdlnych rieseni nie je niektord zlozka vektoroviych merovnic spinend ako

rovnica,

e (70,Y,) je neefektivne, ak hodnota efektivity E* < 1 a v kaZdom optimdlnom

rieseni su prvé dve nerovnice splnené ako rovnice,

e (x,,9,) je neefektivne, ak hodnota efektivity E* < 1 a v niektorom z optimdlnych

riesent nie je niektord zlozZka vektorovych nerovnic splnend ako rovnica.

Uplne analogické definicia plati aj pre Model A s VRS (2.4).

Kedze pseudoefektivnost je neziadtca a vzdy sa snazime najst efektivny vzor, apli-
kujeme na Model A dvojfdzovii metédu podrobnejsie popisant v skriptéch [5]. V prvej
faze vyrieSime klasickd tlohu (2.3) a ziskame optimalnu hodnotu 6*. V druhej faze

riesime tzv. MS (MaxzSlack) ilohu, ktora v tomto pripade vyzera nasledovne:

(MS),: max 17s"4+1Tsv =S5

A,8T sY

st Y N4 s = (1 —6%)w,,

! (2:5)
DAy — 87 = (1+ 6y,
=1

A >0,

Takto ziskame optimalnu hodnotu A\*, pricom vzory pre vstupy a vystupy dopocitané
s A\* uz budu efektivne. Ak optimélna hodnota S* vysla vécsia ako 0, islo o pseudoefek-
tivitu. Ak S* = 0 islo o efektivitu. V pripade Modelu A s VRS (2.4) bude dvojfazova

metdda prebiehat rovnako, ibaze v tlohe (M.S), pribudne ohranicenie i A =1

j=1
K tlohe, ktord je podobna tradicnym tuloham v obalkovom pristupe, teraz podla

schémy popisanej v [5] vytvorime dudlnu tlohu v tzv. multiplikativnom tvare. Ne-
znamymi budu vektory vah u a v. Ako prvé prendsobime nerovnice (-1), aby sme pri

minimalizac¢nej 1lohe dostali ohranic¢enie v stlade so schémou - to znamend ohranicenie
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2 MODEL A

zdola. Dalej uz postupujeme tradicnym spésobom. Na zaver je dobré si uvedomit, ze
kedze sme k tcéelovej funkcii v minimalizac¢nej tlohe priratali 1, rovnako tak musime

urobif aj pri dualnej maximalizacnej tillohe. Pre Model A tak dostaneme nasledujice

dve tlohy:
PRIMARNA ULOHA: DUALNA ULOHA:
r%{i)\n 1—6+07A max 1+ylu—alv
st =250 — X\ > —x,, st. ylu+azlv=1,
ol + YA >, YTu— Xt <0,
0 eR,N>0,, v > 0,,, u > 0.

Pre Model A s VRS budu tlohy vyzeraf:

PRIMARNA ULOHA: DUALNA ULOHA:
IIél})\Il 1—6+0"A max L+ ylu—a2lv+ 2
st —x,0 — X\ > —x,, st ylu+zlv =1,

—yd + YA > 4, YTu—XTv+2<0,

05 + 17\ =1, v > 0, u > 04,2 € R,

0 eR, N> 0,,

Motivaciou pre vytvorenie dualnej iilohy bolo ulahc¢enie dokazovania existencie optimél-

neho riesenia, ktoré uvadzame dalej.

Tvrdenie 1. Uloha (Model A), a (Model A s VRS), md optimdlne riesenie pre aky-
kolvek sibor ddt spliiajici Predpoklad (1.1).

Dokaz. Na existenciu optiméalneho riesenia musi dualna tloha splnat nasledujtice pod-
mienky. Prvou je ohrani¢enost ticelovej funkcie zhora a druhou je existencia pripustného

riesenia a teda aj pripustnost samotnej tlohy. Najprv vytvorime dékaz pre tilohu

(Model A),.

(i) OHRANICENOST funkcie 1 + y v — zv
Ako prvé je potrebné uvedomit si, ze hodnoty nezndmych vdh uw a v musia spliiat
podmienku yfu — zJv < 0 pre vietky j = 1,...,7n, to znadi, ze aj pre z, a y, plati

yIu — 2Ty < 0. Teraz len k danej nerovnici staci pripoc¢itat 1 a dostaneme pozadované
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2 MODEL A

ohranicenie

1+ ylu—alv <1

(ii) PRIPUSTNOST dualnej tlohy

Na dokéazanie tejto vlastnosti budeme vychddzat z Predpokladu (1.1), ktory hovori o
tom, Ze Ziaden z vektorov x; ani y; nemoze byt cely nulovy, aj ked sa moze stat, zZe
niektoré zlozky bude mat nulové. Z toho mézeme tvrdit, Ze existuje [ € {1,...,m} :

21, > 0. Teraz zvolime nase pripustné riesenie v a u nasledovne:

Loaki=1,
— Tlo

V; = u= OS.
0 inak,
Lahko sa ukaze, ze nase najdené riesenie splina podmienku v tvare rovnosti:

1
T~ T= -
Yo U+ T,0 = T1p0; = Tjp— = 1.
Lo

Ako posledné este potrebujeme splnif podmienku v tvare nerovnosti iju - x;‘«rv <0

pre vsetky 7 = 1,...,n. Zvolené riesenie dosadime:

_ _ _ _ 1
y;fu — x?v <0 <= -1, <0 <= x;0v;, 20 < x;,— >0,

lo

¢o vidime, ze musi platit, nakolko sme vybrali x;, > 0 a pre vSetky j = 1,...,n, plati
x; > 0.

Zo silnej vety o dualite zo skript [3]: primédrna tloha mé optimélne rieSenie, potom
k nej dualna tloha ma optimélne riesenie a optimélne hodnoty tucelovych funkcii sa
rovnaju.

V duélnej dlohe k tilohe (Model A s VRS), pribudla navyse volnd premenné z, ktori
zvolime ako z = 0 a dalej v dokaze postupujeme tplne analogicky ako pri (Model A),.

Tymto sme dokazali Tvrdenie 1. ]

Geometricka interpretacia modelu
Aby sme boli schopni si cela situdciu predstavit geometricky, pripadne zobrazif ju na
obrazku, sme zvolili len pripad jedného vstupu a jedného vystupu.

Pri modeli CCR-O posuvame jednotlivé DMU; vertikdlne nahor, zatial¢o pri CCR-I
vodorovne dolava na hranicu mnoziny M¢crs. Podobne tomu je pri BBC-O a BBC-I a

prislusnej My gs.
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2 MODEL A

Model A vsSak hybe s oboma typmi premennych sicasne takymto spdsobom:
x— (1—90)x,
y— (1+9)y.
Tento posun je platny aj pre dimenziu vicsiu ako 2. Pre lepsiu predstavu sme do
Obrazku 1 zakreslili vSeobecny bod [z,y] a posivali ho na hranicu mnoziny M. Je
dolezité uvedomit si, Ze sklon hranice vobec neovplyvni smer posunu. To znamend, ze

podobne ako pri predoslych modeloch, medzi mnozinami Mcrs a My rg nie je rozdiel

z hladiska smeru postvania.

\ o ('Xay)

;S

Obr. 1: Geometrickd interpretdcia modelu A

Nas zaujima najméa smerovy vektor posunu § a uhol a.

bod posunieme: [z,y] = [(1 — )z, (1 +0)y]
smer posunu: §= ((1—-0)z —z,(1+ )y —y) = (—0z,dy) = 6(—=z,y)
velkost vektora posunu: 5] = /0222 + 6242 = 0 - /22 + 32

sino =

oy — y
6\/$2+y2 \/w2+y2
1 Y

podmienka pre uhol: « = sin~ NET
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2.1 Zakladné vlastnosti 2 MODEL A

Ako vidime velkost uhla «, ktory zviera vektor smeru posunu s vodorovnou osou,

nezavisi od parametra ¢.

2.1 Zakladné vlastnosti

Invariantnost modelu na zmenu jednotiek
Pri testovani efektivnosti jednotlivych utvarov potrebujeme castokrat zvolif iné jed-
notky, ktoré vyjadrujui vhodnejsie mnozstvo daného vstupu alebo vystupu. Napriklad
hmotnost sa v roznych krajindch meria inak - na Slovensku je miera hmotnosti uva-
dzana v kilogramoch, v USA v librach a pod. Na to aby sme v ramci modelu mohli
volne prechadzat z jednych jednotiek do druhych, musime prenho overit invariantnost
na zmenu jednotiek. Teda ukazat, Ze tiloha matematického programovania je po zmene
jednotiek ekvivaletna povodnej tlohe.

Nech matice A a B st maticami transformécii jednotiek. Nové vstupy a vystupy

prislichajice j-tej DMU oznac¢ime z; a y; a budi vyzerat nasledovne:

v 0 T1j 1
Az, = = :x;’a a>0 1=1,...,m,
0 7% Ty x;nj
B 0 Y1j yllj
By; = : = : :y;.7 6,>0 r=1,...,s.
0 Bs Ysj y;j

Teraz sa sustredime na porovnanie pévodného modelu s novym transformovanym
modelom a zistime, ¢i maji dané ilohy matematického programovania rovnaki mno-

zinu pripustnych rieseni a rovnaké hodnoty ucelovych funkcii.

uloha pred transforméciou:

minl — ¢
oA

ijj < (1 - 5)x07

o8

I
—

J

NE

Ay > (14 0)yo,

J=1

A >0,

25

uloha po transformacii:

minl — ¢
[N

NAz; < (1—06)Az,,
1

J

Z )\jByj Z (1 + 6)By0a

A > 0.



2.1 Zakladné vlastnosti 2 MODEL A

Tvar ucelovej funkcie sa zachoval, podobne aj poziadavka na dolné ohranicenie pre

A. Vidime, Ze zvysné dve ohranicenia si ekvivalentné. Pridanim ohranic¢enia na A\ v
n

tvare ) A; = 1 sa ekvivalencia tloh nepokazi a teda moéZeme vyhldsit, Ze Model A s

j=1
CRS aj VRS je invariantny na zmenu jednotiek.

Invariantnost modelu na posun

Pri tvorbe modelov sme sa primarne sustredili len na kladné vstupy a vystupy, avsak
niekedy v ekonomickych tlohach potrebujeme pracovat aj so zdpornymi datami. Vlast-
nost, ktorda nam umozni posunit sa az do zapornych ¢isiel, nazyvame invariantnost
na posun. Ku kazdému vstupu prirdtame vektor posunu vstupov Az a ku kazdému
vystupu zase vektor Ay, pricom niektoré zlozky tychto dvoch vektorov mozu byt aj
nulové — teda zachovaju povodné data. Pre vsetky 7 = 1,...,n definujeme vektory

posunu Az a Ay nasledovne:

T1; T1; Az T
— + : =ux;+ Az = = a7,
L Lnj Az, Ty
Y1 Yij Ay, Y
Sl = |+ : =y +Ay=1| : | =y
ysj ysj Ays y;j

Je ddlezité vsimnut si, ze vektorom posunu ovplyvnime vstupy a vystupy pre vSetky

DMU rovnako. Opéf si porovname povodnu tlohu s tlohou po transformacii:

povodna tloha: tloha po transformacii:

minl — 0 minl — 0

By EBY
> Az < (1= 6)w,, Nj(z;+ Azx) < (1 =6)(z, + Ax),
j=1 j=1
2 Ay = (14 0)o, > Ay +Ay) = (140)(yo + Ay),
J= J=

A >0, A >0,
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2.1 Zakladné vlastnosti 2 MODEL A

¢o je ekvivalentné:

povodna tloha: uloha po transformacii:

minl — ¢ minl — 90

[N S,
YAz < (1 —9)z,, YAz + Az Y N < (1—0)z,+ (1 —9)Ax,
j=1 j=1 j=1
2 Ay 2 (L4 0)yo, 2 A+ By £ A2 (1+0)yo + (1+0)Ay,
j= = Jj=

A>0, A>0.

Znovu nastava pripad, ked je tvar tucelovej funkcie rovnaky, podobne aj dolné ohra-
nicenie na premennu . Pozrieme sa blizSie na zvysné dvojice nerovnic. Aby boli tlohy

uplne ekvivalentné, potrebujeme aby platilo:

AN =(1-0Ar < S\ =(1-0),
> Py

7j=1

AyilAj:(Hé)Ay — ilAj:(H(S).
J= J=

Dané rovnice maju riesenie len vtedy, ak § zvolime nulové a sucet vsetkych A po-
lozime rovny 1. Vidime, Ze v pripade Modelu A s VRS (2.4) a aj to iba pre efektivne
utvary, su tieto podmienky splnené. To znamena, ze model pri posune zachovava roz-
delenie utvarov na efektivne a nefektivne. Hranica sa sice posunie, ale kvalitativne sa
nezmeni. Pri CRS sa vSsak zmeni aj hranica, analogicky ako pri vsetkych ostatnych Stan-
dardnych modeloch, ¢o je ukdzané aj na priklade zo skript [5]. Teda mdzeme prehlasit,

ze radidlny neorientovany model nie je invariantny na posun jednotiek.

Porovnanie vlastnosti s CCR a BCC modelom

Model zmena [ | zmena O | posun I | posun O
CCR-I ano ano nie nie
CCR-O ano ano nie nie
Model A CRS ano ano nie nie
BCC-I ano ano nie ano
BCC-0O ano ano ano nie
Model A VRS 4no 4no nie (+) | nie (+)

Tabulka 2.1: Prehlad invariantnosti modelov na zmenu alebo posun jednotiek.
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2.2 Porovnanie modelov A a CCR 2 MODEL A

Legenda: nie (+) znamend, Ze model nie je invariantny, avsak zachovdva rozdelenie

utvarov na efektivne a neefektivne.

2.2 Porovnanie modelov A a CCR

V tejto podkapitole sa budeme venovat porovnaniu dvoch modelov - ndsho Modelu A a
znamejsieho modelu CCR. Obidva odpovedaji konstatnym vynosom z rozsahu (CRS).
Pre jednoduchost sme zvolili priklad s jednorozmernymi vstupmi aj vystupmi. Budeme
tak maf lepsiu geometricka predstavu o tom, ¢o sa deje pri rieseni iloh matematického
programovania. Vsetky casti programu vytvoreného v Matlabe st vsak usposobené aj

na vacsie rozmery a prechod do nich je pomerne jednoduchy.

Priklad 1. Majme 5 utvarov s jednorozmernym vstupom a jednorozmernym vystupom.
Ddta st uvedené v Tabulke 2.2. Postupne na ne aplikujme modely CCR-1, CCR-O,
Model A, BCC-1I, BCC-O a Model A s VRS.

A|B|C|D|E

vstupy || 20 | 30 | 30 | 65 | 60
vystupy | 20 | 50 | 10 | 60 | 30

Tabulka 2.2: Vstupy a vystupy 5 DMU v Priklade 1.
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Obr. 2: Data zakreslené spolu s hranicou mnoziny Mcogrg pre Priklad 1.

Kedze Model A je neorientovany a meni stcasne vstupy aj vystupy, je potrebné ho
porovnavat s CCR orientovanym na vstupy a aj s druhym, orientovanym na vystupy.
Vysledky nasich vypoctov zaokrihlené na dve desatinné miesta uvadzame v Tabulke

2.3. Nulové hodnoty ostatnych A a slackov sme kvoli rozsahu tabulky vypustili.
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2.2 Porovnanie modelov A a CCR 2 MODEL A

Model Premenna A B C D E
CCR-I 0 06 1 02 055 03
Ao 04 1 02 12 06

efektivny vzor (vstupy) 12 30 6 36 18

efektivny vzor (vystupy) | 20 50 10 60 30
CCR-O b 167 1 5 1,81 3,33

Ao 067 1 1 217 2

efektivny vzor (vstupy) 20 30 30 65 60

efektivny vzor (vystupy) | 33,33 50 50 108,33 100

Model A 1-6 075 1 033 071 046
A2 0,5 1 0,33 1,54 0,92
efektivny vzor (vstupy) 15 30 10 46,34 27,69

efektivny vzor (vystupy) | 25 50 16,67 77,23 46,15

Tabulka 2.3: Vysledky vypoctov Model A vs. CCR v Priklade 1.

Vsetky premenné uvedené v Tabulke 2.3 st optimalnymi rieSeniami a teda spréavne
by pri kazdom z nich malo byt oznacenie *, pre jednoduchsiu podobu tabuliek to vsak
neuvadzame ani tu, ani v dalsich kapitolach, no stale budeme mat na mysli optimalne
rieSenia.

7, predchadzajucich poznatkov z tedérie DEA modelovania vieme, ze pri vstupne
orientovanom CCR modeli je efektivita daného ttvaru reprezentovana optimalnou hod-

notou #* a pri vystupne orientovanom je to prevratena hodnota k optiméalnemu ¢*, teda

1
P

sme podla Definicie 2 vyhlasili taky, ktorého optimalna hodnota 6* vysla rovna 0 a

Model A sa vsak zaobera obidvoma premennymi sticasne, a teda za efektivny utvar
zaroven v kazdom optimalnom rieseni st prvé dve nerovnice v Modeli A splnené ako

rovnice. Ako sme odvodili na zaciatku tejto kapitoly, mieru efektivity zaznamename

ako ¢islo 1 — &*.
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2.2 Porovnanie modelov A a CCR 2 MODEL A

Model Premenna A B C D E

CCR-I 0 (efektivita) 06 1 02 055 03
CCR-O Y 1,67 1 5 181 3,33
i (efektivita) 06 1 02 055 03

Model A | 1—§ (efektivita) | 0,75 1 0,33 0,71 0,46
d 0,25 0 0,67 0,29 0,54

1+0 1,25 1 1,67 1,29 1,54

5 08 1 06 0,78 0,65

Tabulka 2.4: Porovnanie efektivit modelov s CRS v Priklade 1.

Vsimnime si, ze Model A dava vyssie hodnoty efektivit ako ddvaju CCR-I, resp.

CCR-O. V nasledujicom tvrdeni dokazeme, ze toto je vSeobecna vlastnost.

Tvrdenie 2. Nech §* je optimdlnym riesenim pre (z,,y,) v Modeli A pre CRS. Nech 6*
je optimdlnym riesenim v CCR-I a nech ¢* je optimdlnym riesenim v CCR-O. Potom

plati vztah:

1
—=0"<1-90"< .

To znamend, Ze Model A pre CRS nadhodnocuje efektivitu kazdého tutvaru v porovnani

s CCR modelms.

(2.6)

Dokaz. Nech 0" a A* je optimélne riesenie Modelu A, teda nutne platia vztahy - Ajz; <
j=1

(1 —9%)z,, i Ny > (1 +0%)y,. Potom 0 a \, zvolené ako:
j=1

je urcite riesenim systému:

7 toho vyplyva, 7e  a A je pripustné riesenie pre CCR-I. Hodnotu # v tlohe minima-

lizujeme, takze vsetky pripustné riesenia tlohy st vécsie, nanajvys rovné optimélnej
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2.3 Porovnanie modelov A a BCC 2 MODEL A

hodnote 6* a teda plati § = 1 — 6* > 6* = wi Platnost druhej casti nerovnosti nam
zabezpeci vztah (2.2), ktory sme odvodili na zadiatku kapitoly. Tymto sme dokazali,

ze oba vztahy (2.6) platia. O

Na Obrazku 3 sme zakreslili pozicie utvarov a ich efektivne vzory uréené CCR-I,

CCR-0O a Modelom A, ktoré sme od seba farebne odlisili.
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Obr. 3: Efektivne vzory oznacené * na hranici mnoziny Mcrs pre Priklad 1.

2.3 Porovnanie modelov A a BCC

Doteraz sme sa zaoberali Modelom A odpovedajicom konstatnym vynosom z rozsahu.
Prechod k variabilnym vynosom z rozsahu (VRS) ndm umozni priadanie nového ohra-

n
nicenia na premenné A v tvare: Y- A\; = 1, podobne ako je tomu pri prechode z CCR ku

7=1
BCC modelom alebo aditivnheho modelu k aditivnemu modelu s VRS. Nase vysledné

modely, ktoré porovnavame budu vyzerat nasledovne:
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2.3 Porovnanie modelov A a BCC

2 MODEL A

Model BCC-I

min 6
‘B

Model BCC-0O

max
P, ¥

i ijj S Lo,
i=1
Z )‘jyj > ¢y07
Jj=1
Z A] - 17

j=1

A >0,

Model A s VRS

minl — ¢

)

Nz < (1 —6)w,,

o8

I
—

J

o8

l)vyj > (14 6)yo,

J

M=

A =1,

J

I
> =

> 0.

Prakticky priklad na porovnanie sme zvolili rovnaky ako v predoslej podkapitole,

data pouzijeme z Tabulky 2.2. Data sme vybrali tak, aby nam v pripade BCC modelov

vysli nejaké pseudoefektivne rieSenia. Je to z dévodu, aby sme zistili, ako si s nimi

Model A poradi a ako ich vyhodnoti on. Na Obrazku 4 je zakreslend nova hranica

mnoziny.
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Obr. 4: Data zakreslené spolu s hranicou mnoziny My rg pre Priklad 1.
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2.3 Porovnanie modelov A a BCC

2 MODEL A

V Tabulke 2.5 uvadzame vysledky nasich vypoctov. Ako si mézeme vsimnut, za efek-

tivne oznacili vsetky modely rovnaké utvary. Znackou P st oznacené pseudoefektivity.

Model Premenna A B C D E
BCC-I 0 1 1 067" 1 039
A1 1 0 1 0 0,67
A2 0 1 0 0 0,33
oV 0 0 0 1 0
sY 0 0 10 0 0
efektivny vzor (vstupy) | 20 30 20 65 23,33
efektivny vzor (vystupy) | 20 50 20 60 30
BCC-0O Wb 1 1 5 1 1,9
A1 1 0 0 0 0
Ao 0 1 1 0 0,14
A4 0 0 0 1 0,86
efektivny vzor (vstupy) |20 30 30 65 60
efektivny vzor (vystupy) | 20 50 50 60 58,57
Model A s VRS 1-9 1 1 067" 1 048
A 1 0 1 0 0,14
Ao 0 1 0 0 0,86
Aq 0 0 0 1 0
sY 0 0 667 0 0
efektivny vzor (vstupy) | 20 30 20 65 28,57
efektivny vzor (vystupy) | 20 50 20 60 45,71

Tabulka 2.5: Vysledky vypoctov Model A vs. BCC v Priklade 1.
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2.3 Porovnanie modelov A a BCC 2 MODEL A

V dalsej Tabulke 2.6 sme este zhrnuli hodnoty efektivit a dalsich premennych nasich

troch modelov.

Model Premenna A B C D E
BCC-I 0 (efektivita) 1 1 0,677 1 0,39
BCC-0 P 11 5 1 1,95
5 (efektivita) |1 1 02 1 051
Model A s VRS | 1 —§ (efektivita) | 1 1 0,677 1 048
§ 0 0 033 0 052
1+46 1 1 1,33 1 1,52

1

s 1 1 07 1 066

Tabulka 2.6: Porovnanie efektivit modelov s VRS v Priklade 1.

Kedze pri tomto type vynosov z rozsahu neplati, ze optimalna hodnota 6* sa rovné
hodnote ﬁ, tak aj vzfah medzi efektivitou Modelu A s VRS a efektivitami BCC
modelov bude komplikovanejsi v porovnani s Modelom A pre CRS a CCR. Ukazujt
to aj vysledky z Tabulky 2.6. Vidime, ze vzfah wi < 1—6* z Tvrdenia 2 uz nemusi
platit pre kazdé DMU. Konkrétne v nasom Priklade 1 pre DM U plati a pre DM Ug

nie. VSimnime si vsak, ze stale plati * < 1—0* a ¢»* > 14 6*. V nasledujicom tvrdeni

sformulujeme a dokazeme, ze posledné dva vztahy platia vo vSeobecnosti.

Tvrdenie 3. Nech 0* je optimdlnym riesenim pre (z,,y,) v Modeli A pre VRS. Nech 0*
je optimdlnym riesenim v BCC-1 a nech v¥* je optimdlnym riesenim v BCC-0. Potom

platia vztahy:
1 1

0r<1-6" — < .

(2.7)

Dékaz. Dokaz prvého vztahu v (2.7) je rovnaky ako v Tvrdeni 2. Pri dokaze druhe;
nerovnosti budeme postupovat podobne ako v predoslej podkapitole. Nech hodnoty ¢*

a \* st optimalnym rieSenim Modelu A. Zvolime premenné 1) = 1 + 6%, A = \*. Tym
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2.3 Porovnanie modelov A a BCC 2 MODEL A

padom budt splnené nasledujice podmienky:

Ukazali sme, ze ¢ = 1+ 0* je pripustnym rieSenim BCC-O modelu. Pripustné riesenie
v maximalizacnej tlohe bude mensie, nanajvys rovné ako optimalne riesenie a teda

dostavame platnost vztahov (2.7). O

Z uvedenych vztahov (2.7) pre optimalne hodnoty vyplyva, ze efektivny vzor v pri-
pade Modelu A sa nachddza medzi efektivnym vzorom pri vstupnom BCC a efektivnym
vzorom pri vystupnom modeli BCC, pripadne sa mézu zhodovat. Tato situacia je vidiet
aj na Obrazku 5.

V pripade Modelu A s VRS aj modelu BCC-I dostaneme projekciu na pseudoefek-
tivnu cast hranice na Obrazku 5 oznacent ako C’. Az po dopocitani druhej fazy sa
dostaneme do skuto¢ného efektivneho vzoru — bodu A. VSimnime si, Zze v pripade
Modelu A je pseudoefektivny vzor blizsie k efektivnemu ako v pripade BCC-I. Je to
z dovodu posunu v smere dolava nahor a nielen dolava, teda tpravou aj vstupov aj

vystupov oproti len skrateniu vstupov. Z tohto hladiska je Model A vyhodnejsi.
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Obr. 5: Efektivne vzory oznacené * na hranici mnoziny My rs pre Priklad 1.

37



3 MODEL B

3 Neradialny neorientovany model

Ako druhy netradi¢ny model vytvorime neradidlny neorientovany model a pracovne ho
nazveme Model B. Podobne ako Model A sa stustreduje na vstupy aj vystupy stucasne.
Rozdiel medzi nimi spociva v koeficientoch. Pri Modeli A sme vstupy skracovali pomo-
cou ¢isla (1 —9) a vystupy predlzovali pomocou (14 §). Pri Modeli B budeme pouzivat
rozny koeficient pre kazdy typ vstupu a vystupu zvlast. Preto vzniklo pomenovanie

neradialny. Premenné x, a y, prenasobené koeficientami budu vyzerat nasledovne:

(1 — 0'1)1'10 (1 + 71)y10
(1 - Ui)xio ) (1 + ’.)/r)yro
(]- - O-m)xmo (1 + ’YS)yso

Kedze uvazujeme len posun v smere zmensenia vstupov a zvacsenia vystupov, po-
zadujeme aby koeficienty o;,2=1,...,m a ., 7 =1,...,s, boli nezaporné.
Aby sme dosiahli tohto javu, vytvorime maticu, kde na diagonale budeme mat ko-

eficienty a nasobime zlava. Model tak bude vyzerat:

(Model B1), : min —(& in: oi+1 i Vr)

oA i=1 r=1
1-— o1 0
st Y Az < Lo,
j=1
0 1—o0o,
7 (3.1)
I+m ... 0
Z)\jyj Z Yo,
j=1
0 T
02 0my, 7205, AZ0p,
kde 0 = (01,...,0m)" a7y = (71,...,7s)". K modelu Bl vzdpati vytvorime dudlnu

ulohu a podla nej este doupravime niektoré ohranicenia a podmienky.
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3 MODEL B

PRIMARNA ULOHA: DUALNA ULOHA:
min  —(+ in: o+ 1 Xs: V) max ylu—xlv,
YA m =1 $ r=1 v,u
st. —diag(xy)o — X\ > —x,, s.t. —diag(xy)v < —% 1,
_diag(yo)’y + YA > Yo, _diag(yo)u < _% : ﬂsa
0> 0pm, 7> 041> 0,, YTy — XTv <0,
v > 0, u > 0.

V dalsom kroku odstranime poziadavku na kladnost vah v a v. Dévod je jednoduchy
— po upravach dostaneme poziadavku na dolné ohranicenie vah u aj v a je celkom

zbytocéné ohranicovat aj nulou:

1 1
—di o <_7:H-m > —(d o ! ILm7
iag(zo)v < —— = v —(diag(z,))
1 1
—diag(yo)u < —= -1, < u > =(diag(y,)) " - 1,
s s

V primérnej tlohe sa to prejavi v podobe zmeny ohranic¢eni z nerovnosti na rovnosti.

PRIMARNA ULOHA: DUALNA ULOHA:
min  —(;- g oi+1 ES: Vr) max ylu— xlv
T\ mi= S =1 VU
s.t. —diag(wo)o — X)\ = —Zo, S.t. _diag(xo)v S _% . ﬂm’
—diag(yo)y + YA = Yo, —diag(yo)u < —1 - 1,
020m772057/\20na YTU—XT'USOn,
v,u € R™ts

Definicia 3. Pod Modelom B odpovedajicom CRS aplikovangm na DMU = (z,,y,)

rozumieme nasledujicu tilohu LP:

3=

(Model B),: min —( gai—i-% i%«)
0,7, i=1 nr:1
s.t. diag(x,)o + > N\jxj = o,
i=1 (3.2)
—diag(yo)y + > Ajyj = Yor

=1
0> O,y > 05, A > 0,,.
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3 MODEL B

Pod Modelom B odpovedajicom VRS rozumieme tlohu:

(Model B s VRS),: min —(+ % oi+1 i V)

n (3.3)
—diag(yo)y + D Aj¥j = Yo
j=1
Y N=1,0>0m,7>0,A>0,

V tomto pripade mame obe premenné o a 7 nezaporné, to znamend, ze optimalna
hodnota tcelovej funkcie —(-- Tznjl oi+1 2: vr) spada do intervalu (—oo, 0] podobne ako
pri aditivhom modeli. Neviem;_sa obm;azit’ len na interval [0, 1] ani po pripoc¢itani 1
k hodnote ucelovej funkcie, ¢o potvrdzuju aj priklady dalej v kapitole. Preto optimalnu
hodnotu ucelovej funkcie nemoézeme interpretovat ako efektivitu, i ked moze poskytovat
urciti mieru neefektivity — ¢im je hodnota mensia, tym je utvar menej efektivny. Ak
chceme mat hodnotu interpretovatelni ako efektivitu, mézeme ju napriklad dopocitat
pomocou vzorca (1.12) rovnako ako pri aditivnom modeli.

Dalo by sa povedat, ze Model B je istou modifikaciou klasického aditivneho modelu,
pripadne, Ze sa ponasa na aditivny model s vahami blizSie popisany v skriptach [5]. Vy-
sledny A\*-vzor bude teda rovno efektivnym vzorom. Ak je optimélna hodnota tcelove;

funkcie rovna 0, tak je utvar efektivny, ak je < 0, tak je utvar neefektivny.

Aditivny model: Model B:
min —(17 s* + 17s) min — (= in: o+ Zs: V)
A,8%,8Y a7, m. S
> Az + 5T =, > Az + diag(x,)o = x,,
j=1 i=1
) AjYi — ¥ = Yo, ) Ay — diag(Yo)y = Yo,
j= j=
5% 2> 0y 8Y > 05, A > 0y, 0 2 0,y > 05, A > 0,

Vidime, ze v Modeli B postvame (z,,y,) v smere (—diag(z,)o, diag(y,)7y), to zna-
mena v smere zmensovania vstupov a zvic¢sovania vystupov. Rovnakym spdsobom
sme posuvali pri aditivnom modeli, ibaze sme mali vektor posunu vyjadreny pomocou
(—s",s¥). To znadi, ze mnozina pripustnych posunov je rovnaka pre obidva modely.

Rozdiel vsak bude v ucelovej funkcii. Zatial ¢o v aditivnom modeli sa posun vyko-

naval tak, aby sa maximalizovala hodnota stuctu zloziek vektorov s* a s, v Modeli B
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3 MODEL B

sa maximalizuje vazeny normovany sucet zloziek vektorov posunu. Ak totiz oznacime
diag(z,)o = s* a diag(y,)y = sY, tak ucelova funkciu v Modeli B vieme prepisat do

tvaru — (= S ly S,

i=1 Tio S r—=1 Yro

Aby sme vedeli dokazat nasledujice Tvrdenie 4, vytvorime dualnu ulohu aj k

Modelu B s VRS:

PRIMARNA ULOHA: DUALNA ULOHA:
min —(%gaﬁr%é%) max  ygu—r,v+ 2
st. —diag(x,)o — X\ = —x,, st —diag(z,)v < =L 1,
—diag(yo)y + Y X = y,, —diag(yo)u < —1 - 1,
0o + 0y + 17N =1, YTu— XTo+ 2 <0,,
0> 0,7 > 04,A>0,, v, u, z € RmHs+L,

Tvrdenie 4. Uloha (Model B), a (Model B s VRS), md optimdlne riesenie pre aky-
kolvek sibor ddt spliiajiici Predpoklad (1.1).

Dokaz. Podobne ako v predchadzajucej kapitole, aj tu odvodime existenciu optimal-

neho riesenia z dudlnej tlohy. Opat ukazeme dve vlastnosti:

(i) OHRANICENOST funkcie 1 + yTu — 27w
Ohranicenost tucelovej funkcie zhora vyplyva z podmienky iju — :L‘JTU < 0 pre vsetky

g=1...,n.

(ii) PRIPUSTNOST dualnej tlohy

V tejto casti hladdme kandiddtov na vahy v a u spliiajice podmienky v tvare:

r, _
v > E(dzag(mo)) Lo,
1
u > ~(diag(y,))™" - 1,
s
iju—ijv <0 j7=1,...,n.
Pre jednotlivé zlozky vektorov budu prvé dve podmienky vyzerat v; > %11 Uy > %yi
Polozme u, rovné Sy% pre vsetky r = 1,...,s a v; rovné #Iw pr vsetky i =1,...,m.
Na to aby bola splnena nerovnost iju — eajjrv <0 j=1,...,n, potrebujeme najst
. Ty
kandidata na e, ktory splia podmienku ¢ > % pre vsetky 7 = 1,...,n. Zvolime ho

J
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3.1 Zakladné vlastnosti 3 MODEL B

teda ako:
T_
- Yy u
£ = max —Tr=
i xiv

Takymto sposobom sme ukazali, Ze tloha ma pripustné riesenie a teda, ze dualna
uloha ma optimalne riesenie. Zo silnej vety o dualite vyplyva, Ze aj priméarna tiloha ma
optimalne riesenie.

V duélnej tlohe k ulohe (Model B s VRS), opét pribudla premennd z, ktori zvolime
ako z = 0 a dalej v ddkaze postupujeme analogicky ako pri tlohe (Model B),. Tymto

sme dokazali existenciu optimalneho riesenia pre obe tlohy. O

3.1 Zakladné vlastnosti

Invariantnost modelu na zmenu jednotiek
Definujeme matice transformacii jednotiek A a B. Rovnako ako v predoslej kapitole

nové vstupy a vystupy prislichajice j-tej DMU oznacime z; a y; a budi vyzerat

nasledovne:
a 0 L1y Illj
Azx; = : = : =, a;>0 i=1,...,m,
/
0 o' Tmj Ty
/
B 0 Yij Yij
By, = : : =y, B>0 r=1,...s

0 Bs Ysj

/
ysj

Nové premenné dosadime do Modelu B a porovnavame s povodnou tlohou:

uloha pred transforméaciou:
min —(;- 3 05+ 1 3 %)
oA i=1 r=1
diag(x,)o + > A\jx; =,
j=1
—diag(y,)y + ) AjYi = Yo
J:

O'ZOm,’YZOs;)\ZOm

uloha po transformacii:
min—(L 3 o5+ 1 35 )
o,7A i=1 r=1
A-diag(x,)o + Y N\jAz; = Az,
j=1
—B - diag(y,)y + ) AjByj = Byo,
]:

02> 0m,7>0s,A>0,.

Vidime, ze ucelova funkcia a poziadavky na nezapornost o, 7, A sa zachovaju a obi-

dve ohranicenia su ekvivalentné. Pri Modeli B odpovedajicom variabinym vynosom z
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3.1 Zakladné vlastnosti 3 MODEL B

rozsahu, by ndm k ohrani¢eniam pribudla este poziadavka f: Aj = 1, ktord by bola

7j=1
rovnaka pre tlohu s povodnymi aj zmenenymi jednotkami. Mozeme teda vyhlasit, ze

Model B s CRS aj s VRS je invariantny na zmenu jednotiek. Je to vyhodou oproti

aditivnemu modelu.

Invariantnost modelu na posun

Nové premenné 2’ a y;,j = 1,...,n, dostaneme pripocitanim vektorov posunu Az a
Ay:
Ty — x5+ Ar =,
vi = Y+ Ay =y
tloha pred transforméciou: uloha po transformacii:
min—(iZJi—i-lZ%) min—(izaileZ%)
oA Mol ¥ r=1 oA izl S r=1
diag(x,)o + > A\jxj = @, (diag(x,) + diag(Ax))o + X \j(xz; + Az) = z, + Az,
j=1 j=1
—diag(y,)y + Zl AjYj = Yo, —(diag(y,) + diag(Ay))y + -21 Ny + Ay) = yo + Ay,
= j=
02 0myy > 05, A > 0y, 0 2 0,y > 05, A > 0,

Na ekvivalenciu oboch tloh by sme potrebovali platnost rovnic:

diag(Az)o + Y NAz = Az <= Amo;+Ax; » N =Az, i=1,...,m,

=1 =1
—diag(Ay)y + Y _NAy = Ay <= —Ayy + Ay > A=Ay, r=1,...5s,
=1 i=1

¢o by znamenalo:
Ui+z)\j:17 z'zl,...,m,
(3.4)
—%.—i—Z)\j:l, r=1,...,s.

Jj=1
Ziadne takéto ohranicenia v Modeli B nemame, to znamend, ze Model B nie je
invariantny na posun jednotiek. Ak vSak vezmeme do tvahy variabilné vynosy z

n
rozsahu, to znac¢i priddme ohranicenie ) A; = 1, tak v pripade efektivnych dtvarov

7j=1
budua koeficienty o;,¢ = 1,...,m a 7v,,r = 1,...,s, rovné 0 a budu splnené rovnice

(3.4). Model B s VRS teda zachovava rozdelenie uitvarov na efektivne a neefektivne.
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Porovnanie vlastnosti s aditivnhym modelom

Model zmena | | zmena O | posun I | posun O
Aditivny model s CRS || nie (+) | nie (+) nie nie
Model B s CRS ano ano nie nie
Aditivny model s VRS || nie (4) | nie (+) ano 4no
Model B s VRS ano ano nie (+) | nie (+)

Tabulka 3.1: Prehlad invariantnosti modelov na zmenu alebo posun jednotiek.

Legenda: nie (+) znamend, Ze model nie je invariantny, avsak zachovdva rozdelenie

utvarov na efektivne a neefektivne.

3.2 Porovnanie modelov B a AD s CRS

V tejto podkapitole sa venujeme porovnavaniu dvoch neorientovanych modelov — Mo-
delu B a aditivnemu modelu na konkrétnom priklade. Oba odpovedaji konstantnym

vynosom z rozsahu.

Aditivny model: Model B:
min —(17 s* + 17sY) min —(= Soi+ly Vr)
A, 8%, sY T, A m i=1 S r=1
> Az + 8T =1, > Ajxj + diag(z,)o = ,,
j=1 j=1

)&M: Il

> Ay = s = Yo, Ayj — diag(Yo)y = Yo,
]:

J
§* > 0, sY > 05, A > 0,, 02> 0,7 >0, A >0,.

Na porovnanie sme v tejto kapitole vybrali trochu odlisny priklad ako v predosle;j.

Je to z dovodu, Ze s tymito datami vychadzaju iné efektivne vzory pre Model B ako

pre aditivny model.

Priklad 2. Majme 5 utvarov s jednorozmernym vstupom a jednorozmernym vystupom.
Ddta si wvedené v Tabulke 3.2. Postupne na ne aplikujme aditivny model, Model B,

aditivny model s VRS a Model B s VRS.
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3.2 Porovnanie modelov B a AD s CRS

3 MODEL B

A|B|C|D|E
vstupy || 20 | 30 | 45 | 65 | 70
vystupy || 20 | 50 | 30 | 60 | 15

Tabulka 3.2: Vstupy a vystupy 5 DMU v Priklade 2.

Vysledky vypoctov sme zaznamenali do Tabulky 3.3.

Model Premenna A B C D E
Aditivny model —(1% s* + 17sY) -13,33 0 -45 -4833 -101,67
Ao 067 1 15 217 2,33
s 0 0 0 0 0
sY 13,33 0 45 48,33 101,67
efektivny vzor (vstupy) 20 30 45 65 70
efektivny vzor (vystupy) | 33,33 50 75 108,33 116,67
efektivita 0,8 1 07 0,78 0,56
Model B ~(L %10 n gril w) | 067 0 -15 -081  -6,78
iz =
A2 067 1 15 217 2,33
o1 0 0 0 0 0
Y1 0,67 0 15 0,81 6,78
efektivny vzor (vstupy) 20 30 45 65 70
efektivny vzor (vystupy) | 33,33 50 75 108,33 116,67
efektivita 08 1 07 078 056

Tabulka 3.3: Vysledky vypoctov Model B vs. aditivny model s CRS v Priklade 2.

Efektivitu pri aditivnom modeli aj pri Modeli B sme dopoéitali podla vzorca (1.12)

pomocou priemeru parcialnych efektivit. Kedze pri oboch vysli rovnaké efektivne vzory,

ktoré sa pouzivaju na dopocitanie efektivity, aj hodnoty efektivit vysli rovnaké.

Na Obréazku 6 sme vyznacili efektivne vzory. V tomto Specidlnom dvojrozmernom

pripade vysli identické ako tie, ¢o navrhol aditivny model.
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3.3 Porovnanie modelov B a AD s VRS 3 MODEL B
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Obr. 6: Efektivne vzory oznacené * na hranici mnoziny Mcrs pre Priklad 2.

3.3 Porovnanie modelov B a AD s VRS

V poslednej podkapitole sa zameriame na rovnaké modely ako v minulej, ibaze ten-
toraz pre pripad variabilnych vynosov z rozsahu, to znac¢i ze k ohrani¢eniam pribudla

poziadavka na A:

Aditivny model s VRS: Model B s VRS:
min —(17 5% + 17s¥) min —(+ So+ly Vr)
A, 8% ,8Y T,Y,A m. 3 S =1
>Nz + 5T =, > ANz + diag(x,)o = x,,
=1 i=1
> AjYj — ¥ = Yo, ) Ay — diag(Yo)y = Yo,
j= j=
j=1 Jj=1
$* > 0, sY > 04, A >0, 0> 0,y >04A>0,.
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3.3 Porovnanie modelov B a AD s VRS 3 MODEL B

Porovnanie budeme opét robif na dvojrozmernom priklade s datami z Tabulky 3.2.
V Tabulke 3.4 uvadzame vysledky vypoctov, pricom nulové A sme neuviedli, kvoli

rozmerom tabulky.

Model Premenna A B C D E
AD model s VRS —(1% s* + 1TsY) 0 0 35 0 -75
A1 1 0 0 0 0

A2 0 1 1 0 1

A\ 0o 0 0 1 0

% 0 0 15 0 40

sY 0O 0 20 0 35

efektivny vzor (vstupy) | 20 30 30 65 30
efektivny vzor (vystupy) | 20 50 50 60 50

efektivita 1 1 063 1 036

Model B s VRS | —(L ilo +1 f:l v |0 0 -1 0 -307
A 1 0 0 0 0
Ao 0 1 1 0 0
A 0 0 0 1 1
o) 0 0 03 0 007
7 0 0 067 0 3

efektivny vzor (vstupy) | 20 30 30 65 65
efektivny vzor (vystupy) | 20 50 50 60 60
efektivita 1 1 063 1 0,59

Tabulka 3.4: Vysledky vypoctov Model B vs. aditivny model s VRS v Priklade 2.

Hodnoty efektivit sme pri aditivnom modeli aj pri Modeli B opéat doratali pomocou
vzorca (1.12). Na Obrazku 7 sme graficky zndzornili ndjdené efektivne vzory. Tentoraz

sa uz vsSetky nezhoduju ako v pripade CRS, takze to skutoc¢ne nie je pravidlom.
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3.3 Porovnanie modelov B a AD s VRS 3 MODEL B
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Obr. 7: Efektivne vzory oznacené * na hranici mnoziny My rs pre Priklad 2.

Rozoberieme si hlbsie tento dvojrozmerny pripad a hladanie efektivnych vzorov.

Kedze méame len jeden vstup a jeden vystup, modely vieme upravit do tvaru:

Aditivny model s VRS: Model B s VRS:
min —(s* 4+ s¥) <= max (s* + s¥) min —(o + ) <= max(c + )
)\7858751; Avsxﬂsy U:’Y:)‘ U:’Y:)‘
5 5
> AT+ 8T =, > AT+ X0 = T,
j=1 j=1
5 5
> Ay — 87 =1, > AiYi = Yo¥ = Yo
Jj=1 7=1
5 5
j=1 j=1
s*>0,8Y >0, > 05, c>0,7vy>0,A>0s.

Oznacme teraz xr,0 = s* a y, 7 = sY. Dostavame:
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3.3 Porovnanie modelov B a AD s VRS 3 MODEL B

Model B s VRS:

min — (o + ) <~ ma2\<(a +7) < maxi 4 £
U?’y?

oA 52,59 To Yo
5
>Nz + 5T =z,
j=1
5
Z )‘]y] —s¥ = Yo,
j=1
5
j=1
c>0,v>0,A>0s5.

Pre oba modely mnohouholnik E’ABDE”E tvori mnozinu pripustnych bodov, do
ktorych moze byt bod E posunuty pomocou vektorov s* a sY. Na Obrazku 8 sme
ju vykreslili zelenou. Na tejto mnozine smerov pri aditivnom modeli maximalizujeme

s* sY

(57 4 s¥) a pri Modeli B s VRS maximalizujeme vyraz (35 + {z).
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Obr. 8: Rozne efektivne vzory pre Priklad 2.
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4 JAPONSKE BANKY

4 Japonské banky

Ako prakticky viacrozmerny priklad sme si vybrali porovnanie jednotlivych japonskych
bank. Zozbierané data si redlne déta z roku 1999 z ¢ldnku [6]. Budeme pracovat s tromi
vstupmi — celkovym kapitdlom banky, poctom pobociek a po¢tom zamestnancov. Ako
dva vystupy ndm bude sluzit celkovy zisk a vklady. Udaje, s ktorymi dalej pracujeme,

su uvedené v Tabulke 4.1.

Nézov banky Kapitdl Pobocky Zamestnanci Zisk Vklady
1 Daiichikangyou 859 371 15 788 218 938 28 910
2 Sakura 1043 436 14 930 159 932 29 804
3 Fuji 1 040 327 13 567 223 340 27 405
4 | Tokyo Mitsubishi 786 374 17 412 218 989 39 653
5 Asahi 605 369 12 148 88 091 20 146
6 Sanwa 843 338 13 020 175 483 28 254
7 Sumitomo 753 353 14 394 176 477 27 388
8 Daiwa 465 193 7 315 37 611 9 998
9 Toukai 723 281 10 750 118 963 18 546
10 Hokkaido 71 135 2 584 12 765 3 286
11 Gunma 49 173 3714 20 308 4753
12 Ashikaga 132 189 4073 17666 4 986
13 Chiba 107 163 4 569 29830 6610
14 Yokohama 185 186 5 323 51154 8 648
15 Hokuriku 121 191 3 976 10194 5 289
16 Shizuoka 91 189 4 509 42982 6 578
17 Kyoto 27 115 2 862 8 633 3 749
18 Hiroshima 52 222 3 832 7 606 4 917
19 Hukuoka 59 177 4 261 9 733 5 585
20 Nishinihon 51 194 3492 5 765 3763

Tabulka 4.1: Udaje o japonskych bankéch.
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4.1 Model A vs. CCR 4 JAPONSKE BANKY

4.1 Model A vs. CCR

V prvej podkapitole sme na data aplikovali modely odpovedajice konstantnym vyno-
som z rozsahu — dva CCR modely a Model A. VsSetky tri vyhodnotili ako efektivne
banky Daiichikangyou (1), Fuji (3), Tokyo Mitsubishi (4), Shizuoka (16) a Kyoto (17).
V nasledujtcej Tabulke 4.2 uvadzame hodnoty tychto efektivit, pricom velkym P st

oznacené pseudoefektivity. VSimnime si, ze Model A opét vracia vyssie optiméalne hod-

noty.
CCR-I CCR-O Model A Model A
0 5 1-6 T

1 1 1 1 1

2 | 0,8777  0,877F 0,934" 0,938
3 1 1 1 1

4 1 1 1 1

5 | 0,7287  0,728" 0,843F 0,864
6 | 0,985  0,985" 0,9927 0,992
7 | 0,908”  0,908" 0,952°F 0,954
8 | 0,600  0,600" 0, 750" 0,800
9 | 0,790”  0,7907 0, 883" 0,895
10 | 0,707 0,707" 0, 828" 0,853
11 | 0,998  0,998" 0,999” 0,999
12 | 0,634  0,634F 0, 776" 0,817
13 | 0,8717  0,871F 0,9317 0,936
14 | 0,849  0,849" 0,919” 0,925
15 | 0,708%  0,708" 0,829 0,854
16 1 1 1 1

17 1 1 1 1

18 | 0,902  0,902F 0,949 0,951
19 | 0,9177  0,917F 0,957F 0,958
20 | 0,7437  0,743F 0,853" 0,872

Tabulka 4.2: Porovnanie efektivit jednotlivych modelov s CRS.

Dalej este uvadzame dve tabulky obsahujice efektivne vzory. Kvoli rozsahu kapitoly
sme sa rozhodli podrobnejsie vysledky uviest az v prilohe. V Tabulke 4.3 st hodnoty
efektivnych vstupov a v Tabulke 4.4 zase efektivne vystupy. Pri vsetkych efektivnych
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4.1 Model A vs. CCR 4 JAPONSKE BANKY

utvaroch sa pochopitelne zachovali pévodné hodnoty. Model CCR-I Setri najviac aj
na vstupoch aj na vystupoch, model CCR-O déva najvacsie hodnoty efektivnych vzo-
rov a Model A je niekde uprostred. Z tohto dévodu ho moézeme povazovat za dobry

kompromis — nentiti nas ani prehnane Setrif a ani prehnane zvysovat produkciu.

CCR-I A CCR-O | CCR-1 A CCR-O CCR-I A CCR-O
Kapital Kapitdl Kapital Pob Pob Pob Zam Zam Zam

1 859 859 859 371 371 371 15 788 15 788 15 788
2 590,77 629,63 673,96 | 281,11 299,60 320,69 | 13 087,21 13 948 14 930
3 1040 1040 1040 327 327 327 13 567 13 567 13 567
4 786 786 786 374 374 374 17 412 17 412 17 412
5 399,33 462,13 548,38 | 190,01 219,90 260,93 | 8 846,30 10 237,52 12 148
6 694,24 699,59 705,03 285 287,19 289,42 | 12 820,74 12 919,60 13 020
7 683,36 716,49 753 | 293,75 308 323,69 | 13 062,83 13 696,14 14 394
8 198,18 247,70 330,21 | 94,30 117,86 157,12 | 4 390,21 5 487,20 7 315
9 481,75 538,17 609,56 | 190,67 213 241,25 | 8 495,98 9491 10 750
10 50,20 58,81 71| 56,14 65,78 79,41 | 1826,82 2 140,42 2 584
11 48,91 48,95 49 | 141,50 141,64 141,77 3456 3 459,33 3 462,67
12 83,62 102,38 132 | 72,63 88,93 114,65 | 2580,25 3 159,17 4073
13 93,24 99,65 107 | 136,71 146,11 156,89 | 3 981,43 4 255,03 4 569
14 | 157,12 169,92 185 | 136,93 148,09 161,23 | 4 520,86 4 889,25 5 323
15 85,67 100,31 121 | 82,15 96,20 116,03 | 2 815,04 3 296,28 3 976
16 91 91 91 189 189 189 4 509 4 509 4 509
17 27 27 27 115 115 115 2 862 2 862 2 862
18 46,92 49,33 52 | 131,45 138,20 145,68 | 3 457,86 3 635,33 3 832
19 54,10 56,44 59 | 147,96 154,37 161,37 | 3 907,04 4 076,35 4 261
20 37,90 43,49 51| 97,25 111,58 130,86 | 2 595,14 2 977,50 3492

Tabulka 4.3: Efektivne vzory pre vstupy CCR modelov a Modelu A s CRS.

52



4.2 Model A s VRS vs. BCC 4 JAPONSKE BANKY

CCR-I A CCR-O | CCR-I A CCR-O

Zisk Zisk Zisk | Vklady ~ Vklady  Vklady

1 218938 218938 218938 | 28910 28910 28910
2 | 164 596,58 175 422,66 187 773,13 | 29804 31 764,31 34 000,65
3 223340 223340 223340 | 27405 27405 27405
4 218989 218989 218989 | 39653 39653 39 653
5 | 111 258,98 128 756,32 152 784,19 | 20 146 23 314,30 27 665,10
6 175 483 176 836,14 178 210,31 | 28 254 28 471,87 28 693,12
7 176 477 185 033,03 194 460,96 | 27 388 28 715,84 30 178,99
8 | 5521529 69011,96 9200003 | 9998 12496,20 16 658,72
9 118 963 132 895,55 150 524,46 | 18 546 20 718,05 23 466,34
10 | 1433561 16 796,53 2027744 | 3286  3850,09 4 647,98
11 20 308 20 327,57 2034717 | 4753 475758 4 762,17
12 | 2365513 2896249 3734031 | 498 610468 7 870,55
13 29830 3187987 3423226 | 6610 706423 758549
14 51154 5532236  60230,32 | 8648 9352,70 10 182,43
15 | 2431832 2847566 3434753 | 5289 619318 7470,25
16 42 982 42 982 42982 | 6578 6 578 6 578
17 8 633 8 633 8633 | 3749 3 749 3 749
18 | 1425955 1499141 1580245 | 4917 516936 5 449,02
19 | 1640121 1711196 17887,10 | 5585 582703 6 090,98
20 | 11420,95 1310367 15367,92 | 3763 431743 5 063,46

Tabulka 4.4: Efektivne vzory pre vystupy CCR modelov a Modelu A s CRS.

4.2 Model A s VRS vs. BCC

V tejto podkapitole sa venujeme dvom orientovanym modelom BCC a Modelu A s
variabilnymi vynosmi z rozsahu. Spominame aj tento typ vynosov, nakolko nemame
ziadnu dalsiu informéaciu o charaktere bank.

V Tabulke 4.5 st spisané efektivity. Opét plati, ze P st oznacené pseudoefektivity.
V tomto pripade Model A vzdy vratil vyssiu optimalnu hodnotu efektivity ako model
BCC-O, ¢o vsak nemusi byt pravidlom, ako sme ukazali v druhej kapitole. K efektivnym
utvarom okrem tych, ktoré boli efektivne pri CRS — Daiichikangyou (1), Fuji (3), Tokyo
Mitsubishi (4), Shizuoka (16) a Kyoto (17), pribudli aj banky Sanwa (6), Hokkaido (10),
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4.2 Model A s VRS vs. BCC

4 JAPONSKE BANKY

Gunma (11) a Hukuoka (19).

BCC-I BCC-O Model A s VRS Model A s VRS

0 5 1-6 e
1 1 1 1 1
2 10,8977  0,888% 0,943" 0,946
3 1 1 1 1
4 1 1 1 1
5 10,7797  0,753° 0, 868" 0,883
6 1 1 1 1
7 10,9107  0,9097 0,952" 0,955
8 | 0,829  0,687" 0,876" 0,890
9 | 0,852 0,824 0,9127 0,919
10 1 1 1 1
11 1 1 1 1
12 | 0,805 0,723° 0,870" 0,385
13| 0,92  0,879" 0,937% 0,941
14 | 0,961 0,943 0,976 0,977
15 | 0,8587  0,797" 0,909” 0,917
16 1 1 1 1
17 1 1 1 1
18 | 0,9407  0,958" 0,975" 0,975
19 1 1 1 1
20 | 0,814  0,7607 0,873% 0,887

Tabulka 4.5: Porovnanie efektivit jednotlivych modelov s VRS.

Pri efektivnych vzoroch opéft plati isté pravidlo, ze model BCC zamerany na vstupy

svve

vyssie a Model A s VRS sa pohybuje medzi tymito dvoma. Kompletné efektivne vzory

najdeme v Tabulke 4.6 a v Tabulke 4.7. Zvysné tudaje o A a slackoch si uvedené v

prilohe.
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4.2 Model A s VRS vs. BCC 4 JAPONSKE BANKY

BCC-I AsVRS BCC-O | BCCI AsVRS BCC-O BCC-I AsVRS BCC-O

Kap Kap Kap Pob Pob Pob Zam Zam Zam

1 859 859 859 371 371 371 15 788 15 788 15 788
2 | 592,36 625,55 666,32 | 309,27 320,37 333,99 | 13 396,24 14 084,46 14 930
3 1040 1 040 1040 327 327 327 13 567 13 567 13 567
4 786 786 786 374 374 374 17 412 17 412 17 412
5 | 402,48 454,80 532,17 | 245,80 263,29 289,15 | 9 458,37 10 543,37 12 148
6 843 843 843 338 338 338 13 020 13 020 13 020
7 | 684,89 717,14 753 | 315,93 325,60 336,36 | 13 092,11 13 708,51 14 394
8 | 159,10 185,35 255,58 | 160,08 169,03 193 | 5394,39 5897,51 7 243,85
9 | 500,98 546,09 645,27 | 239,41 256,14 281 | 9158,84 9 798,76 10 750
10 71 71 71 135 135 135 2 584 2 584 2 584
11 49 49 49 173 173 173 3714 3714 3714
12 | 104,42 114,88 132 | 146,17 149,44 154,39 | 3 277,14 3 544,66 4073
13 96,52 100,28 107 | 147,04 150,48 159,36 | 4 121,50 4 281,98 4 569
14 | 177,86 180,65 185 | 178,82 181,63 186 | 5117,63 519784 5 323
15 | 103,83 109,98 121 | 145,32 147,04 150,13 | 3 411,70 3 613,76 3976
16 91 91 91 189 189 189 4 509 4 509 4 509
17 27 27 27 115 115 115 2 862 2 862 2 862
18 | 48,90 50,69 52 | 143,40 150,33 155,44 | 3603,61 3 735,11 3 832
19 59 59 59 177 177 177 4 261 4 261 4 261
20 41,53 44,53 51 | 121,28 121,64 134,24 | 2843,75 3 049,09 3 492

Tabulka 4.6: Efektivne vzory pre vstupy BCC modelov a Modelu A s VRS.
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4.3 Model B vs. aditivny model s CRS 4 JAPONSKE BANKY

BCC-I  As VRS BCC-O | BCC-I AsVRS  BCC-O

Zisk Zisk Zisk | Vklady ~ Vklady  Vklady

1 218938 218938 218938 | 28910 28910 28910
2 | 163 138,91 172 710,43 184 469,98 | 29804 31 491,91 33 565,67
3 223340 223340 223340 | 27405 27 405 27 405
4 218989 218980 218989 | 39653 39653 39653
5 | 108 371,91 123 461,92 145 778,65 | 20 146 22 807,08 26 742,57
6 175 483 175 483 175483 | 28254 28254 28 254
7 176 477 184 881,47 194 228,03 | 27388 28 692,32 30 142,84
8 | 4524493 5251872 7198346 | 9998 1123951 14 561,79
9 118 963 1290 489,69 144 378,66 | 18 546 20 187,08 22 508,23
10 12 765 12 765 12 765 | 3286 3 286 3 286
11 20 308 20 308 20308 | 4753 4753 4753
12 | 2240508 2578486 3196899 | 498 563278 6 896,74
13 29830 3170386 3392808 | 6610 702523 751809
14 51154 5235677 5423345 | 8648 8851,34 9 168,61
15 | 2328933 2559875 2973898 | 5289 577087 6 634,74
16 42 982 42 982 42982 | 6578 6 578 6 578
17 8 633 8 633 8633 | 3749 3 749 3 749
18 | 11520,62 11053,01 1070847 | 4917 5041,33 513293
19 9 733 9 733 9733 | 5585 5 585 5 585
20 | 10526,67 12420,68 1360415 | 3763 424029 4 954,01

Tabulka 4.7: Efektivne vzory pre vystupy BCC modelov a Modelu A s VRS.

4.3 Model B vs. aditivny model s CRS

V tejto podkapitole sme porovnavali ako data vyhodnoti Model B oproti aditivnemu
modelu. Najprv sme sa zamerali na pripad konstantnych vynosov z rozsahu. Pri oboch
modeloch ndm vyslo rovnakych 5 efektivnych utvarov ako aj pri CCR — banky Daii-
chikangyou (1), Fuji (3), Tokyo Mitsubishi (4), Shizuoka (16) a Kyoto (17).

Do Tabulky 4.8 sme zaznamenali efektivity jednotlivych tutvarov, ktoré sme aj pre
aditivny model aj pre Model B dopocitali pomocou vzorca (1.12). V Tavej ¢asti tabulky
uvadzame aj optimalne hodnoty tcelovych funkcii a vpravo sme vsetky tutvary usporia-

dali od najefektivnejsich po najmenej efektivne, aby sme zistili, ¢i spolu koresponduju.
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4.3 Model B vs. aditivny model s CRS 4 JAPONSKE BANKY
AD B AD B AD B
Hodnota  Hodnota | Efektivita Efektivita Efektivita Efektivita
1 0 0 1 1 1 1 3 1
2 | -74 602,791 -0,364 0,891 0,822 16 1 16 1
3 0 0 1 1 17 1 1 1
4 0 0 1 1 3 1 4 1
5 | -78 833,621  -0,683 0,802 0,784 4 1 17 1
6 | -9484433  -0,124 0,944 0,928 11| 0949 | 11| 0,949
7 | -21 865,722 -0,198 0,934 0,910 6 0,944 6 0,928
8 | -76 590,318 -1,265 0,772 0,772 7 0,934 7 0,910
9 | -49 569,706 -0,397 0,888 0,826 13 0,916 13 0,889
10 | -15 310,138 -0,827 0,782 0,782 14 0,909 19 0,855
11 -350,823 -0,085 0,949 0,949 2 0,891 14 0,832
12 | -29 882,094 -1,135 0,748 0,748 9 0,888 9 0,826
13 | -14 140,376 -0,277 0,916 0,889 19 0,855 2 0,822
14 | -10 736,914 -0,296 0,909 0,832 5 0,802 18 0,787
15 | -34 584,139 -1,878 0,735 0,735 18 0,787 5 0,784
16 0 0 1 1 10 0,782 10 0,782
17 0 0 1 1 8 0,772 8 0,772
18 | -14 649,654  -1,078 0,787 0,787 12 0,748 |12| 0,748
19 | -15 337,533 -0,814 0,855 0,855 15 0,735 15 0,735
20 | -19 134,352 -1,807 0,708 0,708 20 0,708 20 0,708
Tabulka 4.8: Porovnanie efektivit pre aditivny model a Model B s CRS.

V Tabulke 4.9 uvadzame efektivne vzory pre tri vstupy — kapital, pobocky a za-
mestnanci, ndjdené najprv pomocou aditivneho modelu a potom pomocou Modelu B.
Cervenou st zvjraznené vyssie hodnoty vstupov, modrou nizsie. V tomto pripade nim
vzdy pri aditivnom modeli vysli vyssie efektivne vstupy, ¢o moze byt isté plus, pretoze

nas nenutit az tolko Setrit v porovnani s Modelom B.
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4.3 Model B vs. aditivny model s CRS 4 JAPONSKE BANKY

AD B AD B AD B

Kapital Kapitdl | Pobocky Pobocky | Zamestnanci Zamestnanci

1 859 859 371 371 15 788 15 788
2 1043 673,96 351,40 320,69 14 930 14 930
3 1040 1 040 327 327 13 567 13 567
4 786 786 374 374 17 412 17 412
5 605 548,38 265,65 260,93 12 148 12 148
6 758,80 682,91 293,90 287,58 13 020 13 020
7 753 649,76 317,77 309,18 14 394 14 394
8 465 465 168,34 168,34 7 315 7 315
9 723 485,27 250,69 230,90 10 750 10 750
10 71 71 92,88 92,88 2 584 2 584
11 49 49 141,47 141,47 3 454,90 3 454,90
12 132 132 129,95 129,95 4073 4073
13 107 107 163 139,78 4 288,28 3 890,87
14 185 185 159,60 88,03 5 323 4 098,24
15 121 121 133,29 133,29 3976 3 976
16 91 91 189 189 4 509 4 509
17 27 27 115 115 2 862 2 862
18 52 52 145,97 145,97 3 558,72 3 558,72
19 59 59 165,82 165,82 4 042,95 4 042,95
20 51 51 108,43 108,43 2 591,84 2 591,84

Tabulka 4.9: Efektivne vzory pre vstupy aditivneho modelu a Modelu B s CRS.

Co sa tyka efektivnych vystupov, v tomto pripade st modely trochu rozpoltené a
nemozeme jasne povedaf, ze nam jeden alebo druhy model dava vzdy vyssie hodnoty
vzorov. Ako vidime v Tabulke 4.10 pri vystupe zisk pontka vyssie efektivne vzory
aditivny model, pri vkladoch zase Model B. Tato rozpoltenost vsak nastava len v

pripade 3 bank, inak oba modely vracaji identické navrhy na efektivne vystupy.
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4.4 Model B s VRS vs. aditivny model s VRS

4 JAPONSKE BANKY

AD B AD B

Zisk Zisk |  Vklady  Vklady
1 218938 218938 | 28910 28910
2 | 233 267,23 187 773,13 | 30 986,96 34 000,65
3 223340 223340 | 27405 27405
4 2189389 218989 | 39653 39653
5 | 159 764,57 152 784,19 | 27 202,69 27 665,10
6 | 184 839,13 175 483 | 28 254 28 873,78
7 | 193 758,55 181 031,91 | 3193694 32780
8 | 108 616,68 108 616,68 | 15 557,98 15 557,98
9 | 164 508,40 135201,69 | 22540 24 481,38
10 | 26931,18 26 931,18 | 4387,83 4 387,83
11 | 2036819 20 368,19 4753 4753
12 | 44900,07 44 900,07 | 7 574,97 757497
13 | 4337290 40 562,93 | 6 926,75 6 610
14 | 6020324 5154321 | 10 309,28 9 333,09
15 | 4287248 4287248 | 713694 7 136,94
16 42 982 42 982 6 578 6 578
17 8 633 8 633 3 749 3 749
18 | 2190634 21 906,34 4917 4917
19 | 24841,30 24 841,30 5 585 5 585
20 | 23913,62 23 913,62 3 763 3 763

Tabulka 4.10: Efektivne vzory pre vystupy aditivneho modelu a Modelu B s CRS.

4.4 Model B s VRS vs. aditivhy model s VRS

Na tplne posledné porovnanie sme si zvolili aditivny model s VRS a Model B, taktiez

verziu s VRS. Efektivne utvary vysli rovnaké banky ako pri BCC modeloch — Daiichi-
kangyou (1), Fuji (3), Tokyo Mitsubishi (4), Sanwa (6), Hokkaido (10), Gunma (11),
Shizuoka (16), Kyoto (17) a Hukuoka (19).

V Tabulke 4.11 sa nachadzaju efektivity jednodlivych bank, dopocitané podla vzorca

(1.12) a v pravej Casti opat usporiadané efektivity. Ani v tomto pripade spolu po-

stupnosti nekorespondujui, avsak celkom casto sa stava, ze pri rovnakom utvare vyjde

rovnaka hodnota efektivity.
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4.4 Model B s VRS vs. aditivny model s VRS 4 JAPONSKE BANKY

AD B AD B AD B
Hodnota  Hodnota | Efektivita Efektivita Efektivita Efektivita

1 0 0 1 1 3 1 3 1
2 | -63 993,757  -0,340 0,872 0,830 4 1 11 1
3 0 0 1 1 6 1 4 1
4 0 0 1 1 10 1 17 1
5 | -77 273,917  -0,605 0,830 0,830 16 1 10 1
6 0 0 1 1 17 1 1 1
7 | -21 180,268  -0,169 0,946 0,921 19 1 16 1
8 | -53 052,255  -0,858 0,804 0,804 1 1 19 1
9 | -47 376,903  -0,303 0,921 0,857 11 1 6 1
10 0 0 1 1 14 0,979 14 0,950
11 0 0 1 1 7 0,946 13 0,937
12 | -21 654,099  -0,744 0,836 0,787 13 0,937 7 0,921
13 | -8 418,718 -0,191 0,937 0,937 9 0,921 9 0,857
14 | -4 763,045 -0,093 0,979 0,950 2 0,872 5 0,830
15 | -26 629,401  -1,370 0,813 0,813 12 0,836 2 0,830
16 0 0 1 1 5 0,830 18 0,829
17 0 0 1 1 18 0,829 15 0,813
18 | -13 048,327  -0,927 0,829 0,829 15 0,813 8 0,804
19 0 0 1 1 8 0,804 12 0,787
20 | -16 859,375  -1,594 0,757 0,757 20 0,757 20 0,757

Tabulka 4.11: Porovnanie efektivit pre aditivny model a Model B s VRS.

Doteraz sme sa stretavali len s pripadom, ked jeden model poniikal pre vSetky banky
vacsi efektivny vzor pre vstup, pripadne pre vSetky mensi efektivny vystup. V pripade
tychto dvoch modelov to vSak také jasné nie je — ako vidime v Tabulke 4.12, pripadne v
Tabulke 4.13, nie vzdy nastava takato situacia a pri niektorych bankach st odporicania
Modelu B vacsie ako pri aditivnom modeli, pri niektorych mensie. Dané skuto¢nosti st
opat farebne vyznacené — ¢ervenou vidsie ¢isla, modrou mensie. Dalsim zaujimavym

javom je, ze efektivne vzory pre vstup zamestnanci si pre oba modely rovnaké.
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4.4 Model B s VRS vs. aditivny model s VRS 4 JAPONSKE BANKY

AD B AD B AD B

Kapital Kapitdl | Pobocky Pobocky | Zamestnanci Zamestnanci

1 859 859 371 371 15 788 15 788
2 949,96 656,53 343,66 329,82 14 930 14 930
3 1040 1 040 327 327 13 567 13 567
4 786 786 374 374 17 412 17 412
) 605 605 300,33 300,33 12 148 12 148
6 843 843 338 338 13 020 13 020
7 753 637,06 333,01 320,68 14 394 14 394
8 399,71 399,71 193 193 6 800,63 6 800,63
9 723 438,48 281 255,41 10 750 10 750
10 71 71 135 135 2 584 2 584
11 49 49 173 173 3714 3714
12 132 86,47 170,59 176,77 4073 4073
13 107 107 163 163 4 562,33 4 562,33
14 185 146,52 186 186 5323 5323
15 121 121 169,22 169,22 3976 3976
16 91 91 189 189 4509 4 509
17 27 27 115 115 2862 2 862
18 52 52 174,16 174,16 3 801,06 3 801,06
19 59 59 177 177 4261 4 261
20 51 51 142,75 142,75 3479,63 3 479,63

Tabulka 4.12: Efektivne vzory pre vstupy aditivneho modelu a Modelu B s VRS.
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4.4 Model B s VRS vs. aditivny model s VRS

4 JAPONSKE BANKY

AD B AD B

Zisk Zisk |  Vklady  Vklady
1 218938 218938 | 28910 28910
2 | 221 797,63 183 105,59 | 31 746,75 33 528,35
3 223340 223340 | 27405 27405
4 2189389 218989 | 39653 39653
5 | 159 814,65 159 814,65 | 25 627,60 25 627,60
6 175 483 175483 | 28254 28254
7 | 193 780,56 176 477 | 31 244,72 32 154,10
8 | 8762897 8762897 | 1245262 12 452,62
9 | 163 763,87 122 673,42 | 21 122,03 23 213,66
10 12 765 12 765 3 286 3 286
11 20 308 20 308 4753 4753
12 | 3817108 3613805 | 611660 5 832,38
13 | 3739747 3739747 | 745458 7 454,58
14 | 55 695,09 51154 | 8869,95 9 049,27
15 | 3620228 3620228 | 588834 588834
16 42 982 42 982 6 578 6 578
17 8 633 8 633 3749 3 749
18 | 2057555 20 575,55 4917 4917
19 9 733 9 733 5585 5 585
20 | 2151387 2151387 | 480987 4 809,87

Tabulka 4.13: Efektivne vzory pre vystupy aditivneho modelu a Modelu B s VRS.
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Zaver

Hlavnym cielom tejto bakalarskej prace bola analyza dvoch novych nestandardnych
modelov v teérii DEA modelovania, ktoré boli doteraz v literattire spomenuté len velmi
okrajovo. Tieto dva modely sme nasledne porovnavali s troma Standardnymi modelmi.

Na zaciatok sme zhrnuli par zndmych zakladnych pojmov z DEA modelovania, pri-
¢om sme vychadzali najmé z [2] a [5] a predstavili sme standardné modely — CCR,
BCC a aditivny model.

V dalsej casti sme definovali prvy nestandarny model — radidlny neorientovany mo-
del, skratene nazyvany aj ako Model A. V Definicii 2 sme objasnili kedy vyhlasime
utvar za efektivny, pseudoefektivny alebo neefektivny. Podarilo sa nam dokéazat exis-
tenciu optimalneho riesenia v Tvrdeni 1 a na zaklade jednoduchého dvojrozmerného
prikladu sme v Tvrdeni 2 a Tvrdeni 3 sformulovali a dokézali vseobecné vztahy
medzi efektivitami CCR modelov a Modelu A a BCC modelov a Modelu A s VRS.
Taktiez sme zhrnuli jeho zdkladné vlastnosti a porovnavali v Tabulke 2.1. Za hlavnua
vyhodu Modelu A oproti tradiénym orientovanym modelom povazujeme fakt, Ze upra-
vuje aj vstupy aj vystupy sucasne, co sa z praktického hladiska ukazuje ako velké plus,
nakolko nds nentuti ani prehnane Setrit a ani prehnane zvacsovat produkciu. Tato vlast-
nost sa pekne odzrkadlila aj v poslednej kapitole, kde sme Model A porovnavali s CCR
a BCC modelmi na priklade s redlnymi datami z ¢lanku [6] s troma vstupmi a dvoma
vystupmi. Dalfm pozitivom je, Ze hoci aj pri tomto druhu modelu sa stretdvame s
pripadom pseudoefektivneho vzoru, takyto vzor sa nachadza blizsie k efektivnemu, nez
je tomu napriklad v pripade BCC-I alebo BCC-O modelu. Tato situacia je vidief na
Obréazku 5.

Druhy model, ktorému sme sa podrobne venovali v tretej casti nasej prace je ne-
radialny neorientovany model, skratene sme ho nazvali Model B. Aj pre tento model
sme dokazali existenciu optimalneho riesenia v Tvrdeni 4. Hlavnou vyhodou Modelu
B oproti aditivnemu modelu, s ktorym sme ho porovnavali, je invariantnost na zmenu
jednotiek pri konstantnych aj variabilnych vynosoch z rozsahu. Na druhi stranu ne-
vyhodou je, ze Model B s VRS nie je invariantny na posun, len zachovava rozdelenie
utvarov na efektivne a neefektivne, kym aditivny model s VRS je. Okrem tychto roz-

dielov st si tieto dva modely svojimi vlastnostami dost podobné. Oba st neorientované,
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to znamena upravuju aj vstupy aj vystupy naraz a pri obidvoch mieru efektivity ne-
dostaneme priamo ako optimalnu hodnotu ucelovej funkcie, ale musime ju dopocitat
pomocou vzorca (1.12). Tak isto vyhodou je, Ze sa ani pri jednom nemusime poty-
kat s otazkou pseudoefektivneho vzoru, nakolko oba najdu rovno efektivny vzor. Tieto
efektivne vzory sa vSak nemusia zhodovat a ani nevieme najst nejaké jasny vseobecny
vztah medzi nimi, ¢o je vidiet aj na praktickom priklade zo stvrtej kapitoly, napriklad
v Tabulke 4.12 alebo 4.13.

Hlavny prinos tejto prace vidime v analyzovani celkom novych modelov v DEA a
v tom, zZe sa ndm podarilo objavit mnohé pozitivne vlastnosti tychto modelov. Do
budiicna by sa este dala skiimaf vlastnost monoténnosti, superefektivity, pripadne vy-
tvorif treti nestandardny model ako kombinaciu tychto dvoch. Bol by to isty prechod
medzi nimi — Struktirou by sa podobal na Model B, avSsak namiesto m + s réznych
koeficientov ¢ a v by sa pouzili len dva — jeden pre skratenie vstupov a jeden pre

predlzovanie vystupov.
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Zdrojové kédy naprogramovanych funkcii Priloha A

Priloha A: Zdrojové kédy naprogramovanych funkcii

Zdrojové kédy k funkciam z Matlabu.

CCR-I:

function [VysledkyP, HodP, VysledkyD, HodD, V3, H3]=CCR_I(X,Y)
[m,n] = size(X); % n = pocet DMU, m = pocet vstupov

[s,n] size(Y); % n = pocet DMU, s = pocet vystupov

%%% primarna uloha - MM:

VysledkyP = zeros(m+s,n);

HodP = zeros(s,n);

beqP = 1;

bP = zeros(n,1);

AP = [-X’ Y’];

1bP = zeros(m+s,1);

FP = [zeros(n,m) Y’];
AegP = [X’ zeros(nm,s)];
for j = 1:n

[VysledkyP(:,j), HodP(1,j)] = linprog(-FP(j,:),AP,bP,AeqP(j,:),beqP,1bP,[]); end
HodP = -HodP;

%%% dualna uloha - OM:

VysledkyD = zeros(l+n+m+s,n);

HodD = zeros(1,n);

beqgD [zeros(m,n); Y];

AegD = [zeros(m,1) X eye(m) zeros(m,s);

zeros(s,1) Y zeros(s,m) -eye(s)];

1bD = zeros(1+n+m+s,1);

1bD(1,1) = - Inf;
FD = [1 zeros(l,n+m+s)];
for j = 1:n

AeqD(:,1)=[-X(:,j); zeros(s,1)];

[VysledkyD(:,j), HodD(1,j)] = linprog(FD,[],[],AeqD,beqD(:,j),1bD,[]1); end
%%% maximalizacia slackov:

V3 = zeros(n+m+s,n);

H3 = zeros(1,n);

F3 = [zeros(1,n) ones(1,m) ones(1,s)];

Aeq3 = [X eye(m) zeros(m,s);

Y zeros(s,m) -eye(s)];

beq3 = zeros(m+s,n);

1b3 = zeros(n+s+m,1);

for j=1:n

beq3(:,j) = [HodD(j) * X(:,j);

Y(:,0];

[v3(:,j), H3(1,j)] = linprog(-F3, [1, [1, Aeq3, beq3(:,j), 1b3, [1); end
H3 = -H3; end

CCR-O:

function [VysledkyP, HodP, VysledkyD, HodD, V3, H3]=CCR_0(X,Y)
[m,n] size(X); % n = pocet DMU, m = pocet vstupov

[s,n] = size(Y); % n = pocet DMU, s = pocet vystupov

%h’% primarna uloha - MM:

VysledkyP = zeros(m+s,n);

HodP = zeros(m,n);
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Zdrojové kédy naprogramovanych funkcii Priloha A

beqP = 1;

bP = zeros(n,1);

AP = [-X° Y°1;

1bP = zeros(m+s,1);

FP = [X’ zeros(n,s)];
AegP = [zeros(n,m) Y’];
for j =1:n

[VysledkyP(:,j), HodP(1,j)] = linprog(FP(j,:),AP,bP,AeqP(j,:),beqP,1bP,[]1); end
%%% dualna uloha - OM:

VysledkyD = zeros(l+n+m+s,n);

HodD = zeros(1,n);

begD = [X; zeros(s,n)];

AegD = [zeros(m,1) X eye(m) zeros(m,s);

zeros(s,1) Y zeros(s,m) -eye(s)];

1bD = zeros(1+n+m+s,1);

1bD(1,1) = - Inf;
FD = [1 zeros(1,n+m+s)];
for j = 1:n

AeqD(:,1)=[zeros(m,1); -Y(:,j)];

[VysledkyD(:,j), HodD(1,j)] = linprog(-FD,[],[],AeqD,begD(:,j),1bD,[]1); end
HodD = -HodD;

%%% maximalizacia slackov:

V3 = zeros(nt+m+s,n);

H3 = zeros(1,n);

F3 = [zeros(1,n) ones(1,m) ones(1,s)];

Aeg3 = [X eye(m) zeros(m,s);

Y zeros(s,m) -eye(s)];

beq3 = zeros(m+s,n);

1b3 = zeros(n+s+m,1);

for j=1:n

beq3(:,j) = [X(:,3);

HodD(3) * Y(:,3)];

[Vv3(:,j), H3(1,j)] = linprog(-F3, [1, [1, Aeq3, beq3(:,j), 1b3, [1); end
H3 = -H3; end

BCC-I:

function [VysledkyP, HodP, VysledkyD, HodD, V3, H3]=BCC_I(X,Y)
[m,n] = size(X); % n = pocet DMU, m = pocet vstupov

[s,n] = size(Y); % n = pocet DMU, s = pocet vystupov

%%% primarna uloha - MM:

VysledkyP = zeros(m+s+1,n);

HodP = zeros(m,n);

beqP = 1;

bP = zeros(n,1);

AP = [-X’ Y’ ones(n,1)];

1bP = zeros(m+s+1,1);

1bP(m+s+1,1) = -Inf;

FP = [zeros(n,m) Y’ ones(n,1)];

AeqP = [X’ zeros(m,s) zeros(n,1)];

for j = 1:n

[VysledkyP(:,j), HodP(1,j)] = linprog(-FP(j,:),AP,bP,AeqP(j,:),beqP,1bP,[]); end
HodP = -HodP;

%%% dualna uloha - OM:

VysledkyD = zeros(l+n+m+s,n);

HodD = zeros(1l,n);

begD = [zeros(m,n); Y; ones(1,n)];
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AegD = [zeros(m,1) X eye(m) zeros(m,s);
zeros(s,1) Y zeros(s,m) -eye(s);
zeros(1,1) ones(1,n) zeros(l,m+s)];

1bD = zeros(1l+n+m+s,1);

1bD(1,1) = - Inf;
FD = [1 zeros(1,n+m+s)];
for j =1:n

AeqD(:,1)=[-X(:,j); zeros(s,1); 0];

[VysledkyD(:,j), HodD(1,j)] = linprog(FD,[],[],AeqD,beqD(:,3),1bD,[1); end
%h% maximalizacia slackov:

V3 = zeros(n+m+s,n);

H3 = zeros(1,n);

F3 = [zeros(1,n) ones(1,m) ones(1,s)];

Aeqg3 = [X eye(m) zeros(m,s);

Y zeros(s,m) -eye(s);

ones(1l,n) zeros(l,m+s)];

1b3 = zeros(n+s+m,1);

for j=1:n

beq3 = [HodD(1,j) * X(:,3);

Y(:,3);

11;

[v3(:,3), H3(1,j)] = linprog(-F3, [1, [1, Aeq3, beq3, 1b3, []1); end
H3 = -H3; end

BCC-O:

function [VysledkyP, HodP, VysledkyD, HodD, V3, H3]=BCC_O(X,Y)
[m,n] = size(X); % n = pocet DMU, m = pocet vstupov
[s,n] = size(Y); % n = pocet DMU, s = pocet vystupov
%%% primarna uloha - MM:

VysledkyP = zeros(m+s+1,n);

HodP = zeros(m,n);

beqP = 1;

bP = zeros(n,1);

AP = [-X’ Y’ ones(n,1)];

1bP = zeros(m+s+1,1);

1bP(m+s+1,1) = -Inf;

FP = [X’ zeros(n,s) -ones(n,1)];

AeqP = [zeros(n,m) Y’ zeros(n,1)];

for j = 1:n

[VysledkyP(:,j), HodP(1,j)] = linprog(FP(j,:),AP,bP,AeqP(j,:),beqP,1bP,[]); end
%%% dualna uloha - OM:

VysledkyD = zeros(l+nt+m+s,n);

HodD = zeros(l,n);

begD = [X; zeros(s,n); ones(1l,n)];

AeqD [zeros(m,1) X eye(m) zeros(m,s);

zeros(s,1) Y zeros(s,m) -eye(s);

zeros(1,1) ones(1,n) zeros(l,m+s)];

1bD = zeros(1l+n+m+s,1);

1bD(1,1) = - Inf;
FD = [1 zeros(1,n+m+s)];
for j = 1:n

AegD(:,1)=[zeros(m,1); -Y(:,j); 0I;

[VysledkyD(:,j), HodD(1,j)] = linprog(-FD,[],[],AeqD,beqD(:,j),1bD,[1); end
HodD = -HodD;

%h% maximalizacia slackov:

V3 = zeros(n+m+s,n);
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H3 = zeros(1,n);

F3 = [zeros(1,n) ones(1,m) ones(1,s)];
Aeqg3 = [X eye(m) zeros(m,s);

Y zeros(s,m) -eye(s);

ones(1,n) zeros(l,m+s)];

beq3 = [zeros(m+s,n); ones(1,n)];

1b3 = zeros(n+s+m,1);

for j=1:n

beq3(:,j) = [X(:,3);

HodD(j) * Y(:,j);

11;

[Vv3(:,j), H3(1,3j)] = linprog(-F3, [1, [1, Aeqg3, beq3(:,j), 1b3, [1); end
H3 = -H3; end

Model A s CRS:

function [VysledkyP, HodP, VysledkyD, HodD, V3, H3]=Model A_CRS(X,Y)
[m,n] = size(X); % n = pocet DMU, m = pocet vstupov
[s,n] size(Y); % n = pocet DMU, s = pocet vystupov
%%% primarna uloha - MM:

VysledkyP = zeros(m+s,n);

HodP = zeros(1,n);

bP = zeros(n,1);

beqP = 1;

AeqP = [X’ Y’1;

AP = [-X° Y°1;

FP = [-X’ Y’1;

1bP = zeros(m+s,1);

for j = 1:n

[VysledkyP(:,j), HodP(1,j)] = linprog(-FP(j,:), AP, bP, AeqP(j,:), begP, 1bP, []1); end
HodP = -HodP;

HodP = ones(1,n) + HodP;

%%% dualna uloha - OM:

VysledkyD = zeros(l+n+m+s,n);

HodD = zeros(1,n);

begD = [X; -Y];

AeqD = [zeros(m,1) X eye(m) zeros(m,s);

zeros(s,1) -Y zeros(s,m) eye(s)];

FD = [-1 zeros(l,n+m+s)];

1bD = zeros(l+n+m+s,1);

1bD(1,1) = - Inf;

for j = 1:n

AegD(:,1) = [X(:,3); YC:,507;

[VysledkyD(:,j), HodD(1,j)] = linprog(FD, [1, [1, AegD, begD(:,j), 1bD, []1); end
HodD = ones(1,n) + HodD;

%%% maximalizacia slackov:

V3 = zeros(n+m+s,n);

H3 = zeros(1,n);

F3 = [zeros(1,n) ones(1,m) ones(1,s)];

Aeg3 = [X eye(m) zeros(m,s);

Y zeros(s,m) -eye(s)];

beq3 = zeros(m+s,n);

1b3 = zeros(n+s+m,1);

for j=1:n

beq3(:,j) = [HodD(j) * X(:,j);

(2-HodD(j)) * Y(:,j)1;

[V3(:,3), H3(1,j)] = linprog(-F3, [1, [1, Aeq3, beq3(:,j), 1b3, [1); end
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H3 = -H3; end

Model A s VRS:

function [VysledkyP, HodP, VysledkyD, HodD, V3, H3]=Model_A_VRS(X,Y)
[m,n] size(X); % n = pocet DMU, m = pocet vstupov
[s,n] size(Y); % n = pocet DMU, s = pocet vystupov
%%% primarna uloha - MM:

VysledkyP = zeros(m+s+1,n);

HodP = zeros(1,n);

bP = zeros(n,1);

beqP = 1;

AegP = [X’ Y’ zeros(n,1)];

AP = [-X’ Y’ ones(n,1)];

FP = [-X’ Y’ ones(n,1)];

1bP = zeros(m+s+1,1);

1bP(m+s+1,1) = -Inf;

for j = 1:n

[VysledkyP(:,j), HodP(1,j)] = linprog(-FP(j,:), AP, bP, AeqP(j,:), begP, 1bP, [1); end
HodP = -HodP;

HodP = ones(1,n) + HodP;

%%% dualna uloha - OM:

VysledkyD = zeros(l+nt+m+s,n);

HodD = zeros(1,n);

begD = [X; -Y; ones(1,n)];

AegD = [zeros(m,1) X eye(m) zeros(m,s);

zeros(s,1) -Y zeros(s,m) eye(s);

zeros(1,1) ones(1,n) zeros(l,m+s)];

FD = [-1 zeros(1l,n+m+s)];

1bD = zeros(1l+n+m+s,1);

1bD(1,1) = - Inf;

for j = 1:n

AegD(:,1) = [X(:,3); Y(:,3); 0];

[VysledkyD(:,j), HodD(1,j)] = linprog(FD, [1, [], AeqD, beqD(:,j), 1bD, []); end
HodD = ones(1,n) + HodD;

%%% maximalizacia slackov:

V3 = zeros(n+m+s,n);

H3 = zeros(1,n);

F3 = [zeros(1,n) ones(1,m) ones(1,s)];

Aeg3 = [X eye(m) zeros(m,s);

Y zeros(s,m) -eye(s);

ones(1,n) zeros(1l,m+s)];

beq3 = zeros(m+s+1,n);

1b3 = zeros(n+s+m,1);

for j=1:n

beq3(:,j) = [HodD(j) * X(:,j);

(2-HodD(j)) * Y(:,3);

11;

[Vv3(:,3), H3(1,j)] = linprog(-F3, [1, [], Aeq3, beq3(:,j), 1b3, [1); end
H3 = -H3; end

Aditivny model s CRS:

function [VysledkyP, HodP, VysledkyD, HodD]=AD_0OM_CRS(X,Y)
[m,n] = size(X); % n = pocet DMU, m = pocet vstupov

[s,n] = size(Y); % n = pocet DMU, s = pocet vystupov

%%% primarna uloha - MM:

70



Zdrojové kédy naprogramovanych funkcii Priloha A

VysledkyP = zeros(m+s,n);

HodP = zeros(1,n);

bP = zeros(1,n);

AP = [-X’ Y’1;

1bP = ones(m+s,1);

for j = 1:n

FP = [-(X(:,3)) (Y(:,30)°];

[VysledkyP(:,j), HodP(1,j)] = linprog(-FP,AP,bP,[],[],1bP,[]1); end
HodP = -HodP;

%%% dualna uloha - OM:

VysledkyD = zeros(n+m+s,n);

HodD = zeros(1l,n);

beqD = [X; Y1;

AeqD = [X eye(m) zeros(m,s);

Y zeros(s,m) -eye(s)];

1bD = zeros(n+m+s,1);

FD = [zeros(1,n) ones(l,m+s)];

for j = 1:n

[VysledkyD(:,j), HodD(1,j)] = linprog(-FD, [],[],AeqD,beqD(:,j),1bD,[]1); end end

Aditivny model s VRS:

function [VysledkyP, HodP, VysledkyD, HodD]=AD_OM_VRS(X,Y)
[m,n] = size(X); % n = pocet DMU, m = pocet vstupov

[s,n] = size(Y); % n = pocet DMU, s = pocet vystupov

%%% primarna uloha - MM:

VysledkyP = zeros(m+s+1,n);

HodP = zeros(1,n);

bP = zeros(1,n);

AP = [-X’ Y’ ones(n,1)];

1bP = ones(m+s,1);

for j = 1:n

FP = [-(X(:,3))7 (Y(:,3))° 11;

[VysledkyP(:,j), HodP(1,j)] = linprog(-FP,AP,bP,[],[],1bP,[]); end
HodP = -HodP;

%%% dualna uloha - OM:

VysledkyD = zeros(n+m+s,n);

HodD = zeros(1,n);

begD = [X; Y; ones(1,n)];

AeqD [X eye(m) zeros(m,s);

Y zeros(s,m) -eye(s);

ones(1,n) zeros(l,m) zeros(1l,s)];

1bD = zeros(n+m+s,1);

FD = [zeros(1,n) ones(1l,m+s)];

for j = 1:n

[VysledkyD(:,j), HodD(1,j)] = linprog(-FD, [],[],AegD,beqD(:,j),1bD,[]1); end end

Model B s CRS:

function [VysledkyP, HodP, VysledkyD, HodD] = Model_B_CRS(X,Y)
[m,n] = size(X); % n = pocet DMU, m = pocet vstupov

[s,n] = size(Y); % n = pocet DMU, s = pocet vystupov

%h% primarna uloha - MM:

VysledkyP = zeros(m+s,n);

HodP = zeros(1,n);

bP = [zeros(n,1);

-(1/m)*ones(m,1);
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-(1/s)*ones(s,1)]1;

FP = [-X’ Y’]

for j = 1:n

AP = [-X° Y7,

-diag(X(:,j)) zeros(m,s);

zeros(s,m) -diag(Y(:,j))]1;

[VysledkyP(:,j), HodP(1,j)] = linprog(-FP(j,:), AP, bP, [1, [1, [I, [1); end
HodP = -HodP;

%%% dualna uloha - OM:

VysledkyD = zeros(n+m+s,n);

HodD = zeros(1,n);

beqD = [X; YI;

FD = [-zeros(1,n) -(1/m)*ones(1,m) -(1/s)*ones(1,s)];

1bD = zeros(n+m+s,1);

for j = 1:n

AegD = [X diag(X(:,j)) zeros(m,s);

Y zeros(s,m) -diag(Y(:,3j))]1;

[VysledkyD(:,j), HodD(1,j)] = linprog(FD, [1, [1, AegD, beqD(:,j), 1bD, [1); end end

Model B s VRS:

function [VysledkyP, HodP, VysledkyD, HodD] = Model_B_VRS(X,Y)
[m,n] = size(X); % n = pocet DMU, m = pocet vstupov

[s,n] = size(Y); % n = pocet DMU, s = pocet vystupov

%%% primarna uloha - MM:

VysledkyP = zeros(m+s+1,n);

HodP = zeros(1,n);

bP = [zeros(n,1);

-(1/m)*ones(m,1) ;

-(1/s)*ones(s,1)];
FP = [-X’ Y’ ones(n,1)]
for j = 1:n

AP = [-X’ Y’ ones(n,1);

-diag(X(:,j)) zeros(m,s) zeros(m,1);

zeros(s,m) -diag(Y(:,j)) zeros(s,1)];

[VysledkyP(:,j), HodP(1,j)] = linprog(-FP(j,:), AP, bP, [1, [1, [1, [1); end
HodP = -HodP;

%%% dualna uloha - OM:

VysledkyD = zeros(n+m+s,n);

HodD = zeros(1,n);

begD = [X; Y; ones(1,n)];

FD = [-zeros(1,n) -(1/m)*ones(1,m) -(1/s)*ones(1,s)];

1bD = zeros(n+m+s,1);

AegD = [ones(1,n) zeros(l,m+s)];

for j = 1:n

AegD = [X diag(X(:,j)) zeros(m,s);

Y zeros(s,m) -diag(Y(:,j));

ones(1,n) zeros(l,m) zeros(l,s)];

[VysledkyD(:,j), HodD(1,j)] = linprog(FD, [1, [], AeqD, beqD(:,j), 1bD, [1); end end

72



Japonské banky — vysledky vypoctov

Priloha B

Priloha B: Japonské banky — vysledky vypoctov

CCR-I:

0 A1 A3 A A6 A7 s7 55 5% s?f
1)1 1 0 0 0 0 0 0 0 0
2 10877 0 0 07 0 0 |323,49 101,08 0 4664,58
311 0 1 0 0 0 0 0 0 0
4 |11 0 0 1 0 0 0 0 0 0
510,728 0 0 051 0 0 41,23 78,70 0 23167,98
6 1098 | 0 027 053 0 0 |135,86 47,83 0 0
7 10,908 | 0,27 0,13 040 O 0 0 26,60 0 0
8 10,600 | O 0 025 0 0 80,90 21,53 0 17 604,29
91079 | 0 0,23 031 0 0 89,656 31,42 0 0
10 [ 0,707 | O 0 005 0 032 0 39,30 0 1570,61
1110998 | 0 0 0 034 0,68 0 31,17 250,85 0
1210634 | 0 0 010 0 0,32 0 47,10 0 50989,13
1310871 | 0 0 0,08 0,18 0,65 0 5,33 0 0
1410849 | 0,01 0 0,14 043 0 0 21,04 0 0
15 10,708 | O 0 010 0 041 0 53,08 0 14 124,32
16 | 1 0 0 0 1 0 0 0 0 0
1711 0 0 0 0 1 0 0 0 0
18 10,902 | 0 0 002 0 1,07 0 68,87 0 6 653,55
1910917 | 0 0 003 0 1,20 0 14,33 0 666821
201 0,743 | 0 0 002 0 0,78 0 46,93 0 565595

Tabulka B.1: Vysledky vypoc¢tov s modelom CCR-I.
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CCR-O:

(0 A1 A3 M Ae Ay s7 55 5% sy
11 1 0 0 0 0 0 0 0 0
2 1,141 0 0 08 0 0 |369,04 115,31 0 5321,39
3|1 0 1 0 0 0 0 0 0 0
4 |1 0 0 1 0 0 0 0 0 0
5 [ 1,373 0 0 070 0 0 56,62 108,07 0 3181497
6 |1,006 0 027 053 0 0 | 137,97 48,58 0 0
711,102 030 0,14 045 O 0 0 29,31 0 0
8 11,666 | 0 0 042 0 0 | 134,79 35,88 0 29 332,37
9 11,266 0 029 039 0 0 | 113,44 39,75 0 0
10 | 1,414 | 0 0 007 0 045 0 55,59 0 2221,60
111,002 | 0 0 0 034 0,68 0 31,23 251,33 0
12 1 1,579 | 0 0 015 0 0,551 0 74,35 0 945401
131,148 | 0 0 0,09 020 0,75 0 6,11 0 0
14 {1,177 (0,01 0 0,17 051 O 0 24,77 0 0
151412 0 0 013 0 0,57 0 74,97 0 19 949,39
16 | 1 0 0 0 1 0 0 0 0 0
17 |1 0 0 0 0 1 0 0 0 0
18 | 1,108 | 0 0 003 0 1,18 0 76,32 0 737347
19 | 1,091 | 0 0 003 0 1,30 0 15,63 0 727232
20 1 1,346 | O 0 003 0 1,04 0 63,14 0 7610,59

Tabulka B.2: Vysledky vypoc¢tov s modelom CCR-O.
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Model A:

1—-6 | N A3 M Mg M7 s7 s3 s sY
1|1 1 0 0 0 0 0 0 0 0
2 10,934 0 0 0,80 0 0 344,77 107,73 0 4971,38
3 |1 0 1 0 0 0 0 0 0 0
4 |1 0 0 1 0 0 0 0 0 0
5 | 0,843 0 0 0,59 0 0 47,72 91,07 0 26 811,53
6 | 0,992 0 0,27 0,53 0 0 136,91 48,20 0 0
7109521029 0,13 0,42 0 0 0 27,89 0 0
8 10,750 0 0 0,32 0 0 101,11 26,91 0 22 003,08
9 | 0,883 0 0,26 0,35 0 0 100,15 35,09 0 0
10 | 0,828 0 0 0,06 0 0,37 0 46,05 0 1840,23
11 | 0,999 0 0 0 0,34 0,68 0 31,20 251,09 0
12 | 0,776 0 0 0,12 0 0,39 0 57,67 0 7332,87
13 | 0,931 0 0 0,08 0,19 0,70 0 5,69 0 0
14 | 0,919 | 0,01 0 0,15 0,46 0 0 22,75 0 0
15 | 0,829 0 0 0,11 0 0,47 0 62,15 0 16 538,94
16 | 1 0 0 0 1 0 0 0 0 0
17|11 0 0 0 0 1 0 0 0 0
18 | 0,949 0 0 0,02 0 1,12 0 72,41 0 699504
19 | 0,957 0 0 0,03 0 1,25 0 14,96 0 6957,18
20 | 0,853 0 0 0,02 0 0,89 0 53,84 0 6489,28

Tabulka B.3: Vysledky vypoc¢tov s Modelom A.
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Aditivny model:

Hodnota | Ay Mg A4 A6 A7 s 53 5% s?{ 33{
1 0|1 0 0 0 0 0 0 0 0 0
2 |-74602,79 | 0 0,86 0,18 0 0 0 84,60 0 7333523 118296
3 0] 0 1 0 0 0 0 0 0 0 0
4 0] 0 0 1 0 0 0 0 0 0 0
5 |-7883362| 0 0,13 059 O 0 0 103,35 0 71673,57 7 056,69
6 9484431 0 0,40 044 O 0 |84,20 44,10 0 9356,13 0
7 1-21865,72| 0 024 064 O 0 0 35,23 0 17 281,55 4 548,94
8 1-76590,32| 0 0,32 0,17 0 0 0 24,66 0 7100568 5 559,98
9 1-49569,71| 0 056 0,18 0 0 0 30,31 0 45 545,40 3 994,00
10 | -15 310,14 | O 0 004 041 O 0 4212 0 14 166,18 1 101,83
11 -350,823 | 0 0 0 0,34 0,67 0 31,53 259,10 60,19 0
12 1 -29882,09 | 0 0 0,11 046 O 0 59,05 0 27234,07 2 588,97
13 | -14 140,38 | 0 0 005 077 0 0 0 280,72 13 542,90 316,75
14 | -10 736,91 | 0 0 018 049 O 0 26,40 0 9049,24 1661,28
15 | -34 584,14 | 0 0 0,09 052 0 0 57,71 0 32678,48 184794
16 0] 0 0 0 1 0 0 0 0 0 0
17 0] 0 0 0 0 1 0 0 0 0 0
18 | -14 649,65 | 0 0 0 0,38 0,64 0 76,03 273,28 14 300,34 0
19 1 -15337,63 | 0 0 0 043 0,73 0 11,18 218,05 15 108,30 0
20 | -19 134,35 | 0 0 0 055 0,04 0 85,57 900,16 18 148,62 0

Tabulka B.7: Vysledky vypoctov s aditivnym modelom.
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Model B:

Hodnota | A1 A3 A4 A6 A7 o1 09 o3 Y1 Y2
1 0] 1 0 0 0 0 0 0 0 0 0
2 036410 0 08 0 0 |035 026 0 0,17 0,14
3 00 1 0 0 0 0 0 0 0 0
4 0 0 0 1 0 0 0 0 0 0 0
5 068310 0 070 0 0 | 0,09 029 0 0,73 0,37
6 -0,124 | 0 0,22 0,57 0 0 0,19 0,15 0 0 0,02
7 -0,198 | O 0 083 0 0 (0,14 0,12 0 0,03 0,20
8 1,265 0 0,32 017 0 0 0 0,13 0 1,89 0,56
9 -0,397 | O 0 0,62 0 0 0,33 0,18 0 0,14 0,32
10 -0,827 | O 0 0,04 0,41 0 0 0,31 0 1,11 0,34
11 -0,085 | 0 0 0 0,34 0,67 0 0,18 0,07 0 0
12 -1,135 | 0 0 0,11 0,46 0 0 0,31 0 1,54 0,52
13 -0,277 | O 0 0,07 0,61 0 0 0,14 0,15 0,36 0
14 -0,296 | O 0 0,24 0 0 0 053 0,23 0,01 0,08
15 -1,878 | 0 0 0,09 0,52 0 0 0,30 0 3,21 0,35
16 0] 0 0 0 1 0 0 0 0 0 0
17 00 0 0 0 1 0 0 0 0 0
18 -1,078 | O 0 0 0,38 0,64 0 0,34 0,07 1,88 0
19 -0,814 | O 0 0 043 0,73 0 0,06 0,05 1,55 0
20 -1,807 | 0O 0 0 0,55 0,04 0 044 0,26 3,15 0

Tabulka B.8: Vysledky vypoctov s Modelom B.
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