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Abstrakt

KABÁT, Marek: Algoritmy metód vnútorného bodu v lineárnom programovaní. [Rigorózna

práca] – Univerzita Komenského v Bratislave. Fakulta matematiky, fyziky a informatiky.

Katedra aplikovanej matematiky a štatistiky. – Konzultant: doc. RNDr. Margaréta Halická,

CSc. – Bratislava: FMFI UK, 2014, 55 s.

Rigorózna práca sa zaoberá algoritmami metód vnútorného bodu v lineárnom progra-

movaní. Hlavným ciel’om práce je uviest’ základnú kategorizáciu primárno-duálnych

algoritmov metód vnútorného bodu v lineárnom programovaní, vysvetlit’ a ilustrovat’

princíp konkrétnych algoritmov a uviest’ a dokázat’ ich podstatné vlastnosti. Práca vy-

chádza zo základných výsledkov z teórie metód vnútorného bodu v lineárnom progra-

movaní. Ústrednú čast’ práce tvoria primárno-duálne algoritmy redukcie potenciálu a

algoritmy sledovania centrálnej trajektórie. Obsah práce je na záver doplnený o triedu

primárno-duálnych neprípustných algoritmov.

Kl’účové slová: lineárne programovanie • metódy vnútorného bodu • centrálna trajektó-

ria • primárno-duálny algoritmus • potenciálová funkcia.
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Abstract

KABÁT, Marek: Algorithms of Interior Point Methods in Linear Programming. [Rigorous The-

sis] – Comenius University in Bratislava. Faculty of Mathematics, Physics and Informa-

tics. Department of Applied Mathematics and Statistics. – Supervisor: doc. RNDr. Mar-

garéta Halická, CSc. – Bratislava: FMFI UK, 2014, 55 p.

The rigorous thesis deals with interior point algorithms for linear programming. The

main objective of this work is to specify the basic categorization of primal-dual interior

point algorithms for linear programming, explain and illustrate the principle of specific

algorithms and state and prove their essential characteristics. The work is based on the

fundamental results of the theory of interior point methods in linear programming. The

main part of thesis consists of primal-dual potential reduction algorithms and path fol-

lowing algorithms. Content of thesis is completed at the end by a class of primal-dual

infeasible algorithms.

Keywords: linear programming • interior point methods • central path • primal-dual

algorithm • potential function.
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Zoznam symbolov a značiek

V práci budeme používat’ nasledovné jednotné značenie.

Rn Priestor reálnych n -rozmerných vektorov.

Rm×n Priestor reálnych matíc rozmerum× n.

i, j Indexy označujúce zložky vektorov a matíc.

∅ Prázdna množina.

[ui]
n
i=1, [ui]i∈M Vektor so zložkami ui, kde i = 1, 2, . . . , n, resp. i ∈ M.

uT Transpozícia vektora u.

uT v Skalárny súčin vektorov u, v ∈ Rn, uT v =

n∑
i=1

uivi.

∥.∥, ∥.∥2 Euklidova norma. Pre u ∈ Rn, ∥u∥2 =

(
n∑

i=1

u2i

)1/2

.

∥.∥1 Jednotková norma. Pre u ∈ Rn, ∥u∥1 =
n∑

i=1

|ui|.

∥.∥∞ Maximová norma. Pre u ∈ Rn, ∥u∥∞ = max
i=1,2,...,n

|ui|.

Poznámka: pre l’ubovol’ný vektor u ∈ Rn platí ∥u∥∞ ≤ ∥u∥2 ≤ ∥u∥1.

f(.) Funkcia f.

∇f(.) Gradient funkcie f.

∇2f(.) Hessova matica funkcie f.

exp (.) Exponenciálna funkcia.

ln(.) Prirodzený logaritmus.

e Vektor jednotiek príslušného rozmeru, e = (1, 1, . . . , 1)T .

I Jednotková matica príslušného rozmeru, I = diag(e).

h(A) Hodnost’ maticeA.

B−1 Inverzná matica k regulárnej maticiB, BB−1 = B−1B = I.
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ZOZNAM SYMBOLOV A ZNAČIEK

(P ), (D) Štandardná primárna, resp. duálna úloha lineárneho programovania.

x Vektor premenných primárnej úlohy (P ), x ∈ Rn.

y Vektor premenných duálnej úlohy (D), y ∈ Rm.

s Vektor doplnkových premenných duálnej úlohy (D), s ∈ Rn.

(A, b, c) Vstupné údaje lineárneho programu,A ∈ Rm×n, b ∈ Rm, c ∈ Rn.

P,D Množina prípustných riešení úlohy (P ), resp. úlohy (D).

F Množina primárno-duálnych prípustných riešení, F = P ×D.

P∗,D∗ Množina optimálnych riešení úlohy (P ), resp. úlohy (D).

F∗ Množina primárno-duálnych optimálnych riešení, F∗ = P∗ ×D∗.

P◦,D◦ Množina ostro prípustných riešení úlohy (P ), resp. úlohy (D).

F◦ Množina primárno-duálnych ostro prípustných riešení, F◦ = P◦ ×D◦.

µ Bariérový parameter, µ > 0, µ = xT s/n.

(xµ, yµ, sµ) Parametrizované riešenie systému (1.4)-(1.6).

C Centrálna trajektória, {(xµ, yµ, sµ) | µ > 0}.

k Iteračný index, k = 0, 1, 2, . . . .

(xk, yk, sk) Iteračný bod primárno-duálneho algoritmu.

(∆x,∆y,∆s) Primárno-duálny Newtonov smer.

σ, σk Centrujúci parameter.

α, αk Parameter dĺžky kroku.

(x(α), y(α), s(α)) (x, y, s) + α(∆x,∆y,∆s)

µ(α) x(α)T s(α)/n

X,Xk Diagonálna n× n matica so zložkami vektora x, resp. xk,

X = diag(x), Xk = diag(xk).

S, Sk Diagonálna n× n matica so zložkami vektora s, resp. sk,

S = diag(s), Sk = diag(sk).

D X1/2S−1/2

∆X,∆S Diagonálna n× n matica so zložkami vektora ∆x, resp. ∆s,

∆X = diag(∆x), ∆S = diag(∆s).

O(.) Označenie zložitosti algoritmov.

⌈.⌉ Horná celá čast’ reálneho čísla.

Φρ(.) Potenciálová funkcia, Φρ(x, s) = ρ lnxT s−
n∑

i=1

lnxisi, ρ ≥ n.

rP , r
k
P Primárne rezíduum, rP = Ax− b, rkP = Axk − b.

rD, r
k
D Duálne rezíduum, rD = AT y + s− c, rkD = AT yk + sk − c.
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ZOZNAM SYMBOLOV A ZNAČIEK

N2(θ) Špecifické okolie centrálnej trajektórie pre dané θ ∈ (0, 1),

{(x, y, s) ∈ F◦ | ∥XSe− µe∥ ≤ θµ, µ = xT s/n}.

N−∞(γ) Špecifické okolie centrálnej trajektórie pre dané γ ∈ (0, 1),

{(x, y, s) ∈ F◦ | xisi ≥ γµ, i = 1, 2, . . . , n, µ = xT s/n}.

N−∞(γ, ϱ) Špecifické okolie centrálnej trajektórie pre dané γ ∈ (0, 1), ϱ ≥ 1, (x0, y0, s0),

{(x, y, s) | ∥(rP , rD)∥ ≤ [∥(r0P , r0D)∥/µ0]ϱµ, (x, s) > 0, xisi ≥ γµ, i = 1, 2, . . . , n}.
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Úvod

If God did not exist, it would be necessary to invent him.
Fortunately, there is no need to solve such a thought for
mathematics.

Lineárne programovanie je špeciálnym prípadom matematického konvexného progra-
movania, ktoré rieši problém minimalizácie alebo maximalizácie lineárnej účelovej fun-
kcie na množine prípustných riešení, ktorá je charakterizovaná sústavou lineárnych rov-
níc alebo neostrých nerovníc. Štandardným algoritmom na riešenie úloh lineárneho prog-
ramovania je simplexová metóda, ktorú navrhol George Dantzig [2] v roku 1947. Klee
a Minty [10] v roku 1972 zistili, že počet iterácií simplexovej metódy môže byt’ expo-
nenciálny vzhl’adom k rozmeru úlohy, čo podnietilo odborníkov ku koštrukcii nových
algoritmov s polynomiálnou zložitost’ou. Vznikalo niekol’ko nových algoritmov, no pre-
vratným sa stal až výsledok Narendra Karmarkara [8], ktorý v roku 1984 predstavil svoj
projektívny algoritmus na riešenie lineárnych úloh v polynomiálnom čase. Ukázalo sa, že
Karmarkarov algoritmus úzko súvisí s metódami vnútorného bodu, ktoré sa do toho ob-
dobia aplikovali najmä na riešenie všeobecných úloh nelineárneho programovania. Kar-
markarov algoritmus položil základy moderných metód vnútorného bodu, ktoré okrem
lineárnych úloh dokážu efektívne riešit’ aj širokú triedu štrukturovaných úloh nelineár-
neho konvexného programovania.

Rigorózna práca sa zaoberá algoritmami metód vnútorného bodu v lineárnom progra-
movaní. V priebehu vývoja metód vnútorného bodu vznikla určitá kategorizácia algo-
ritmov. Ciel’om práce je uviest’ základnú kategorizáciu primárno-duálnych algoritmov
metód vnútorného bodu v lineárnom programovaní, vysvetlit’ a ilustrovat’ princíp kon-
krétnych algoritmov, uviest’ ich charakteristické znaky a dokázat’ ich podstatné vlast-
nosti. Práca nadväzuje na diplomovú prácu Metódy vnútorného bodu v lineárnom progra-
movaní a ich aplikácie vo financiách [7], čím dopĺňa a rozširuje čast’ venovanú algoritmom.
Účelom práce je poskytnút’ základný prehl’ad zaužívaných primárno-duálnych algorit-
mov metód vnútorného bodu v lineárnom programovaní, pričom sa v práci kladie dôraz
na podrobnú analýzu algoritmov, dôkladné vysvetlovanie, ilustrácie a jednotný spôsob
prezentácie.
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ÚVOD

Rigorózna práca je rozdelená do piatich kapitol. V prvej kapitole sú uvedené základné
výsledky z teórie metód vnútorného bodu v lineárnom programovaní. Druhá kapitola sa
zaoberá primárno-duálnymi algoritmami redukcie potenciálu. Ústrednou čast’ou práce je
tretia kapitola, ktorá prezentuje tri základné varianty primárno-duálnych algoritmov sle-
dovania centrálnej trajektórie. Štvrtá kapitola sa venuje neprípustným primárno-duálnym
algoritmom, v rámci ktorých je opísaný Mehrotrov prediktor-korektor algoritmus. Ob-
sahom piatej kapitoly sú technické výsledky a postupy, ktoré boli využité v rigoróznej
práci.
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KAPITOLA 1

METÓDY VNÚTORNÉHO BODU V

LINEÁRNOM PROGRAMOVANÍ

Prvá kapitola práce je venovaná kl’účovým výsledkom z teórie metód vnútorného bodu
v lineárnom programovaní. Kapitola predstavuje širší abstrakt teoretickej časti diplomo-
vej práce Metódy vnútorného bodu v lineárnom programovaní a ich aplikácie vo financiách [7].
V tejto kapitole sformulujeme štandardnú úlohu lineárneho programovania a uvedieme
základné pojmy a predpoklady. Zároveň vysvetlíme myšlienku metód vnútorného bodu,
opíšeme princíp primárno-duálnych metód a vysvetlíme spôsob označenia zložitosti al-
goritmov.

1.1 Základné výsledky z teórie lineárneho programovania

V práci budeme vychádzat’ z úlohy lineárneho programovania v štandardnom tvare

(P ) min
x

{
cTx |Ax = b, x ≥ 0

}
,

kde c, x ∈ Rn, b ∈ Rm, A ∈ Rm×n. K úlohe (P ) definujeme množinu prípustných
riešení P a množinu optimálnych riešení P∗

P = {x ∈ Rn |Ax = b, x ≥ 0} ,

P∗ =
{
x∗ ∈ P | cTx∗ ≤ cTx, ∀x ∈ P

}
.

Duálna úloha k úlohe (P ) má tvar

(D) max
y,s

{
bT y |AT y + s = c, s ≥ 0

}
,

kde s ∈ Rn, y ∈ Rm. K úlohe (D) analogicky definujeme množinu prípustných riešení D
a množinu optimálnych riešení D∗

D =
{
(y, s) ∈ Rm ×Rn |AT y + s = c, s ≥ 0

}
,

D∗ =
{
(y∗, s∗) ∈ D | bT y∗ ≥ bT y, ∀(y, s) ∈ D

}
.

Dvojicu úloh (P ), (D) nazývame primárno-duálnou dvojicou a rozdiel hodnôt ich účelo-
vých funkcií cTx − bT y nazývame duálnou medzerou. Pre dvojicu úloh (P ), (D) zadefi-
nujeme množinu primárno-duálnych prípustných riešení F

3



KAPITOLA 1. METÓDY VNÚTORNÉHO BODU V LINEÁRNOM PROGRAMOVANÍ

F =
{
(x, y, s) ∈ Rn ×Rm ×Rn |Ax = b, AT y + s = c, (x, s) ≥ 0

}
.

Veta 1.1 (Slabá dualita). Pre l’ubovol’né primárno-duálne prípustné riešenie (x, y, s) ∈ F platí
0 ≤ xT s = cTx− bT y. Naviac, ak pre nejakú trojicu (x∗, y∗, s∗) ∈ F platí cTx∗ = bT y∗, potom
x∗ je optimálnym riešením úlohy (P ) a dvojica (y∗, s∗) je optimálnym riešením úlohy (D). [23]

Veta 1.2 (Dualita). Ak obe úlohy (P ), (D) majú prípustné riešenie, t.j. F ̸= ∅, potom obe úlohy
(P ), (D) majú optimálne riešenie. Trojica (x∗, y∗, s∗) je primárno-duálnym optimálnym riešením
úloh (P ), (D) práve vtedy, ked’

Ax∗ = b, x∗ ≥ 0 (1.1)

AT y∗ + s∗ = c, s∗ ≥ 0 (1.2)

X∗S∗e = 0. [23] (1.3)

Veta 1.2 formuluje nutné a postačujúce podmienky optimality pre primárno-duálnu
dvojicu (P ), (D). Podmienky (1.1), (1.2) zodpovedajú podmienkam primárnej, resp. du-
álnej prípustnosti a podmienka (1.3) zodpovedá podmienke komplementarity. To zna-
mená, že za predpokladu F ≠ ∅ môžeme definovat’ množinu primárno-duálnych opti-
málnych riešení F∗

F∗ = {(x, y, s) ∈ F | xisi = 0, i = 1, 2, . . . , n} .

Veta 1.3 (Silná dualita). Ak jedna z dvojice úloh (P ), (D) má optimálne riešenie, potom má aj
druhá a optimálne hodnoty účelových funkcií sa rovnajú. [23]

Veta 1.4 (Ostrá komplementarita). Ak obe úlohy (P ), (D) majú prípustné riešenie, t.j. F ̸= ∅,
potom existuje primárno-duálne optimálne riešenie (x∗, y∗, s∗) ∈ F∗ spĺňajúce x∗ + s∗ > 0. [23]

1.2 Základné predpoklady

Pri spracovaní teórie metód vnútorného bodu je dôležité a nevyhnutné vychádzat’ z
dvoch základných predpokladov.

Predpoklad 1. Matica A ∈ Rm×n má plnú riadkovú hodnost’, t.j. h(A) = m ≤ n.

Uvedený predpoklad má technický charakter a zebezpečí jednoznačné párovanie medzi
vektormi y ∈ Rm, s ∈ Rn tak, aby (y, s) ∈ D. Pred formuláciou druhého predpokladu
najprv zadefinujeme množinu ostro prípustných primárno-duálnych riešení F◦

F◦ = {(x, y, s) ∈ F | (x, s) > 0} .

Poznamenajme, že množina ostro prípustných riešení F◦ tvorí relatívne vnútro množiny
F , a preto ostro prípustné riešenia nazývame aj vnútornými bodmi.

Predpoklad 2. Každá z dvojice úloh (P ), (D) má vnútorný bod, t.j. F◦ ̸= ∅.

4



KAPITOLA 1. METÓDY VNÚTORNÉHO BODU V LINEÁRNOM PROGRAMOVANÍ

Zatial’ čo Predpoklad 1 je technický, Predpoklad 2 o existencii vnútorného bodu je ne-
vyhnutný a zaručuje existenciu ústredného objektu metód vnútorného bodu, ktorým je
centrálna trajektória. Pre jednoduchost’ budeme uvedené predpoklady označovat’

(P1) h(A) = m ≤ n,

(P2) F◦ ̸= ∅.

V d’alších častiach tejto práce budeme vždy predpokladat’, že základné predpoklady
(P1) a (P2) sú splnené.

1.3 Bariérový problém a centrálna trajektória

Princíp metód vnútorného bodu spočíva v postupnom riešení pomocných bariérových
úloh. Ku pôvodnej dvojici úloh (P ), (D) prirad’me bariérové úlohy (Pµ), (Dµ)

(Pµ) min
x>0

{
cTx− µ

n∑
i=1

lnxi |Ax = b

}
, (Dµ) max

s>0,y

{
bT y + µ

n∑
i=1

ln si |AT y + s = c

}
,

kde µ > 0 je bariérový parameter. Ak predpoklady (P1) a (P2) sú splnené, potom každá
z bariérových úloh (Pµ), (Dµ) má práve jedno optimálne riešenie pre l’ubovol’né µ > 0.
Nutné a postačujúce podmienky optimality formuluje nasledujúce tvrdenie.

Veta 1.5. Nech µ > 0. Potom vektor x je optimálnym riešením úlohy (Pµ) a dvojica (y, s) je
optimálnym riešením úlohy (Dµ) práve vtedy, ked’

Ax = b, x > 0 (1.4)

AT y + s = c, s > 0 (1.5)

XSe = µe. [23] (1.6)

To znamená, že vyriešit’ dvojicu bariérových úloh (Pµ), (Dµ) znamená vyriešit’ sys-
tém (1.4)-(1.6). Presné riešenia systému (1.4)-(1.6) definujú centrálnu trajektóriu, ktorá je
kl’účovým elementom metód vnútorného bodu. Ak označíme (xµ, yµ, sµ) riešenie sys-
tému (1.4)-(1.6) parametrizované parametrom µ > 0, potom pod centrálnou trajektóriou
rozumieme množinu

C = {(xµ, yµ, sµ) | µ > 0}.

Poznamenajme, že centrálna trajektória C jednoznačne existuje práve vtedy, ked’ predpo-
klady (P1) a (P2) sú splnené. Myšlienka metód vnútorného bodu spočíva v postupnom
zmenšovaní parametra µ → 0, čím sa duálna medzera xT s = nµ zmenšuje, a tým sa
systém (1.4)-(1.6) približuje k nutným a postačujúcim podmienkam optimality z Vety 1.2.

Veta 1.6. Centrálna trajektória C konverguje pre µ→ 0 a jej jediným limitným bodom je primárno-
duálne optimálne riešenie (x∗, y∗, s∗) ∈ F∗ úloh (P ), (D). Navyše, dvojica (x∗, s∗) zodpovedá
ostro komplementárnemu primárno-duálnemu optimálnemu riešeniu. [24]
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Inými slovami, zmenšovaním parametra µ postupnost’ riešení systému (1.4)-(1.6) kon-
verguje k primárno-duálnemu optimálnemu riešeniu (x∗, y∗, s∗) ∈ F∗. V matematickom
kontexte to znamená, že

lim
µ→0+

(xµ, yµ, sµ) = (x∗, y∗, s∗).

Na základe postupného riešenia systému (1.4)-(1.6) pre µ → 0 je tak možné efektívne
vyriešit’ dvojicu úloh (P ), (D) súčasne.

1.4 Primárno-duálne metódy

Princíp primárno-duálnych metód spočíva v súčasnom riešení úloh (P ), (D). Tieto me-
tódy hl’adajú primárno-duálne optimálne riešenie postupným riešením systému (1.4)-
(1.6) pomocou modifikovanej Newtonovej metódy so skrátenou dĺžkou kroku. Pre µ > 0

definujme funkciu F : R2n+m → R2n+m

F (x, y, s) =

 Ax− b

AT y + s− c

XSe− µe

 , (x, s) ≥ 0.

Nájst’ riešenie systému (1.4)-(1.6) zrejme znamená vyriešit’ rovnicu F (x, y, s) = 0 s do-
datočnou podmienkou (x, s) ≥ 0. Použitím Taylorovho rozvoja funkcie F v okolí bodu
(xk, yk, sk) dostaneme

F (x, y, s) ≈ F (xk, yk, sk) +∇F (xk, yk, sk)(∆x,∆y,∆s)T = 0,

∇F (xk, yk, sk)(∆x,∆y,∆s)T = −F (xk, yk, sk), (1.7)

kde ∇F je Jakobiho matica funkcie F a ∆x ∈ Rn, ∆y ∈ Rm, ∆s ∈ Rn sú smerové vektory.
Rozpísaním rovnice (1.7) do maticového tvaru dostanemeA 0 0

0 AT I

Sk 0 Xk


∆x∆y

∆s

 = −

 Axk − b

AT yk + sk − c

XkSke− µe

 . (1.8)

Smerové vektory ∆x ∈ Rn, ∆y ∈ Rm, ∆s ∈ Rn, ktoré sú riešením systému (1.8), sa nazý-
vajú primárno-duálne Newtonove smery. Iteračné body Newtonovej metódy vypočítame
podl’a iteračnej schémy

(xk+1, yk+1, sk+1) = (xk, yk, sk) + α(∆x,∆y,∆s), (1.9)

kde α ∈ [0, 1] označuje dĺžku kroku pozdĺž smeru (∆x,∆y,∆s). Parameter α volíme v
každej iterácii tak, aby boli splnené podmienky xk + α∆x > 0, sk + α∆s > 0. Týmto
spôsobom Newtonova metóda generuje iteračné body (xk, yk, sk) spĺňajúce podmienku
(xk, sk) > 0. Poznamenajme, že ak iteračný bod (xk, yk, sk) je ostro prípustným primárno-

6



KAPITOLA 1. METÓDY VNÚTORNÉHO BODU V LINEÁRNOM PROGRAMOVANÍ

duálnym riešením, potom systém (1.8) môžeme zjednodušit’ do tvaruA 0 0

0 AT I

Sk 0 Xk


∆x∆y

∆s

 = −

 0

0

XkSke− µe

 . (1.10)

Zároveň platí, že Newtonova metóda zachováva ostrú prípustnost’. Z uvedených vlast-
ností vyplýva, že ak štarovací bod Newtonovej metódy je ostro prípustným riešením,
potom v každej iterácii Newtonovej metódy riešime systém (1.10). Týmto spôsobom nás
mechanizmus Newtonovej metódy udržuje v každej iterácii v množine vnútorných bo-
dov F◦. Dôležitou súčast’ou algoritmu je zabezpečit’ správny spôsob zmenšovania pa-
rametra µ. V práci sa budeme zaoberat’ algoritmami s implicitnou vol’bou 1 bariérového
parametra

µ =
xT s

n
.

Tento implicitný spôsob vol’by parametra µ je dodatočne upravený centrujúcim paramet-
rom σ ∈ [0, 1], ktorého účelom je zlepšit’ priebeh konvergencie. Nakoniec získame systém
v tvare A 0 0

0 AT I

Sk 0 Xk


∆x∆y

∆s

 = −

 0

0

XkSke− σµe

 . (1.11)

V každej iterácii algoritmu zároveň kontrolujeme vel’kost’ duálnej medzery xT s pomocou
vopred určenej tolerančnej konštanty ϵ > 0. Na základe opísaného princípu môžeme sfor-
mulovat’ schému generického primárno-duálneho algoritmu metód vnútorného bodu na
riešenie úloh (P ), (D).

Schéma generického algoritmu

vstup (x0, y0, s0) ∈ F◦, ϵ > 0

prirad’ k := 0

repeat
zvol’ σk ∈ [0, 1]

prirad’ µk := (xk)T sk/n

vyrieš A 0 0

0 AT I

Sk 0 Xk


∆x∆y

∆s

 = −

 0

0

XkSke− σkµke



1Poznamenajme, že existujú aj algoritmy s explicitnou vol’bou parametra µ. Takéto algoritmy zmenšujú
bariérový parameter podl’a schémy µk+1 = (1− θ)µk, kde θ ∈ (0, 1) je parameter redukcie.
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zvol’ αk ∈ [0, 1] : xk + αk∆x > 0, sk + αk∆s > 0

prirad’ (xk+1, yk+1, sk+1) := (xk, yk, sk) + αk(∆x,∆y,∆s)

prirad’ k := k + 1

until (xk)T sk ≤ ϵ

Na záver tejto časti uvedieme dve pomocné tvrdenia, ktoré dokazujú, že vektory ∆x

a ∆s sú navzájom ortognálne a postupnost’ {µk} generovaná na základe generického
algoritmu má nerastúci charakter.

Lema 1.1. Ak trojica (∆x,∆y,∆s) je riešením systému (1.11), potom ∆xT∆s = 0. [24]

Dôkaz. Pre trojicu (∆x,∆y,∆s) zrejmé platí A∆x = 0, AT∆y + ∆s = 0. Z uvedených
vzt’ahov jednoducho odvodíme, že

∆xT∆s = ∆xT (−AT∆y) = −(A∆x︸ ︷︷ ︸
=0

)T y = 0.

Lema 1.2. Ak σk ∈ [0, 1], potom µk+1 ≤ µk, pričom rovnost’ nastáva práve vtedy, ked’ σk = 1

alebo αk = 0.

Dôkaz. Na základe schémy generického algoritmu odvodíme, že

µk+1 =
(xk+1)T sk+1

n

=
(xk + αk∆s)

T (sk + αk∆s)

n

=
(xk)T sk

n
+ αk

(xk)T∆s+ (sk)T∆x+ αk

=0︷ ︸︸ ︷
(∆x)T∆s

n

=
(xk)T sk

n
+ αk

nσkµk − (xk)T sk

n
= µk − αk(1− σk)µk︸ ︷︷ ︸

≥0

≤ µk.

Ked’že µk > 0, tak je zrejmé, že µk+1 = µk práve vtedy, ked’ αk = 0 alebo σk = 1.

Generický algoritmus je základným konceptom primárno-duálnych algoritmov me-
tód vnútorného bodu v lineárnom programovaní. Existujú dve základné modifikácie,
ktoré sa odvíjajú od generického algoritmu – algoritmus redukcie potenciálu a algoritmus
sledovania centrálnej trajektórie. Zatial’ čo algoritmus sledovania centrálnej trajektórie
pristupuje k redukcii duálnej medzery priamo, algoritmus redukcie potenciálu zmenšuje
duálnu medzeru nepriamo pomocou potenciálovej funkcie. V nasledujúcich dvoch ka-
pitolách sa zameriame na tieto algoritmy, podrobne opíšeme ich princíp a uvedieme ich
základné vlastnosti.

8



KAPITOLA 1. METÓDY VNÚTORNÉHO BODU V LINEÁRNOM PROGRAMOVANÍ

1.5 O zložitosti algoritmov

Teória zložitosti algoritmov sa zaoberá hl’adaním horného odhadu počtu aritmetických
operácií potrebných na nájdenie dostatočne presného riešenia v závislosti od rozmeru
úlohy. V lineárnom programovaní sa stalo zaužívaným považovat’ n za rozmer úlohy.
Na označenie zložitosti algoritmov budeme používat’ štandardnú O(.) symboliku.

Definícia 1.1. Nech f a g sú nezáporné reálne funkcie definované na množine prirodze-
ných čísel. Píšeme g(n) = O(f(n)), ak

∃β > 0, n ∈ R : g(n) ≤ βf(n), ∀n > n.

Definícia 1.2. Hovoríme, že algoritmus má zložitost’ O(f(n)), ak pre horný odhad k(n)

počtu aritmetických operácií algoritmu pre úlohu rozmeru n platí k(n) = O(f(n)).

Teória zložitosti zohrala dôležitú úlohu vo vývoji lineárneho programovania a me-
tód vnútorného bodu. V roku 1972 matematici Klee a Minty [10] zistili, že počet operácií
simplexovej metódy môže byt’ exponenciálny vzhl’adom k rozmeru úlohy. 2 Toto ziste-
nie podnietilo matematikov ku konštrukcii nových efektívnych algoritmov. Pod pojmom
„efektívne algoritmy“ zvyčajne rozumieme algoritmy s polynomiálnou zložitost’ou. Sú
to algoritmy, v ktorých počet aritmetických operácií potrebných na vyriešnie úlohy roz-
meru n môžeme odhadnút’ zhora polynómom v premennej n. Inými slovami, algorit-
mus má polynomiálny charakter, ak má zložitost’ O(f(n)), kde f(n) ≤ nκ pre nejakú
konštantu κ. V roku 1979 uviedol Leonid Khachiyan [9] eplipsoidný algoritmus na rie-
šenie úloh lineárneho porgramovania v polynomiálnom čase. Síce Khachiyanov algorit-
mus mal polynomiálny charakter, no v praxi sa prejavil pomalší ako simplexová metóda,
a preto sa neujal. Prevratným sa stal až Karmarkarov projektívny algoritmus [8] z roku
1984, ktorého efektivita sa naplno osvedčila aj praxi.

2Poznamenajme, že simplexová metóda vyžaduje v praxi menej operácií, než uvádzajú teoretické vý-
sledky.
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KAPITOLA 2

ALGORITMY REDUKCIE POTENCIÁLU

Algoritmy redukcie potenciálu predstavujú pôvodnú triedu moderných algoritmov me-
tód vnútorného bodu. Tieto algoritmy pristupujú k redukcii duálnej medzery nepriamo
pomcou potenciálovej funkcie so špecifickými vlastnost’ami. V tejto kapitole definujeme
primárno-duálnu logaritmickú potenciálovú funkciu a uvedieme jej základné vlastnosti.
Opíšeme schému primárno-duálneho algoritmu redukcie potenciálu, vysvetlíme jeho
princíp a dokážeme jeho polynomiálnu zložitost’.

2.1 Potenciálová funkcia Φρ

Potenciálové funkcie zohrali vo vývoji metód vnútorného bodu dôležitú rolu. Hlavnou
úlohou týchto funkcií je merat’ kvalitu priebežného riešenia. Poznamenajme, že Karmar-
kar vo svojom pôvodnom algoritme [8] na riešenie štandardnej úlohy (P ) použil logarit-
mickú potenciálovú funkciu definovanú v tvare

Υρ(x) = ρ ln (cTx− λ)−
n∑

i=1

lnxi, (2.1)

kde ρ = n+ 1 a λ je dolné ohraničenie účelovej funkcie cTx. Súbežne s Karmarkarovými
výsledkami vznikali práce [4], [5], [22], [27], ktoré prezentovali využitie iných potenciá-
lových funkcií, ktoré však záviseli vždy len od vektora primárnych premenných. Vývoj v
oblasti primárno-duálnych algoritmov podnietil odborníkov k úvahám o potenciálových
funkciách, v ktorých by okrem vektora primárnych premenných vystupoval aj vektor
duálnych premenných. Dôležitým výsledkom vo vývoji algoritmov redukcie potenciálu
sa stala primárno-duálna logaritmická potenciálová funkcia, ktorú prezentovali Tanabe
[26], Todd a Ye [28] v tvare

Φρ(x, s) = ρ lnxT s−
n∑

i=1

lnxisi, (2.2)

pre nejaký parameter ρ > n. Všimnime si vzt’ah medzi funkciami Υρ a Φρ. Z teórie du-
ality v lineárnom programovaní (Veta 1.1) vieme, že výraz bT y je pre l’ubovol’nú dvojicu
(y, s) ∈ D dolným ohraničením primárnej účelovej funkcie cTx. Z toho dôvodu môžeme
vo funkcii Υρ položit’ λ = bT y a následne použit’ vzt’ah xT s = cTx−bT y, čím výraz cTx−λ
nahradíme výrazom xT s. Druhý člen funkcie Φρ vznikol pridaním sčítanca −

∑n
i=1 ln si,

ktorý reprezentuje bariérový prvok zodpovedajúci ohraničeniu s ≥ 0.
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Obr. 2.1: Vrstevnice funkcie Φρ pre n = 2 vykreslené v priestore x1s1 × x2s2 v závislosti
od parametra ρ.

Funkciu Φρ môžeme vyjadrit’ v tvare

Φρ(x, s) = (ρ− n) lnxT s+Φn(x, s) (2.3)

= (ρ− n) lnxT s−
n∑

i=1

ln

(
xisi
xT s/n

)
+ n lnn. (2.4)

Z toho vyplýva, že potenciálová funkcia Φρ má dve dôležité vlastnosti:

1. Φρ → ∞ ak xisi → 0 pre nejaké i = 1, 2, . . . , n, ale µ = xT s/n9 0,

2. Φρ → −∞ práve vtedy, ked’ (x, y, s) → F∗.

Prvá vlastnost’ hovorí o tom, že funkcia Φρ pôsobí ako bariérová funkcia, ak mechaniz-
mus smeruje k l’ubovol’nému bodu (x, y, s) na hranici množiny F◦ (xisi = 0), ktorý ale
nie je optimálnym riešením (xT s > 0). V tomto prípade prvý člen výrazu (2.4) zostáva
ohraničený, zatial’ čo druhý člen nie, a preto Φρ → ∞. Druhá vlastnost’ formuluje vzt’ah
medzi funkciou Φρ a množinou F∗. Ak mechanizmus algoritmu spôsobuje Φρ → −∞,
potom postupnost’ iteračných bodov konverguje k optimálnemu riešeniu. Lema 2.2 do-
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kazuje, že člen Φn(x, s) vo výraze (2.3) je zdola ohraničený, a preto Φρ → −∞ práve
vtedy, ked’ (ρ − n) lnxT s → −∞, teda ked’ µ → 0. Toto pozorovanie je podstatou al-
goritmu redukcie potenciálu, ktorý generuje postupnost’ ostro prípustných iteračných
bodov (xk, yk, sk) z množiny F◦, pre ktoré Φρ(x

k, sk) → −∞, čím sa duálna medzera
zmenšuje, a tým mechanizmus algoritmu smeruje k optimalite.

Existuje niekol’ko algoritmov [3], [6], [30] založených na potenciálovej funkcii Φρ. V d’al-
ších častiach tejto kapitoly špecifikujeme primárno-duálny algoritmus redukcie poten-
ciálu, ako ho prezentovali Kojima, Mizuno a Yoshise [12]. Uvedieme jeho základné vlast-
nosti a vysvetlíme dôležitý vzt’ah medzi funkciou Φρ a parametrom µ, ktorý je kl’účovým
elementom konvergencie a polynomiálnej zložitosti.

2.2 Algoritmus

Algoritmus redukcie potenciálu je špeciálnym prípadom generického algoritmu, ktorý
pristupuje k zmenšovaniu duálnej medzery nepriamo. Tento algoritmus volí v každej ite-
rácii konštantnú hodnotu centrujúceho parametra σk = n/ρ, kde ρ > n. Smer k d’alšiemu
iteračnému bodu je štandardným Newtonovým smerom, ktorý vypočítame zo systému
(1.11). Algoritmus volí dĺžku kroku αk tak, aby minimalizovala funkciu Φρ pozdĺž získa-
ného smeru, pričom v každej iterácii je zároveň nutné zachovat’ ostrú prípustnost’. Práve
kvôli podmienke ostrej prípustnosti definujeme hornú hranicu pre dĺžku kroku z bodu
(xk, yk, sk) ∈ F◦ pozdĺž smeru (∆x,∆y,∆s)

αmax = sup {α ∈ [0, 1] | (x, s) + α(∆x,∆s) > 0}.

Schéma algoritmu redukcie potenciálu

vstup ρ > n, (x0, y0, s0) ∈ F◦, ϵ > 0

prirad’ k := 0

repeat
prirad’ σk := n/ρ, µk := (xk)T sk/n

vyrieš A 0 0

0 AT I

Sk 0 Xk


∆x∆y

∆s

 = −

 0

0

XkSke− σkµke


prirad’ αmax := sup {α ∈ [0, 1] | (xk, sk) + α(∆x,∆s) > 0}
prirad’ αk := argminα∈(0,αmax)Φρ(x

k + α∆x, sk + α∆s)

prirad’ (xk+1, yk+1, sk+1) := (xk, yk, sk) + αk(∆x,∆y,∆s)

prirad’ k := k + 1

until (xk)T sk ≤ ϵ
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2.3 Redukcia funkcie Φρ a konvergencia

Analýza v tejto časti ukazuje, že hodnota funkcie Φρ je redukovaná aspoň konštantnou
mierou v každej iterácii. Dokážeme, že ak Φρ → −∞, potom µ → 0. Nasledujúce po-
mocné tvrdenie je iba technickým výsledkom, a preto dôkaz tohto tvrdenia úvadzame v
Dodatku.

Lema 2.1.
(i) Pre všetky β > −1 platí ln (1 + β) ≤ β, pričom rovnost’ nastáva práve vtedy, ked’ β = 0.
(ii) Pre l’ubovol’ný vektor z ∈ Rn, ∥z∥∞ ≤ τ < 1 platí

−
n∑

i=1

ln (1 + zi) ≤ −eT z + ∥z∥2

2(1− τ)
. [29]

Nasledujúci výsledok dokazuje, že funkcia Φn je zdola ohraničená.

Lema 2.2. Pre (x, s) > 0 platí Φn(x, s) ≥ n lnn, pričom rovnost’ nastáva práve vtedy, ked’
XSe = (xT s/n)e = µe. [29]

Dôkaz. Zo vzt’ahov (2.3), (2.4) a pomocou Lemy 2.1(i) odvodíme, že

Φn(x, s)− n lnn = −
n∑

i=1

ln

(
xisi
xT s/n

)
≥

n∑
i=1

(
xisi
µ

− 1

)
= −(n− n) = 0.

Z Lemy 2.1(i) zároveň vyplýva, že rovnost’ nastáva práve vtedy, ked’ xisi/µ = 1, i =

1, 2, . . . , n (⇔ XSe = µe).

Ďalšie tvrdenie dokazuje, že funkcia Φρ nie je zdola ohraničená na svojom definičnom
obore a zároveň uvádza kl’účový vzt’ah medzi funkciou Φρ a parametrom µ.

Lema 2.3.
(i) Funkcia Φρ je zdola neohraničena na svojom definičnom obore.
(ii) Pre l’ubovol’ný bod (x, y, s) ∈ F◦ platí

µ ≤ exp

(
Φρ(x, s)

ρ− n

)
, kde µ =

xT s

n
. [29] (2.5)

Dôkaz. Z existencie centrálnej trajektórie C vieme, že pre µ > 0 existuje ostro prípustný
bod (xµ, yµ, sµ) ∈ F◦ taký, že (xµ)i(sµ)i = µ pre i = 1, 2, . . . , n. Vyčíslením funkcie Φρ v
bode (xµ, sµ) dostaneme

Φρ(xµ, sµ) = (ρ− n) lnxTµsµ +Φn(xµ, sµ)

= (ρ− n) ln (nµ) + n lnn,

z čoho vyplýva, že Φρ(xµ, sµ) → −∞ pre µ → 0. Pre dôkaz časti (ii) použijeme vzt’ahy
(2.3), (2.4) a Lemu 2.2. Dostaneme

13
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Φρ(x, s) = (ρ− n) lnxT s+Φn(x, s)

≥ (ρ− n) lnµ+ (ρ− n) lnn+ n lnn

≥ (ρ− n) lnµ,

z čoho priamo vyplýva požadovaný výsledok (2.5).

Z uvedených pozorovaní vyplýva, že ak je možné generovat’ postupnost’ iteračných
bodov (xk, yk, sk) ∈ F◦, pre ktoré Φρ(x

k, sk) → −∞, potom µk → 0. Na záver tejto časti
dokážeme, že funkcia Φρ je v každej iterácii redukovaná aspoň konštantnou mierou δ > 0

nezávislou od n. V matematickom kontexte to znamená, že

Φρ(x
k+1, sk+1) ≤ Φρ(x

k, sk)− δ, k = 0, 1, 2, . . . . (2.6)

Veta 2.1. Nech (x0, y0, s0) ∈ F◦ je štartovacím bodom algoritmu. Predpokladajme, že algoritmus
generuje postupnost’ iteračných bodov (xk, yk, sk) ∈ F◦, ktoré spĺňajú nerovnicu (2.6) pre nejakú
kladnú konštantu δ > 0. Potom pre l’ubovol’né ε ∈ (0, 1) existuje index

k =

⌈
Φρ(x

0, s0)

δ
+
ρ− n

δ
| ln ε|

⌉
(2.7)

taký, že µk ≤ ε, ∀k ≥ k. [29]

Dôkaz. Zlogaritmovaním oboch strán nerovnice (2.5) zistíme, že kritérium µk ≤ ε je pria-
mym dôsledkom nerovnice

Φρ(x
k, sk) ≤ (ρ− n) ln ε = −(ρ− n)| ln ε|. (2.8)

Zo vzt’ahu (2.6) zároveň vyplýva, že

Φρ(x
k, sk) ≤ Φρ(x

0, s0)− kδ, k = 1, 2, . . . ,

a preto nerovnica (2.8) platí, ak

Φρ(x
0, s0)− kδ ≤ −(ρ− n)| ln ε|, k = 0, 1, 2, . . . ,

z čoho je možné elementárnymi úpravami odvodit’ explicitný vzorec (2.7) pre k.

2.4 Odhad funkcie Φρ pozdĺž prípustného smeru

V tejto časti sa zameriame na tú čast’ algoritmu, ktorá vol’bou dĺžky kroku αminimalizuje
funkciu Φρ pozdĺž smeru (∆x,∆y,∆s). Pokúsime sa odvodit’ kvadratickú funkciu q ako
funkciu dĺžky kroku α pozdĺž daného smeru (∆x,∆y,∆s), ktorá zodpovedá hornému
ohraničeniu funkcie Φρ. Zdôraznime, že tento odhad je platný iba na intervale (0, ατ ] ⊂
(0, αmax), kde

ατ max (∥X−1∆x∥∞, ∥S−1∆s∥∞) = τ, τ ∈ (0, 1). (2.9)

14
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Poznamenajme, že mechanizmus algoritmu je sústredený v množine ostro prípustných
riešení F◦, a preto má zmysel definovat’ matice X−1, S−1. Kvadratický odhad q funkcie
Φρ pozdĺž smeru (∆x,∆y,∆s) získame na základe Lemy 2.1. Z definície funkcie Φρ a zo
skutočnosti, že vektory ∆x a ∆s sú navzájom ortogonálne (Lema 1.1), odvodíme, že

Φρ(x+ α∆x, s+ α∆s)− Φρ(x, s)

= ρ ln

[
(x+ α∆x)T (s+ α∆s)

xT s

]
−

n∑
i=1

ln

(
xi + α∆xi

xi

)
−

n∑
i=1

ln

(
si + α∆si

si

)

= ρ ln

1 + α
xT∆s+ sT∆x+ α

=0︷ ︸︸ ︷
(∆x)T∆s

xT s

−
n∑

i=1

ln

(
1 + α

∆xi
xi

)
−

n∑
i=1

ln

(
1 + α

∆si
si

)

= ρ ln

(
1 + α

xT∆s+ sT∆x

xT s

)
−

n∑
i=1

ln

(
1 + α

∆xi
xi

)
−

n∑
i=1

ln

(
1 + α

∆si
si

)
. (2.10)

Na prvý sčítanec vo výraze (2.10) aplikujeme Lemu 2.1(i), na zvyšné členy aplikujeme
Lemu 2.1(ii). Dostaneme, že pre všetky α ∈ (0, ατ ] platí

Φρ(x+ α∆x, s+ α∆s)

≤ Φρ(x, s) + ρα
xT∆s+ sT∆x

xT s
− αeT (X−1∆x+ S−1∆s) + α2 ∥X−1∆x∥2 + ∥S−1∆s∥2

2(1− τ)

= Φρ(x, s) + αξ1 +
1

2
α2ξ2, (2.11)

kde

ξ1 = ρ
xT∆s+ sT∆x

xT s
− eT (X−1∆x+ S−1∆s), (2.12)

ξ2 =
1

1− τ

(
∥X−1∆x∥2 + ∥S−1∆s∥2

)
. (2.13)

Ak definujeme funkciu q : α→ R v tvare

q(α) = Φρ(x, s) + αξ1 +
1

2
α2ξ2, (2.14)

tak z nerovnice (2.11) dostaneme horný odhad funkcie Φρ pozdĺž smeru (∆x,∆y,∆s)

Φρ(x+ α∆x, s+ α∆s) ≤ q(α), ∀α ∈ (0, ατ ].

Analyzujme bližšie koeficienty ξ1, ξ2 vo funkcii q. Podl’a (2.13) je zrejmé, že ξ2 > 0, a
preto q je konvexnou kvadratickou funkciou, a teda a ak má stacionárny bod, tak v ňom
funkcia q dosahuje svoje minimum. Ďalej ukážeme, že ξ1 < 0, čo implikuje, že funkcia q
klesá na intervale (0, α̂), kde α̂ je bod, v ktorom funkcia q dosahuje svoje minimum.

Pripomeňme, že D = X1/2S−1/2 a zaved’me nové pomocné označenie
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V = (XS)1/2, v = V e = [(xisi)
1/2]ni=1,

vmin = min
i=1,2,...,n

vi, r = −v + n

ρ
µV −1e.

Uvedieme pomocné vzt’ahy, ktoré budú užitočné v d’alších častiach

∥v∥2 = xT s = nµ, X = V D, S = V D−1. (2.15)

Na základe zavedeného označenia teraz môžeme rovnicu S∆x + X∆s = −XSe + σµe,
kde σ = n/ρ, zapísat’ v troch ekvivalentných tvaroch

S∆x+X∆s = V r

D−1∆x+D∆s = r (2.16)

X−1∆x+ S−1∆s = V −1r.

Ked’že podl’a Lemy 1.1 (∆x)T∆s = 0, tak z rovnice (2.16) môžeme odvodit’, že

∥r∥2 = ∥D−1∆x+D∆s∥2

= ∥D−1∆x∥2 + (∆x)TD−1D∆s︸ ︷︷ ︸
=0

+∥D∆s∥2

= ∥D−1∆x∥2 + ∥D∆s∥2, (2.17)

a preto ∥D−1∆x∥ ≤ ∥r∥ a ∥D∆s∥ ≤ ∥r∥. Zo vzt’ahov (2.15) a (2.17) dostaneme

∥X−1∆x∥2 + ∥S−1∆s∥2 = ∥V −1D−1∆x∥2 + ∥V −1D∆s∥2

≤ ∥V −1∥2(∥D−1∆x∥2 + ∥D∆s∥2)

≤ 1

v2min

∥r∥2. (2.18)

Z toho vyplýva, že pre koeficient ξ2 definovaný podl’a (2.13) platí

ξ2 ≤
∥r∥2

(1− τ)v2min

. (2.19)

Pre koeficient ξ1 definovaný podl’a (2.12) dostaneme

ξ1 =
ρ

xT s
eT (X∆s+ S∆x)︸ ︷︷ ︸

=V r

−eT (X−1∆x+ S−1∆s)︸ ︷︷ ︸
=V −1r

=
ρ

xT s
eTV r − eTV −1r

= − ρ

nµ

(
−v + n

ρ
µV −1e

)T

︸ ︷︷ ︸
=rT

r

= − ρ

nµ
∥r∥2. (2.20)
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Vzt’ahy (2.19) a (2.20) uvádzajú odhady koeficientov ξ1, ξ2 v závislosti od ∥r∥2. Ked’že
ρ, n, µ > 0, tak je zrejmé, že ξ1 ≤ 0, pričom ξ1 = 0 práve vtedy, ked’ r = 0. V d’alšej časti
dokážeme, že r ̸= 0, z čoho bezprostredne vyplýva, že ξ1 < 0.

2.5 Odhad redukcie funkcie Φρ

Nasledujúce tvrdenie uvádza dolné ohraničenie pre ∥r∥.

Lema 2.4. Pre l’ubovol’ný bod (x, y, s) ∈ F◦ a pre ρ > n+
√
n platí

∥r∥ ≥
√
3nµ

2ρvmin
. [29] (2.21)

Dôkaz. Na základe zavedeného označenia dostaneme

ρ2

n2µ2
∥r∥2 =

∥∥∥∥ ρnµv − V −1e

∥∥∥∥2
= (V −1e)T (V −1e)− 2

ρ

nµ
vTV −1e+

ρ2

n2µ2
vT v

= (V −1e)T (V −1e)− 2
ρ

µ
+
ρ2

nµ

= (V −1e)T (V −1e) +
ρ2 − 2nρ+ n2 − n

nµ
− n2 − n

nµ
. (2.22)

Ked’že ρ2 − 2nρ + n2 − n = (ρ − n −
√
n)2 + 2

√
n(ρ − n −

√
n), tak je zrejmé, že výraz

ρ2−2nρ+n2−n
nµ v rovnici (2.22) je nezáporný pre ρ ≥ n +

√
n a nulový pre ρ = n +

√
n. Z

toho dôvodu platí
ρ2

n2µ2
∥r∥2 ≥ (V −1e)T (V −1e)− n2 − n

nµ
, (2.23)

pričom rovnost’ nastáva, ak ρ = n +
√
n. V d’alšej časti dôkazu využijeme technický

výsledok, že vektory v a V −1e−v/µ sú navzájom ortogonálne, čo znamená, že vT (V −1e−
v/µ) = 0. Dôkaz tohto výsledku je uvedený v Dodatku. Dosadením ρ = n +

√
n do

nerovnice (2.23) a použitím definície vektora r = −v + nµV −1e/ρ dostaneme

(V −1e)T (V −1e)− n2 − n

nµ
=

ρ2

n2µ2
∥r∥2

=
(n+

√
n)

n2µ2

∥∥∥∥ nµ

n+
√
n
V −1e− v

∥∥∥∥2
=

∥∥∥∥V −1e− n+
√
n

nµ
v

∥∥∥∥2
=

∥∥∥∥V −1e− 1

µ
v

∥∥∥∥2 − 2

√
n

nµ
vT
(
V −1e− 1

µ
v

)
︸ ︷︷ ︸

=0

+

∥∥∥∥√nnµ v
∥∥∥∥2

=

∥∥∥∥V −1e− 1

µ
v

∥∥∥∥2 + ∥∥∥∥√nnµ v
∥∥∥∥2 . (2.24)
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Prvý sčítanec v rovnici (2.24) môže byt’ zdola ohaničený štvorcom l’ubovol’nej zložky
vektora V −1e− v/µ, a preto∥∥∥∥V −1e− 1

µ
v

∥∥∥∥2 ≥ ( 1

vmin
− vmin

µ

)2

.

Pomocou tohto ohraničenia môžeme rovnicu (2.24) d’alej rozpísat’ do tvaru

ρ2

n2µ2
∥r∥2 ≥

(
1

vmin
− vmin

µ

)2

+
1

nµ2
vT v

=
1

µ2

[(
µ

vmin
− vmin

)2

+ µ

]

=
1

µ2

[(
µ

2vmin
− vmin

)2

+
3µ2

4v2min

]
≥ 3

4v2min

,

z čoho priamo vyplýva výsledok (2.21).

Na záver tejto časti ukážeme, že existuje taká dĺžka kroku α, ktorá vedie ku kon-
štantnej (fixnej) redukcii funkcie q a Φρ. Pre jednoduchost’ a bez ujmy na všeobecnosti
použijeme konkrétnu hodnotu τ = 0.5, pričom analogicky je možné dokázat’ podobný
výsledok pre l’ubovol’nú hodnotu parametra τ z intervau (0, 1).

Veta 2.2. Nech τ = 0.5. Definujme α = τvmin/∥r∥. Potom q(α) − q(0) ≤ −0.15, a tak spôsob
redukcie (2.6) platí s konštantou δ = 0.15. [29]

Dôkaz. Najprv overíme, že dĺžka kroku α vyhovuje podmienke 0 < α ≤ ατ , kde ατ

je dĺžka kroku definovaná podl’a (2.9). Ked’že τ, vmin, ∥r∥ > 0, tak zrejme platí α > 0.
Predpokladajme, že ∥X−1∆x∥∞ ≥ ∥S−1∆s∥∞. Z nerovnice (2.18) vieme, že

∥X−1∆x∥2 ≤
∥r∥
vmin

, ∥S−1∆s∥2 ≤
∥r∥
vmin

,

a ked’že ∥.∥∞ ≤ ∥.∥2, tak

α∥X−1∆x∥∞ ≤ α∥X−1∆x∥2 ≤
τvmin

∥r∥
∥r∥
vmin

= τ = ατ∥X−1∆x∥∞.

Z toho priamo vyplýva, že α ≤ ατ . Analogicky môžeme odvodit’ rovnaký výsledok, ak
∥X−1∆x∥∞ ≤ ∥S−1∆s∥∞. Na základe odhadov (2.19) a (2.20) koeficientov ξ1, ξ2 odvo-
díme, že

q(α)− q(0) = αξ1 +
1

2
α2ξ2

≤ − ρ

nµ
α∥r∥2 + 1

2
α2 ∥r∥2

v2min(1− τ)
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≤ − ρ

nµ

τvmin

∥r∥2
∥r∥2 + 1

2

(
τvmin

∥r∥2

)2 ∥r∥2

v2min(1− τ)

= − ρ

nµ
τvmin∥r∥+

τ2

2(1− τ)
.

Použitím dolného ohraničenia (2.21) pre ∥r∥ a dosadením τ = 0.5 dostaneme

q(α)− q(0) ≤ − ρ

nµ
τvmin

( √
3nµ

2ρvmin

)
+

τ2

2(1− τ)

= −
√
3τ

2
+

τ2

2(1− τ)

= −1−
√
3

4
≤ −0.15.

Podl’a definície funkcie q a zo vzt’ahu (2.11) nakoniec odvodíme, že

min
α∈(0,ατ )

Φρ(x+ α∆x, s+ α∆s) ≤ Φρ(x+ α∆x, s+ α∆s)

≤ q(α) ≤ q(0)− 0.15 = Φρ(x, s)− 0.15.

Z toho vyplýva, že spôsob redukcie (2.6) platí s δ = 0.15.

2.6 Polynomiálna zložitost’

Na záver tejto kapitoly sformulujeme tvrdenie, ktoré dokazuje polynomiálnu zložitost’
algoritmu redukcie potenciálu.

Veta 2.3. Nech ρ ≥ n+
√
n a ε > 0. Predpokladajme, že štartovací bod (x0, y0, s0) ∈ F◦ spĺňa

okrem podmienky (2.6) aj podmienku Φρ(x
0, s0) ≤ κ(ρ − n)| ln ε| pre nejakú kladnú konštantu

κ > 0 nezávislú od n. Potom existuje index

k =

⌈
κ+ 1

δ
(ρ− n)| ln ε|

⌉
= O((ρ− n)| ln ε|)

taký, že (xk, yk, sk) ∈ F◦, µk ≤ ε, ∀k ≥ k. [29]

Dôkaz. Polynomiálna zložitost’ je priamym dôsledkom Vety 2.1, ak v explicitnom vzorci
(2.7) použijeme ohraničenie Φρ(x

0, s0) ≤ κ(ρ− n)| ln ε|.

Predpoklady polynomiálnej zložitosti z Vety 2.3 vedú prirodzene k otázke vhodnej
vol’by parametra ρ. Kojima, Mizuno a Yoshise [12] vo svojom pôvodnom algoritme zvo-
lili ρ = n+

√
n, čo podl’a Vety 2.3 vedie k zložitostiO(

√
n| ln ε|). Na druhej strane, vol’bou

ρ = n +
√
n pre n >> 1 získame hodnoty centrujúceho parametra σ blízke 1, čo podl’a

Lemy 1.2 spôsobuje menšiu redukciu duálnej medzery. Menšie hodnoty parametra σ mô-
žeme získat’ vol’bou ρ = 10n alebo ρ = n+n3/2, čo síce znižuje odhad polynomiálnej zlo-
žitosti na O(n| ln ε|), resp. O(n3/2| ln ε|), no v praxi sa táto vol’ba paramtera ρ osvedčila a
vykazuje lepšie numerické výsledky. [29]
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KAPITOLA 3

ALGORITMY SLEDOVANIA

CENTRÁLNEJ TRAJEKTÓRIE

V úvodnej kapitole sme uviedli, že ak základné predpoklady (P1) a (P2) sú splnené,
potom systém (1.4)-(1.6) definujúci centrálnu trajektóriu C má jediné riešenie (xµ, yµ, sµ)

pre l’ubovol’né µ > 0. Zároveň sme uviedli výsledok, podl’a ktorého riešenia (xµ, yµ, sµ)

konvergujú pre µ → 0 k primárno-duálnemu optimálnemu riešeniu. Analytické rieše-
nie nelineárneho systému (1.4)-(1.6) nie je možné, a preto je tento prístup nevhodný pre
praktické implementácie. Ked’že presné riešenia (xµ, yµ, sµ) konvergujú k optimálnemu
riešeniu, tak sa môžeme domnievat’, že aj postupnost’ približných riešení konverguje. Ak
by sme pre nejaké µ > 0 dokázali identifikovat’ bod v dobre definovanom okolí presného
riešenia (xµ, yµ, sµ) na centrálnej trajektórii, potom by sme zrejme vedeli nájst’ d’alší bod
blízko presného riešenia (xµ, yµ, sµ) zodpovedajúce parametru µ < µ. Túto myšlienku by
sme mohli použit’ opakovane, čím by sme získali približné riešenia systému (1.4)-(1.6),
ktoré by pozdĺž centrálnej trajektórie C v smere zmenšovania parametra µ smerovali do
množiny F∗. Táto myšlienka je podstatou algoritmov sledovania centrálnej trajektórie.
Ich spoločným charakteristickým znakom je princíp sledovania centrálnej trajektórie v
jej dobre definovanom špecifickom okolí, v ktorom iteračné body algoritmu konvergujú
k primárno-duálnemu optimálnemu riešeniu. K tomu, aby iteračné body ležali v špeci-
fickom okolí, je nevyhnutné merat’ ich vzdialenost’ od centrálnej trajektórie. To znamená,
že na vyriešenie pôvodnej dvojice úloh (P ), (D) je postačujúce nájst’ len približné rieše-
nia systému (1.4)-(1.6). Z toho dôvodu môžeme tieto algoritmy interpretovat’ ako vol’né
sledovanie centrálnej trajektórie, kde centrálna trajektória slúži ako navigátor určujúci
smer optimalizácie z množiny F◦ do množiny F∗.

3.1 Špecifické okolie centrálnej trajektórie

V súvislosti s generovaním približných riešení systému (1.4)-(1.6) by sme mali byt’ schopní
definovat’ a merat’ ich presnost’. Ak bod (x, y, s) aproximuje presné riešenie (xµ, yµ, sµ)

pre nejaké µ > 0, potom presnost’ aproximácie vieme sledovat’ štandardne pomocou
nejakej normy

∥(x, y, s)− (xµ, yµ, sµ)∥,

na základe ktorej môžeme definovat’ množinu približných riešení

{(x, y, s) ∈ F◦ | ∥(x, y, s)− (xµ, yµ, sµ)∥ ≤ ω}, pre nejaké ω ≥ 0.
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v

P × D

Obr. 3.1: Ilustrácia primárno-duálneho algoritmu sledovania centrálnej trajektórie.

Avšak ako sme už uviedli, nájst’ analytické riešenie (xµ, yµ, sµ) nie je možné, a preto
by sme museli riešit’ systém (1.4)-(1.6) numericky. Namiesto toho využijeme implicitný
popis riešenia cez systém (1.4)-(1.6), čím získame množiny, ktorých charakteristika im-
plikuje presnost’ aproximácie. Takéto množiny nazývame špecifickým okolím centrálnej
trajektórie. V moderných metódach vnútorného bodu sa štandardne používa dvojica špe-
cifických okolí

N2(θ) = {(x, y, s) ∈ F◦ | ∥XSe− µe∥2 ≤ θµ, µ = xT s/n}, pre dané θ ∈ (0, 1),

N−∞(γ) = {(x, y, s) ∈ F◦ | xisi ≥ γµ, i = 1, 2, . . . , n, µ = xT s/n}, pre dané γ ∈ (0, 1).

Ak pre bod (x, y, s) platí ∥XSe − µe∥2 ≤ θµ a µ = xT s/n, potom hovoríme, že bod
(x, y, s) spĺňa podmienku presnosti pre okolie N2(θ). Analogicky hovoríme o podmienke
presnosti pre okolie N−∞(γ). Analyzujme bližšie obe špecifické okolia. V prípade špeci-
fického okolia N2(θ) pre podmienku presnosti zrejme platí

∥XSe− µe∥2 ≤ θµ⇔
n∑

i=1

(
xisi
µ

− 1

)2

≤ θ2.

To znamená, že súčet štvorcov relatívnych odchýliek xisi od ich priemeru µ nesmie pre-
siahnut’ θ2 < 1. Z toho dôvodu okolie N2(θ) obsahuje iba malú čast’ ostro prípustných
bodov z množiny F◦, a preto algoritmy využívajúce toho špecifické okolie majú me-
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nej priestoru na manévrovanie pozdĺž centrálnej trajektórie. Na druhej strane, špecifické
okolie N−∞(γ) môže pre malé hodnoty parametra γ zaberat’ skoro celú množinu F◦. Je-
dinou podmienkou špecifického okolia N−∞(γ) je, aby súčiny xisi neboli výrazne menšie
ako ich priemer µ. Táto podmienka zábrani, aby sa dvojica (x, s) priblížila k hranici nezá-
porného ortantu (x, s) ≥ 0. Z uvedených pozorvaní vyplýva, že špecifické okolia N2(θ) a
N−∞(γ) sa kvalitatívne líšia, čomu nasvedčuje aj nasledujúca ilustrácia, ktorá porovnáva
obe špecifické okolia v jednorozmernom prípade.
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Obr. 3.2: Kvalitatívny rozdiel špecifických okolí N2(θ) a N−∞(γ) pre n = 1 ilustrovaný v
priestore µ× x1s1. Červená polpriamka predstavuje centrálnu trajektóriu.

Špecifické okolia N2(θ) a N−∞(γ) môžeme vel’mi dobre ilustrovat’ aj v dvojrozmernom
prípade, kedy okolia majú kvalitatívne podobný charakter. Tieto ilustrácie uvádzame
na obrázkoch Obr. 3.3 a Obr. 3.4, pričom postup odvodenia nerovníc generujúcich tieto
okolia uvádzame v Dodatku.
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Obr. 3.3: Špecifické okolie N2(θ) pre n = 2 vykreslené v priestore x1s1 × x2s2 v závislosti
od parametra θ ∈ (0, 1). Červená polpriamka predstavuje centrálnu trajektóriu.
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Obr. 3.4: Špecifické okolie N−∞(γ) pre n = 2 vykreslené v priestore x1s1×x2s2 v závislosti
od parametra γ ∈ (0, 1). Červená polpriamka predstavuje centrálnu trajektóriu.

Predchádzajúce ilustrácie vedú prirodzene k domnienke, ktorú uvádzame v nasledujú-
com tvrdení.

Lema 3.1. Pre dvojicu okolí N2(θ), N−∞(γ) platí:
(i) ak 0 < θ1 < θ2 < 1, potom N2(θ1) ⊂ N2(θ2);
(ii) ak 0 < γ1 < γ2 < 1, potom N−∞(γ2) ⊂ N−∞(γ1);
(iii) ak γ ≤ 1− θ, potom N2(θ) ⊂ N−∞(γ). [29]

Dôkaz. Dôkazy tvrdení (i) a (ii) sú zrejmé. Dokážeme tvrdenie (iii), v ktorom treba doká-
zat’ implikáciu ∀(x, y, s) ∈ N2(θ) : (x, y, s) ∈ N2(θ) ⇒ (x, y, s) ∈ N−∞(γ), γ ≤ 1−θ. Nech
(x, y, s) je l’ubovol’ný bod z okolia N2(θ). Ked’že (x, y, s) ∈ N2(θ), tak ∥XSe− µe∥2 ≤ θµ.
Pomocou nerovnosti ∥.∥∞ ≤ ∥.∥2 odvodíme, že

θµ ≥ ∥XSe− µe∥2 = ∥µe−XSe∥2 ≥ ∥µe−XSe∥∞ = max
i=1,2,...,n

|µ− xisi|.
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Ked’že µ > 0 a xisi > 0 pre i = 1, 2, . . . , n, tak zrejme platí

max
i=1,2,...,n

|µ− xisi| = µ− min
i=1,2,...,n

xisi.

Z odvodených vzt’ahov za predpokladu γ ≤ 1− θ dostaneme

µ− min
i=1,2,...,n

xisi = max
i=1,2,...,n

|µ− xisi| ≤ θµ ≤ (1− γ)µ.

Elementárnymi úpravami nerovnice µ − mini xisi ≤ (1 − γ)µ nakoniec odvodíme, že
mini xisi ≥ γµ. Z toho bezprostredne vyplýva, že xisi ≥ γµ pre i = 1, 2, . . . , n. Tým sme
dokázali, že l’ubovol’ný bod (x, y, s) z okolia N2(θ) spĺňa podmienku presnosti pre okolie
N−∞(γ), a preto (x, y, s) ∈ N−∞(γ).

Algoritmus sledovania centrálnej trajektórie sleduje schému generického algoritmu,
pričom vždy volí jedno z dvojice okolí N2(θ), N−∞(γ). Zároveň volí centrujúci parameter
σ a dĺžku kroku α tak, aby každý iteračný bod (xk, yk, sk) ležal vo vybranom špecifickom
okolí. V závislosti od vol’by patrametrov σ a α existujú tri základné varianty algoritmu
sledovania centrálnej trajektórie – algoritmus s krátkym krokom [13], [20], perdiktor-
korektor algoritmus [19] a algoritmus s dlhým krokom [14]. Spoločným znakom týchto
algoritmov je polynomiálna zložitost’. V nasledujúcich častiach opíšeme princíp týchto
algoritmov, uvedieme ich podstatné vlastnosti a na základe Vety 3.1 dokážeme ich poly-
nomiálny charakter.

3.2 Polynomiálna zložitost’

V tejto časti uvedieme všeobecné tvrdenie o polynomiálnej zložitosti pre algoritmy sledo-
vania centrálnej trajektórie. Veta hovorí o tom, že ak zmenšovanie parametra µ v každej
iterácii zavisí určitým spôsobom od rozmeru n, a ak počiatočná duálna medzera nie je
„príliš vel’ká“, potom algoritmus sledovania centrálnej trajektórie má polynomiálnu zlo-
žitost’.

Veta 3.1. Nech ε ∈ (0, 1). Predpokladajme, že algoritmus na riešenie systému (1.11) generuje
postupnost’ iteračných bodov (xk, yk, sk), ktoré spĺňajú

µk+1 ≤
(
1− δ

nω

)
µk, k = 0, 1, 2, . . . (3.1)

pre nejaké kladné konštanty δ, ω > 0. Zároveň predpokladajme, že štartovací bod (x0, y0, s0) spĺňa
podmienku µ0 ≤ 1/εκ pre nejakú kladnú konštantu κ > 0. Potom existuje index k = O(nω| ln ε|)
taký, že µk ≤ ε, ∀k ≥ k. [29]
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Dôkaz. Zlogaritmovaním oboch strán nerovnice (3.1) dostaneme

lnµk+1 ≤ ln

(
1− δ

nω

)
+ lnµk. (3.2)

Na základe rekurentného vzt’ahu (3.2) so začiatočnou podmienkou µ0 ≤ 1/εκ dostaneme

lnµk ≤ k ln

(
1− δ

nω

)
+ lnµ0

≤ k ln

(
1− δ

nω

)
+ κ ln

(
1

ε

)
. (3.3)

Aplikovaním Lemy 2.1(i) na prvý člen výrazu (3.3) dostaneme

lnµk ≤ k ln

(
− δ

nω

)
+ κ ln

(
1

ε

)
. (3.4)

Z nerovnice (3.4) vyplýva, že konvergenčné kritérium µk ≤ ε je splnené, ak

k ln

(
− δ

nω

)
+ κ ln

(
1

ε

)
≤ ln ε. (3.5)

Z nerovnice (3.5) nakoniec odvodíme, že

k ≥
(
nω

δ

)[
κ ln

(
1

ε

)
− ln ε

]
=

(
nω

δ

)
(κ ln 1− κ ln ε− ln ε)

=

(
nω

δ

)
(−κ− 1) ln ε

=

(
nω

δ

)
(κ+ 1)| ln ε|.

Tým sme dokázali, že existuje index k = (nω/δ)(κ+ 1)| ln ε| taký, že konvergenčné krité-
rium µk ≤ ε je splnené pre ∀k ≥ k, pričom k = O(nω| ln ε|).

3.3 Algoritmus s krátkym krokom

Najjednoduchším variantom algoritmu sledovania centrálnej trajektórie sú algoritmy s
krátkym krokom. Tieto algoritmy sledujú centrálnu trajektóriu v špecifickom okolí N2(θ),
pričom v každej iterácii volia jednotkovú dĺžku kroku αk = 1 a konštantnú hodnotu
centrujúceho parametra σk = σ, kde θ ∈ (0, 1) a σ ∈ (0, 1) spĺňajú nižšie uvedený vzt’ah
(3.12). Pre jednoduchost’ uvedieme schému tohto algoritmu s konkrétnymi parametrami
θ = 0.4 a σ = 1− 0.4/

√
n.
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Schéma algoritmu s krátkym krokom

vstup θ = 0.4, σ = 1− 0.4/
√
n, (x0, y0, s0) ∈ N2(θ), ϵ > 0

prirad’ k := 0

repeat
prirad’ σk := σ, µk := (xk)T sk/n

vyrieš A 0 0

0 AT I

Sk 0 Xk


∆x∆y

∆s

 = −

 0

0

XkSke− σkµke


prirad’ (xk+1, yk+1, sk+1) := (xk, yk, sk) + (∆x,∆y,∆s)

prirad’ k := k + 1

until (xk)T sk ≤ ϵ
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Obr. 3.5: Iterácie algoritmu s krátkym krokom v špecifickom okolí N2(0.4) ilustrované v
priestore x1s1 × x2s2.

Pre algoritmus s krátkym krokom najprv dokážeme jeho polynomiálnu zložitost’. Za-
ved’me pomocné označenie
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(x(α), y(α), s(α)) = (x, y, s) + α(∆x,∆y,∆s),

µ(α) = x(α)T s(α)/n.

Lema 3.2. Ak (∆x,∆y,∆s) je riešením systému (1.11), potom µ(α) = [1− α(1− σ)]µ. [29]

Dôkaz. Tvrdenie dokážeme pomocou rovnice X∆s + S∆x = −XSe + σµe. Sčítaním n

zložiek na oboch stranách rovnice dostaneme

xT∆s+ sT∆x = −xT s+ nσµ = −xT s+ σxT s = −(1− σ)xT s.

Rozpísaním výrazu x(α)T s(α) dostaneme

x(α)T s(α) = xT s+ α(xT∆s+ sT∆x) + α2∆xT∆s︸ ︷︷ ︸
=0

= xT s+ α[−(1− σ)xT s]

= [1− α(1− σ)]xT s.

Prenásobením oboch strán odvodenej rovnice x(α)T s(α) = [1 − α(1 − σ)]xT s výrazom
1/n nakoniec dostaneme požadovaný vzt’ah.

Ked’že αk = 1 a σ = 1−0.4/
√
n, tak podl’a Lemy 3.9 pre algoritmus s krátkym krokom

platí

µk+1 = [1− αk(1− σ)]µk = σµk =

(
1− 0.4√

n

)
µk, k = 0, 1, 2, . . . , (3.6)

a preto polynomiálna zložitost’ O(
√
n ln 1/ε) tohto algoritmu je priamym dôsledkom

vzt’ahu (3.6) a Vety 3.1. V d’alšej časti tejto kapitoly postupne dokážeme, že všetky ite-
račné body algoritmu s krátkym krokom ležia v špecifickom okolí N2(θ).

Lema 3.3. Pre l’ubovol’né čísla β, γ ∈ R spĺňajúce podmienku βγ ≥ 0 platí

√
|βγ| ≤ 1

2
|β + γ|. (3.7)

Lema 3.4. Nech u, v ∈ Rn sú l’ubovol’né vektory spĺňajúce podmienku uT v ≥ 0. Potom

∥UV e∥ ≤ 2−3/2∥u+ v∥2,

kde U = diag(u), V = diag(v). [29]

Dôkaz. Na základe predpokladu uT v ≥ 0 môžeme odvodit’, že

0 ≤ uT v =
∑

uivi≥0

uivi +
∑

uivi<0

uivi =
∑
i∈V

|uivi| −
∑
i∈W

|uivi|, (3.8)

kde V = {i | uivi ≥ 0}, W = {i | uivi < 0}. Postupnými úpravami dostaneme
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∥UV e∥ =
(
∥[uivi]i∈V∥2 + ∥[uivi]i∈W∥2

)1/2
≤
(
∥[uivi]i∈V∥21 + ∥[uivi]i∈W∥21

)1/2 ked’že ∥.∥2 ≤ ∥.∥1

≤
(
2∥[uivi]i∈V∥21

)1/2 podl’a (3.8)

≤
√
2

∥∥∥∥[14(ui + vi)
2

]
i∈V

∥∥∥∥
1

podl’a (3.7)

= 2−3/2
∑
i∈V

(ui + vi)
2

≤ 2−3/2
n∑

i=1

(ui + vi)
2

= 2−3/2∥u+ v∥2

Lema 3.5. Ak (x, y, s) ∈ N2(θ), potom

∥∆X∆Se∥ ≤ θ2 + n(1− σ)2

23/2(1− θ)
µ. [29]

Dôkaz. V úvode dôkazu pripomeňme, že D = X1/2S−1/2. Prenásobením oboch strán
rovnice X∆s + S∆x = −XSe + σµe maticou (XS)−1/2 dostaneme D−1∆x + D∆s =

(XS)−1/2(−XSe + σµe). Teraz prirad’me u := D−1∆x, v := D∆s a na takto definované
vektory u, v ∈ Rn aplikujme Lemu 3.4. Dostaneme

∥∆X∆Se∥ = ∥(D−1∆X)(D∆S)e∥

≤ 2−3/2∥D−1∆x+D∆s∥2

= 2−3/2∥(XS)−1/2(−XSe+ σµe)∥2

= 2−3/2
n∑

i=1

(−xisi + σµ)2

xisi

≤ 2−3/2 ∥XSe− σµe∥2

mini xisi
. (3.9)

Z predpokladu (x, y, s) ∈ N2(θ) môžeme podobne ako v dôkaze Lemy 3.1 odvodit’, že
mini xisi ≥ (1− θ)µ. Využitím tohto vzt’ahu v nerovnici (3.9) dostaneme

∥∆X∆Se∥ ≤ 2−3/2 ∥XSe− σµe∥2

(1− θ)µ
. (3.10)

Rozpísaním výrazu ∥XSe− σµe∥2 na pravej strane nerovnice (3.10) dostaneme

∥XSe− σµe∥2 = ∥(XS − µe) + (1− σ)µe∥2

= ∥XS − µe∥2 + 2(1− σ)µ eT (XSe− µe)︸ ︷︷ ︸
=0

+(1− σ)2µ2eT e

≤ θ2µ2 + (1− σ)2µ2n.
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Z toho vyplýva, že pre nerovnicu (3.10) d’alej platí

∥∆X∆Se∥ ≤ 2−3/2 θ
2µ2 + (1− σ)2µ2n

(1− θ)µ

=
θ2 + n(1− σ)2

23/2(1− θ)
µ.

Dôsledok 3.1. Ak (x, y, s) ∈ N2(θ), potom

∥X(α)S(α)e− µ(α)e∥ ≤ |1− α|∥XSe− µe∥+ α2∥∆X∆Se∥

≤ |1− α|θµ+ α2

[
θ2 + n(1− σ)2

23/2(1− θ)

]
µ. [29] (3.11)

Dôkaz. Využitím Lemy 3.2 dostaneme, že

xi(α)si(α)− µ(α) = xisi + α(xi∆si + si∆xi) + α2∆xi∆si − [1− α(1− σ)]µ

= xisi(1− α) + ασµ+ α2∆xi∆si − (1− α+ ασ)µ

= xisi(1− α) + α2∆xi∆si − (1− α)µ.

Zoradením prvkov odvodenej rovnice do vektora dostaneme

∥X(α)S(α)e− µ(α)e∥ = ∥[xisi(1− α)− (1− α)µ+ α2∆xi∆si]
n
i=1∥

≤ |1− α|∥XSe− µe∥+ α2∥∆X∆Se∥

≤ |1− α|θµ+ α2 θ
2 + n(1− σ)2

23/2(1− θ)
µ.

Nasledujúce tvrdenie formuluje vzt’ah medzi parametrami θ a σ, ktorý zabezpečí, že
jednotlivé iteračné body algoritmu zotrvajú v špecifickom okolí N2(θ). Tvrdenie zároveň
hovorí o tom, že ani vol’bou plného kroku α = 1 pozdĺž Newtonovho smeru mechaniz-
mus optimalizácie neopustí špecifické okolie N2(θ).

Veta 3.2. Nech parametre θ ∈ (0, 1), σ ∈ (0, 1) spĺňajú vzt’ah

θ2 + n(1− σ)2

23/2(1− θ)
≤ σθ. (3.12)

Potom, ak (x, y, s) ∈ N2(θ), tak (x(α), y(α), s(α)) ∈ N2(θ), ∀α ∈ [0, 1]. [29]

Dôkaz. Z nerovnice (3.11) a pomocou predpokladu (3.12) jednoducho odvodíme, že

∥X(α)S(α)e− µ(α)e∥ ≤ |1− α|θµ+ α2σθµ

≤ (1− α+ σα)θµ ked’že α ∈ [0, 1]

= θµ(α). podl’a Lemy 3.2
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To znamená, že bod (x(α), y(α), s(α)), ∀α ∈ [0, 1] spĺňa podmienku presnosti pre špeci-
fické okolie N2(θ). Nakoniec dokážeme, že (x(α), y(α), s(α)) ∈ F◦, ∀α ∈ [0, 1]. Na základe
schémy algoritmu s krátkym krokom odvodíme, že

Ax(α) = A(x+ α∆x) = Ax︸︷︷︸
=b

+αA∆x︸ ︷︷ ︸
=0

= b,

AT y(α) + s(α) = AT (y + α∆y) + s+ α∆s = AT y + s︸ ︷︷ ︸
=c

+α (AT∆y +∆s)︸ ︷︷ ︸
=0

= c.

Ak α = 0, potom (x(α), s(α)) = (x, s) > 0. Ked’že θ, σ ∈ (0, 1), tak pre α ∈ (0, 1] platí

xi(α)si(α) ≥ (1− θ)µ(α) = (1− θ)[1− α(1− σ)]µ > 0.

Z toho vyplýva, že ak α ∈ (0, 1], potom pre žiadny index i = 1, 2, . . . , n nemôže platit’
xi(α) = 0, ani si(α) = 0. Z toho dôvodu platí (x(α), s(α)) > 0, ∀α ∈ [0, 1]. Tým sme
dokázali, že (x(α), y(α), s(α)) ∈ F◦, ∀α ∈ [0, 1].

Na záver zostáva overit’, že parametre θ = 0.4, σ = 1 − 0.4/n spĺňajú podmienku
(3.12) pre n ≥ 1. Túto čast’ uvádzame v Dodatku.

3.4 Prediktor-korektor algoritmus

V algoritme s krátkym krokom sme centrujúci parameter volili v každej iterácii koštantne
σk = σ z intervalu (0, 1). Takto zvolený cetrujúci parameter v každej iterácii zlepšil cen-
trovanie smerom k centrálnej trajektórii a zároveň zmenšil duálnu medzeru. Prediktor-
korektor algoritmus rieši tieto dva problémy postupne, a to tak, že iterácie algoritmu
alternujú medzi dvomi krokmi.

• Prediktor krok, ktorý zodpovedná vol’be σk = 0. Touto vol’bou získame afinno-škálovací
smer (∆x,∆y,∆s), ktorý smeruje k hranici prípustných riešení, a pozdĺž ktorého
duálna medzera poklesne najviac.

• Korektor krok, ktorý zodpovedá vol’be σk = 1. Touto vol’bou získame centrujúci smer
(∆x,∆y,∆s), ktorý zlepšuje centrovanie smerom k centrálnej trajektórii, a pozdĺž
ktorého sa duálna medzera nezmení.

Dôležitou súčast’ou prediktor-korektor algoritmu je dvojica N2-okolí, kde jedno okolie
(vnútorné) tvorí podmnožinu druhého (vonkajšieho). Párne iterácie prediktor-korektor
algoritmu sú sústredené vo vnútornom okolí, zatial’ čo nepárne iterácie ležia vo vonkaj-
šom okolí. Stručne opíšeme prvé dve iterácie prediktor-korektor algoritmu a na základe
nich sformulujeme schému tohto algoritmu. Začínajúc štartovacím bodom (x0, y0, s0) z
vnútorného okolia vypočítame prediktor krok vol’bou σ0 = 0. Pozdĺž získaného afinno-
škálovacieho smeru prejdeme až k hranici vonkajšieho okolia, kde definujeme nový ite-
račný bod (x1, y1, s1). Korektor krok vypočítame vol’bou σ1 = 1. Vol’bou jednotkovej
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dĺžky kroku α = 1 pozdĺž centrujúceho smeru získame d’alšiu iteráciu (x2, y2, s2), ktorá
opät’ leží vo vnútornom okolí. Takto opísaný dvojkrokový cyklus sa opakuje, a tým ge-
neruje postupnost’ iteračných bodov s párnou iteráciou vo vnútornom okolí a s nepár-
nou iteráciou na hranici vonkajšieho okolia centrálnej trajektórie. Pre jednoduchost’ a
bez ujmy na všeobecnosti sformulujeme schému prediktor-korektor algoritmu s konkrét-
nymi okoliami N2(0.25) a N2(0.5). Poznamenajme, že podl’a Lemy 3.1 vnútorné okolie
N2(0.25) naozaj tvorí podmnožinu vonkajšieho okolia N2(0.5).

Schéma prediktor-korektor algoritmu

vstup (x0, y0, s0) ∈ N2(0.25), ϵ > 0

prirad’ k := 0

repeat
ak k je párne

PREDIKTOR KROK

prirad’ σk := 0, µk := (xk)T sk/n

vyriešA 0 0

0 AT I

Sk 0 Xk


∆x∆y

∆s

 = −

 0

0

XkSke− σkµke


prirad’ αk := max {α ∈ [0, 1] | (xk(α), yk(α), sk(α)) ∈ N2(0.5)}
prirad’ (xk+1, yk+1, sk+1) := (xk(α), yk(α), sk(α))

ak k je nepárne
KOREKTOR KROK

prirad’ σk := 1, µk := (xk)T sk/n

vyriešA 0 0

0 AT I

Sk 0 Xk


∆x∆y

∆s

 = −

 0

0

XkSke− σkµke


prirad’ (xk+1, yk+1, sk+1) := (xk, yk, sk) + (∆x,∆y,∆s)

prirad’ k := k + 1

until (xk)T sk ≤ ϵ

Prediktor krok redukuje hodnotu parametra µ faktorom (1 − α), kde α je dĺžka kroku.
Korektor krok síce neprispieva k redukcii duálnej medzery, ale pri návrate spät’ do vnú-
torného okolia dáva algoritmu väčší priestor na manévrovanie k d’alšej iterácii. V d’alšej
časti opíšeme základné vlastnosti prediktor-korektor algoritmu a dokážeme jeho polyno-
miálnu zložitost’. Prvé tvrdenie definuje spodnú hranicu dĺžky prediktor kroku.
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Obr. 3.6: Iterácie prediktor-korektor algoritmu alternujúce medzi špecifickými okoliami
N2(0.25) a N2(0.5) ilustrované v priestore x1s1 × x2s2.

Lema 3.6. Nech (x, y, s) ∈ N2(0.25) a nech (∆x,∆y,∆s) je riešením systému (1.11) s σ = 0.
Potom (x(α), y(α), s(α)) ∈ N2(0.5), ∀α ∈ [0, α], kde

α = min

(
1

2
,

(
µ

8∥∆X∆Se∥

)1/2
)
. [29] (3.13)

Dôkaz. Využitím Dôsledku 3.1 dostaneme

∥X(α)S(α)− µ(α)e∥ ≤ (1− α)∥XSe− µe∥+ α2∥∆X∆Se∥

≤ (1− α)∥XSe− µe∥+ µ

8∥∆X∆Se∥
∥∆X∆Se∥ podl’a (3.13)

≤ 1

4
(1− α)µ+

1

8(1− α)
(1− α)µ ked’že (x, y, s) ∈ N2(0.25)

≤ 1

4
(1− α)µ+

1

4
(1− α)µ ked’že α ≤ 1

2

≤ 1

2
µ(α) podl’a Lemy 3.2 s σ = 0.

To znamená, že pre α ∈ [0, α] bod (x(α), y(α), s(α)) spĺňa podmienku presnosti pre okolie
N2(0.5). Dôkaz ostrej prípustnosti bodu (x(α), y(α), s(α)) pre α ∈ [0, α] je analogický ako
vo Vete 3.2.
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Dôsledok 3.2. Prediktor krok má dĺžku aspoň α a nová hodnota parametra µ je najviac (1−α)µ.
[29]

Dôkaz. Spodná hranica α dĺžky prediktor kroku vyplýva priamo z Lemy 3.6 a zo spôsobu
vol’by dĺžky kroku

αk := max {α ∈ [0, 1] | (xk(α), yk(α), sk(α)) ∈ N2(0.5)}.

Horné ohraničenie parametra µ v d’alšej iterácii vyplýva priamo z Lemy 3.2, ak vo vzt’ahu
µk+1 = [1− αk(1− σ)]µk položíme σ = 0

µk+1 = [1− αk(1− σ)]µk = (1− αk)µk ≤ (1− α)µk.

Poznamenajme, že pomocou Lemy 3.5 môžeme jednoducho odvodit’ spodnú hranicu
pre parameter α. Ak v Leme 3.5 položíme θ = 0.25 a σ = 0, dostaneme

µ

8∥∆X∆S∥
≥ 23/2(1− 0.25)

8[(0.25)2 + n]
=

3
√
2

1 + 16n
≥ 0.16

n
.

Následne z nerovnice (3.13) odvodíme, že

α ≥ min

(
1

2
,

(
0.16

n

)1/2
)

=
0.4√
n
. (3.14)

Ked’že každý krok typu prediktor zodpovedná párnej iterácii, tak Dôsledok 3.2 a ohrani-
čenie (3.14) implikujú, že

µk+1 ≤ (1− α) ≤
(
1− 0.4√

n

)
µk, k = 0, 2, 4, . . . . (3.15)

Vlastnosti krokov typu korektor formuluje nasludujúca lema, ktorá hovorí o tom, že
každý korektor krok vracia bod z vonkajšieho okolia N2(0.5) do vnútorného okolia N2(0.25)

bez zmeny parametra µ.

Lema 3.7. Nech (x, y, s) ∈ N2(0.5) a nech (∆x,∆y,∆s) je riešením systému (1.11) s σ = 1.
Potom (x(1), y(1), s(1)) ∈ N2(0.25) a µ(1) = µ. [29]

Dôkaz. Dosadením σ = 1 do (3.2) dostaneme µ(1) = µ. Dosadením θ = 0.5, α = 1, σ = 1

do nerovnice (3.11) dostaneme

∥X(1)S(1)e− µ(1)e∥ ≤ µ

4
=

1

4
µ(1).

Tým sme dokázali, že bod (x(1), y(1), s(1)) spĺňa podmienku presnosti pre okolie N2(0.25).
Dôkaz ostrej prípustnosti bodu (x(1), y(1), s(1)) je analogický ako vo Vete (3.2).
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Nakoniec zostáva ukázat’, že prediktor-korektor algoritmus má polynomiálny cha-
rakter. Všimnime si, že spojením nerovnice (3.15) a Lemy 3.7 môžeme odvodit’, že

µk+2 = µk+1 ≤
(
1− 0.4√

n

)
µk, k = 0, 2, 4, . . . . (3.16)

To znamená, že požadovaný spôsob zmenšovania bariérového parametra podl’a Vety 3.1
je takmer splnený pre δ = 0.4 a ω = 0.5, až na to, že zmenšovanie parametra µ neprebieha
v každej iterácii ale v dvojkrokovom cykle. Avšak kniha [29] uvádza, že dôkaz Vety 3.1 je
možné upravit’ tak, aby spôsob redukcie (3.16) vyhovoval predpokladom tvrdenia, čím
je možné dokázat’ polynomiálnu zložitost’ O(

√
n ln 1/ε) tohto algoritmu.

3.5 Algoritmus s dlhým krokom

Algoritmus s dlhým krokom generuje postupnost’ iteračných bodov (xk, yk, sk) v špeci-
fickom okolí N−∞(γ), ktoré sa vyznačuje tým, že pre malé hodnoty parametra γ (≈ 10−3)

zaberá podstatnú čast’ množiny F◦. Tento algoritmus volí v každej iterácii centrujúci pa-
rameter σk z intervalu [σmin, σmax], kde 0 < σmin < σmax < 1. Algoritmus zároveň volí
dĺžku kroku αk maximálnu možnú tak, aby d’alší iteračný bod zotrval vo vnútri okolia
N−∞(γ). Schéma algoritmu s dlhým krokom teda vyzerá nasledovne.

Schéma algoritmu s dlhým krokom

vstup γ ∈ (0, 1), σmin, σmax : 0 < σmin < σmax < 1, (x0, y0, s0) ∈ N∞(γ), ϵ > 0

prirad’ k := 0

repeat
zvol’ σk ∈ [σmin, σmax]

prirad’ µk := (xk)T sk/n

vyrieš A 0 0

0 AT I

Sk 0 Xk


∆x∆y

∆s

 = −

 0

0

XkSke− σkµke


prirad’ αk := max {α ∈ [0, 1] | (x(α), y(α), s(α)) ∈ N−∞(γ)}
prirad’ (xk+1, yk+1, sk+1) := (x(α), y(α), s(α))

prirad’ k := k + 1

until (xk)T sk ≤ ϵ

35



KAPITOLA 3. ALGORITMY SLEDOVANIA CENTRÁLNEJ TRAJEKTÓRIE

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

x
1
s

1

x 2s 2

centralna
trajektoria

N
−∞(0.2)

0

1

2

3

Obr. 3.7: Iterácie algoritmu s dlhým krokom v špecifickom okolí N−∞(0.2) ilustrované v
priestore x1s1 × x2s2.

Lema 3.8. Ak (x, y, s) ∈ N−∞(γ), potom ∥∆X∆Se∥ ≤ 2−3/2(1 + 1/γ)nµ. [29]

Dôkaz. Z dôkazu Lemy 3.5 využijeme nerovnicu

∥∆X∆Se∥ ≤ 2−3/2∥(XS)−1/2(−XSe+ σµe)∥2. (3.17)

Rozpísaním výrazu na pravej strane nerovnice (3.17) dostaneme

∥∆X∆Se∥ ≤ 2−3/2∥ − (XS)1/2e+ σµ(XS)−1/2e)∥2

≤ 2−3/2

[
xT s− 2σµeT e+ σ2µ2

n∑
i=1

1

xisi

]

≤ 2−3/2

[
xT s− 2σµeT e+ σ2µ2

n

γµ

]
ked’že xisi ≥ γµ

≤ 2−3/2

[
1− 2σ +

σ2

γ

]
nµ

≤ 2−3/2

(
1 +

1

γ

)
nµ. ked’že σ ∈ (0, 1)
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Veta 3.3. Pre dané parametre γ, σmin, σmax algoritmu s dlhým krokom existuje kladná konštanta
δ > 0 nezávislá od n taká, že

µk+1 ≤
(
1− δ

n

)
µk, k = 1, 2, .... [29]

Dôkaz. Najprv dokážeme, že (x(α), y(α), s(α)) ∈ N−∞(γ), ∀α ∈
[
0, 23/2γ 1−γ

1+γ
σk
n

]
, čo im-

plikuje dolné ohraničenie pre dĺžku kroku αk ≥ 23/2γ 1−γ
1+γ

σk
n .

Z Lemy 3.8 vyplýva, že pre l’ubovol’ný index i = 1, 2, . . . , n platí

|∆xi∆si| ≤ ∥∆Xk∆Ske∥2 ≤ 2−3/2(1 + 1/γ)nµk. (3.18)

Rozpísaním výrazu xki (α)s
k
i (α) dostaneme

xki (α)s
k
i (α) = (xki + α∆xi)(s

k
i + α∆si)

= xki s
k
i + α(xki∆si + ski∆xi) + α2∆xi∆si

≥ xki s
k
i (1− α) + ασkµk − α2|∆xi∆si| podl’a (1.11)

≥ γ(1− α)µk + ασkµk − α22−3/2(1 + 1/γ)nµk. xki s
k
i ≥ γµk, podl’a (3.18)

Pripomeňme, že podl’a Lemy 3.2 platí µk(α) = [1 − α(1 − σk)]µk. Z uvedených vzt’ahov
vyplýva, že podmienka presnosti xki (α)s

k
i (α) ≥ γµk(α) pre okolie N−∞(γ) je splnená, ak

γ(1− α)µk + ασkµk − α22−3/2(1 + 1/γ)nµk ≥ γ[1− α(1− σk)]µk. (3.19)

Elementárnymi úpravami môžeme ukázat’, že nerovnica (3.19) platí pre α ≤ 23/2γ 1−γ
1+γ

σk
n .

To znamená, že bod (xk(α), yk(α), sk(α)) spĺňa podmienku presnosti pre okolie N−∞(γ),
ak α ∈

[
0, 23/2γ 1−γ

1+γ
σk
n

]
. Analogickým spôsobom, ako vo Vete 3.2, môžeme dokázat’, že

(xk(α), yk(α), sk(α)) ∈ F◦, ∀α ∈
[
0, 23/2γ 1−γ

1+γ
σk
n

]
. Z toho jednoznačne vyplýva, že

(xk(α), yk(α), sk(α)) ∈ N−∞(γ), ∀α ∈
[
0, 23/2γ

1− γ

1 + γ

σk
n

]
,

a preto zrejme platí aj dolné ohraničenie pre parameter αk

αk ≥ 23/2γ
1− γ

1 + γ

σk
n
. (3.20)

Využitím ohraničenia (3.20) vo vzt’ahu µk(α) = [1− α(1− σk)]µk dostaneme

µk+1 = [1− αk(1− σk)]µk

≤

[
1− 23/2

n
γ
1− γ

1 + γ
σk(1− σk)

]
µk. (3.21)
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Je zrejmé, že výraz σ(1 − σ) je konkávnou funkciou v premmenej σ, a preto na l’ubo-
vol’nom uzavretom intervale dosahuje svoje minimum v niektorom z dvojice krajných
bodov daného intervalu. Z toho dôvodu platí

σk(1− σk) ≥ min {σmin(1− σmin), σmax(1− σmax)}, ∀σk ∈ [σmin, σmax].

To znamená, že nerovnicu (3.21) môžeme d’alej rozpísat’ do tvaru

µk+1 ≤
(
1− δ

n

)
µk,

kde δ = 23/2γ 1−γ
1+γ min {σmin(1− σmin), σmax(1− σmax)}.

Polynomiálna zložitost’ O(n ln 1/ε) je opät’ priamym dôsledkom Vety 3.1 a Vety 3.3.

3.6 Konvergencia

V tejto časti uvedieme konvergenčné vlastnosti algoritmov sledovania centrálnej trajek-
tórie. V diplomovej práci [7] sme dokázali, že centrálna trajektória C konverguje v smere
zmenšovania parametra µ k optimálnemu riešeniu (x∗, y∗, s∗) ∈ F∗. Dôkaz konvergen-
cie iteračných bodov v špecifickom okolí centrálnej trajektórie je podobný. Postupnost’
iteračných bodov (xk, yk, sk) je pozdĺž špecifického okolia ohraničená, a preto má aspoň
jeden limitný bod (x∗, y∗, s∗). Je zrejmé, že pre l’ubovol’ný iteračný bod (xk, yk, sk) z oko-
lia N2(θ) alebo N−∞(γ) platí

Axk = b, AT yk + sk = c, (xk, sk) > 0.

Iteračné body v špecifickom okolí N2(θ) navyše spĺňajú podmienku

0 ≤ ∥XkSke− µke∥ ≤ θµk.

Ked’že množiny {x ∈ Rn | Ax = b}, {(y, s) ∈ Rm × Rn | AT y + s = c} sú uzavreté a
µk → 0, tak limitným prechodom pre k → ∞ dostaneme

Ax∗ = b, AT y∗ + s∗ = c, (x∗, s∗) ≥ 0, X∗S∗e = 0.

V prípade špecifického okolia N−∞(γ) je tiež možné ukázat’, že limitný bod (x∗, y∗, s∗)

spĺňa podmienku komplementarity X∗S∗e = 0, čo však vyžaduje pojem optimálneho
rozkladu. To znamená, že limitný bod (x∗, y∗, s∗) v oboch prípadoch vyhovuje nutným a
postačujúcim podmienkam optimality z Vety 1.2, a preto bod (x∗, y∗, s∗) je optimálnym
riešením dvojice úloh (P ), (D). Navyše, dvojica (x∗, s∗) zodpovedá ostro komplementár-
nemu primárno-duálnemu optimálnemu riešeniu. Tento výsledok úvádza aj nesledujúce
tvrdenie, ktorého dôkaz je možné nájst’ v knihe [29].
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Veta 3.4. Nech {(xk, yk, sk)} je postupnost’ iteračných bodov generovaná algoritmom s krát-
kym krokom, prediktor-korektor algoritmom alebo algoritmom s dlhým krokom. Nech µk → 0

pre k → ∞. Potom postupnost’ {(xk, yk, sk)} je ohraničená, a preto má aspoň jeden limitný bod
(x∗, y∗, s∗), pričom každá dvojica (x∗, s∗) je ostro komplementárnym primárno-duálnym riešením
úloh (P ), (D). [29]

3.7 Porovnanie algoritmov

Algoritmus s krátkym krokom je najjednoduchšou verziou primárno-duálnych algorit-
mov. Tento algoritmus volí v každej iterácii konštantnú hodnotu centrujúceho parametra
σ a jednotkovú dĺžku kroku α. Určitou nadstavbou tohto algoritmu je prediktor-korektor
algoritmus, ktorého iterácie alternujú medzi dvomi krokmi. Zatial’ čo prediktor krok
(σ = 0) pozdĺž afinno-škálovacieho smeru zmenšuje duálnu medzeru, korektor krok
(σ = 1) pozdĺž centrujúceho smeru zlepšuje centrovanie smerom k centrálnej trajektórii.
Oba algoritmy využívajú špecifické okolie N2(θ), ktorého reštriktívny charakter posky-
tuje algoritmom menej priestoru na manévrovanie v množine F◦. Dôsledkom toho je, že
oba algoritmy generujú kratšie kroky, a preto sa iteračné body nachádzajú bližšie k cen-
trálnej trajektórii. Z toho dôvodu sú algoritmy s krátkym krokom a prediktor-korektor al-
goritmy presnejšie, rýchlejšie konvergujú, pričom sa vyznačujú zložitost’ouO(

√
n ln 1/ε).

Opačný charakter má algoritmus s dlhým krokom. Tento algoritmus zvyčajne volí cen-
trujúci parameter σ blízko nuly, čo spôsobuje výraznú redukciu duálnej medzery v každej
iterácii. Zároveň volí najväčšiu možnú dĺžku kroku α tak, aby d’alší iteračný bod zotrval
v špecifickom okolí N−∞(γ). Okolie N−∞(γ) poskytuje algoritmu viac priestoru na ma-
névrovanie, čo mechanizmus algoritmu prirodzene využíva, a preto generuje iteračné
body d’alej od centrálnej trajektórie a bližšie k hranici množiny F◦. Z toho dôvodu sa
môže stat’, že iteračné body zostanú zaseknuté pri vrcholoch množiny F◦, čím sa kon-
vergencia môže spomalit’, a preto algoritmus nemusí vždy spĺňat’ teoretické výsledky.
Napriek tomu sa algoritmus s dlhým krokom v praxi často využíva, aj ked’ vykazuje o
niečo horšiu zložitost’ O(n ln 1/ε).
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Doteraz sme sa zaoberali algoritmami, pri ktorých sme vždy vychádzali zo štartova-
cieho bodu, ktorý bol ostro prípustným riešením z množiny F◦. Táto skutočnost’ za-
ručila, že každý d’alší iteračný bod algoritmu bol tiež ostro prípustným riešením z mno-
žiny F◦. Avšak vo všeobecnosti ostro prípustné riešenie nemusí vždy existovat’, a aj ked’
existuje, tak pri inicializácii algoritmu nemusí byt’ jednoduché nájst’ ho. V tejto kapi-
tole opíšeme triedu primárno-duálnych neprípustných algoritmov, ktoré síce využívajú
podobný prístup ako algoritmy sledovania centrálnej trajektórie, ale nevyžadujú, aby
štartovací bod bol ostro prípustným riešením. Uvedieme všeobecnú schému takéhoto
algoritmu a sformulujeme tvrdenia, ktoré dokazujú jeho konvergenciu a polynomiálnu
zložitost’. Zároveň opíšeme konkrétny variant neprípustného algoritmu – Mehrotrov
prediktor-korektor algoritmus.

4.1 Neprípustnost’

Uvažujme konkrétnu primárnu úlohu

min {2x1 − 3x3 | 3x1 + x2 + x3 = 4, x2 + x3 = 4, x ≥ 0},

kde množinou prípustných riešení je {(0, η, 4−η)|η ∈ [0, 4])}. Ked’že x1 = 0, tak je zrejmé,
že množina ostro prípustných riešení F◦ je prázdna, a preto na riešenie takejto úlohy
nie je možné aplikovat’ žiadny z doteraz prezentovaných algoritmov. Jedným zo spôso-
bov, ako predíst’ tomuto problému, je previest’ danú úlohu do ekvivalentného tvaru vo
väčšom rozmere, kde ostro prípustné riešenie existuje [14], [17], [20]. Iným prístupom je
riešit’ úlohu neprípustným algoritmom, ktorý nevyžaduje, aby štartovací bod (x0, y0, s0)

bol ostro prípustným riešením, požaduje iba splnenie podmienky (x0, s0) > 0. Zdôraz-
nime, že v prípade l’ubovol’ného neprípustného bodu (x, y, s) podmienky prípustnosti
nie sú splnené, a preto v prvých dvoch zložkách na pravej strane systému (1.11) vznikajú
rezíduá rP , rD, kde

rP = Ax− b, rD = AT y + s− c.

Rezíduá vyčíslené v neprípustnom iteračnom bode (xk, yk, sk) budeme označovat’ rkP , rkD.

4.2 Algoritmus

Neprípustný algoritmus sledovania centrálnej trajektórie je určitou modifikáciou algo-
ritmu s dlhým krokom. Princíp sledovania centrálnej trajektórie naznačuje, že algoritmus
vychádza z predpokladu F◦ ̸= ∅, no napriek tomu štartovací bod (x0, y0, s0) volí mimo
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množiny F◦, pričom zachováva podmienku (x0, s0) > 0. Dôležitou súčast’ou neprípust-
ného algoritmu je špecifické okolie N−∞(γ, ϱ), ktoré zodpovedá rozšíreniu špecifického
okolia N−∞(γ) obsahujúce aj neprípustné primárno-duálne riešenia. Okolie N−∞(γ, ϱ) je
definované ako

N−∞(γ, ϱ) =

{
(x, y, s) | ∥(rP , rD)∥ ≤

∥(r0P , r0D)∥
µ0

ϱµ, (x, s) > 0, xisi ≥ γµ, i = 1, 2, . . . , n

}
,

kde γ ∈ (0, 1), ϱ ≥ 1 a (r0P , r
0
D) a µ0 > 0 sú vyčíslené v štartovacom bode (x0, y0, s0). Všim-

nime si, že pre všetky body v okolí N−∞(γ, ϱ) je neprípustnost’ rovnomerne ohraničená
nejakým násobkom parametra µ. Z toho dôvodu môžeme predpokladat’, že zmenšova-
ním parametra µk a udržiavaním iteračných bodov (xk, yk, sk) v okolí N−∞(γ, ϱ) rezíduá
konvergujú do nuly (rkP , r

k
D) → 0 pre k → ∞. Pri vol’be dĺžky kroku αk implementujeme

dodatočnú podmienku
µk(αk) ≤ (1− 0.01αk)µk, (4.1)

ktorá zabezpečí, že hodnota parametera µk bude klesat’ aspoň nejakou minimálnou mie-
rou. Pritom v každej iterácii algoritmu kontrolujeme okrem duálnej medzery aj primárnu
a duálnu prípustnost’, a to pomocou vopred určených tolerančných konštánt ϵP > 0,
ϵD > 0. Schéma neprípustného algoritmu teda vyzerá nasledovne.

Schéma neprípustného algoritmu

vstup γ ∈ (0, 1), ϱ ≥ 1, σmin, σmax : 0 < σmin < σmax < 1,
(x0, y0, s0) : (x0, s0) > 0, (ϵ, ϵP , ϵD) > 0

prirad’ k := 0

repeat
zvol’ σk ∈ [σmin, σmax]

prirad’ µk := (xk)T sk/n

vyrieš A 0 0

0 AT I

Sk 0 Xk


∆x∆y

∆s

 = −

 rkP
rkD

XkSke− σkµke


prirad’ αk := max {α ∈ [0, 1] | (x(α), y(α), s(α)) ∈ N−∞(γ, ϱ), µk(α) ≤ (1− 0.01α)µk}
prirad’ (xk+1, yk+1, sk+1) := (x(α), y(α), s(α))

prirad’ k := k + 1

until (xk)T sk ≤ ϵ a ∥rkP ∥ ≤ ϵP a ∥rkD∥ ≤ ϵD
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4.3 Konvergencia a polynomiálna zložitost’

Na základe uvedenej schémy neprípustného algoritmu môžeme pre rezíduá rkP , rkD od-
vodit’, že

rkP = Axk − b

= A(xk−1 + αk−1∆x
k−1)− b

= (Axk−1 − b) + αk−1(A∆x
k−1)

= rk−1
P + αk−1r

k−1
P

= (1− αk−1)r
k−1
P

rkD = AT yk + sk − c

= AT (yk−1 + αk−1∆y
k−1) + sk−1 + αk−1∆s

k−1 − c

= (AT yk−1 + sk−1 − c) + αk−1(A
T∆yk−1 +∆sk−1)

= rk−1
D − αk−1r

k−1
D

= (1− αk−1)r
k−1
D .

Z toho vyplýva, že pre dvojicu rezíduí (rkP , r
k
D) platí

(rkP , r
k
D) = (1− αk−1)(r

k−1
P , rk−1

D )

= (1− αk−1) . . . (1− α0)(r
0
P , r

0
D)

= ψk(r
0
P , r

0
D), (4.2)

kde ψk =
∏k−1

j=0(1−αj) a ψ0 = 1. Rovnica (4.2) je len technickým výsledkom, ktorý vedie
k dôkazu konvergencie [11] a polynomiálnej zložitosti [31] neprípustného algoritmu. Av-
šak formálny dôkaz oboch vlastností vyžaduje náročnejšie a rozsiahle technické postupy,
a preto uvedieme len kl’účové výsledky s náznakom dôkazu, pričom celý dôkaz je možné
nájst’ v knihe [29].

Veta 4.1. Postupnososti {µk} a {∥(rkP , rkD)∥} generované neprípustným algoritmom konvergujú
do nuly.

Kl’účovým medzikrokom je dokázat’, že existuje kladná konštanta α > 0 taká, že
αk ≥ α pre k = 1, 2, . . .. Potom z podmienky (4.1) a z rovnice (4.2) môžeme odvodit’, že

µk+1 ≤ (1− 0.01αk)µk ≤ (1− 0.01α)µk, k = 1, 2, . . . ,

∥(rk+1
P , rk+1

D )∥ ≤ (1− α)∥(rkP , rkD)∥, k = 1, 2, . . . ,

z čoho môžeme usúdit’, že ak k → ∞, potom µk → 0 a ∥(rkP , rkD)∥ → 0. Nepriamym dô-
sledkom tohto pozorovania je nasledujúce tvrdenie, ktoré formuluje konvergenčné vlast-
nosti neprípustného algoritmu.
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Veta 4.2. Nech {(xk, yk, sk)} je postupnost’ iteračných bodov generovaná neprípustným algorit-
mom. Predpokladajme, že množina F◦ je neprázdna. Potom postupnost’ {(xk, yk, sk)} je ohra-
ničená, a preto má aspoň jeden limitný bod (x∗, y∗, s∗), pričom každá dvojica (x∗, s∗) je ostro
komplementárnym primárno-duálnym riešením úloh (P ), (D). [29]

O polynomiálnej zložitosti hovorí nasledujúca veta.

Veta 4.3. Nech ε > 0. Predpokladajme, že štartovací bod je tvaru (x0, y0, s0) = (ζe, 0, ζe),
kde ζ spĺňa podmienku ζ2 ≤ ϑ/εκ pre nejaké kladné konštanty ϑ, κ > 0. Potom existuje index
k = O(n2| ln ε|) taký, že iteračné body (xk, yk, sk) generované neprípustným algoritmom spĺňajú
µk ≤ ε, ∀k ≥ k. [29]

4.4 Mehrotrov prediktor-korektor algoritmus

Mehrotrov prediktor-korektor algoritmus [18] patrí k najúspešnejším primárno-duálnym
algoritmom metód vnútorného bodu. Tento algoritmus sa odlišuje od generického algo-
ritmu tým, že zlepšuje štandardný Newtonov smer o korekciu, ktorá je výpočtovo ne-
náročná a vedie k lepším numerickým výsledkom. Algoritmus v sebe zahŕňa niekol’ko
heuristických prvkov, ktoré boli do algoritmu implementované počas niekol’kých rokov
výpočtových skúseností z praxe. Konkrétne ide o spojenie neprípustného algoritmu sle-
dovania centrálnej trajektórie [15] a použitia aproximácie centrálnej trajektórie pomocou
vyšších rádov [17], [21]. Navyše, Mehrotra doplnil túto kombináciu o adaptívny spôsob
vol’by centrujúceho parametra σ v každej iterácii. Výsledkom bol vysoko efektívny algo-
ritmus, ktorý tvorí základný koncept väčšiny súčasných primárno-duálnych algoritmov
metód vnútorného bodu.

Algoritmus

Mehrotrov prediktor-korektor algoritmus generuje postupnost’ neprípustných iteračných
bodov (xk, yk, sk), kde (xk, sk) > 0. Výsledný smer v každej iterácii je kombináciou
niekol’kých prvkov – afinno-škálovací prediktor smer, centrujúca zložka zodpovedajúca
adaptívne zvolenému parametru σ, korektor smer.

Pre iteračný bod (xk, yk, sk), (xk, sk) > 0 vypočítame afinno-škálovací prediktor smer
(∆xaf,∆yaf,∆saf), ktorý zodpovedá riešeniu systémuA 0 0

0 AT I

Sk 0 Xk


∆x

af

∆yaf

∆saf

 = −

 rkP
rkD

XkSke

 . (4.3)

Afinno-škálovací smer (∆xaf,∆yaf,∆saf) je teda štandardným Newtonovým smerom ne-
prípustného algoritmu, ktorý získame vol’bou σ = 0. Pre primárnu a duálnu zložku
vypočítame samostatne dĺžku kroku pozdĺž smeru (∆xaf,∆yaf,∆saf)
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αP
af = argmax {α ∈ [0, 1] | xk + α∆xaf ≥ 0},

αD
af = argmax {α ∈ [0, 1] | sk + α∆saf ≥ 0}.

Aby sme mohli posúdit’ kvalitu získaného afinno-škálovacieho smeru (∆xaf,∆yaf,∆saf),
definujme µaf ako hypotetickú hodnotu parametra µ, ktorú by sme získali plným krokom
pozdĺž smeru (∆xaf,∆yaf,∆saf) až k hranici, teda

µaf = (xk + αP
af∆x

af)T (sk + αD
af∆s

af)/n.

Ak µaf je výrazne menšie ako µ, potom afinno-škálovací smer (∆xaf,∆yaf,∆saf) je vhod-
ným smerom, pozdĺž ktorého sa duálna medzera výrazne zmenší, centrovanie nie je
potrebné, a preto volíme parameter σ blízko 0. Na druhej strane, ak µaf je len o niečo
menšie ako µ, potom potrebujeme výraznejšie centrovanie, a preto volíme parameter
σ blízko 1. Táto vol’ba vedie k centrovaniu blízko centrálnej trajektórie, čo algoritmu po-
skytuje lepšiu pozíciu na redukciu duálnej medzery v d’alšej iterácii. Mehrotra vo svojom
pôvodnom algoritme [18] navrhol nasledovný heuristický spôsob vol’by centrujúceho pa-
rametra

σ =

(
µaf

µ

)3

,

od ktorého sa d’alej odvíja korekčná zložka algoritmu. Aby sme vysvetlili jej význam,
analyzujme súčin xki s

k
i , ktorý by sme získali plným krokom pozdĺž afinno-škálovacieho

smeru (∆xaf,∆yaf,∆saf). Dostaneme

(xki +∆xaf
i )(s

k
i +∆saf

i ) = xki s
k
i + xi∆s

af
i + si∆x

af
i︸ ︷︷ ︸

=−xk
i s

k
i , podl’a (4.3)

+∆xaf
i ∆s

af
i = ∆xaf

i ∆s
af
i . (4.4)

To znamená, že plným krokom pozdĺž afinno-škálovacieho smeru sa súčin xki s
k
i trans-

formuje na ∆xaf
i ∆s

af
i namiesto nulovej hodnoty. Korektor smer (∆xkor,∆ykor,∆skor) sa

snaží korigovat’ túto odchýlku, čím by sa súčiny xki s
k
i priblížili k nule. Korektor smer

(∆xkor,∆ykor,∆skor) zodpovedá riešeniu systémuA 0 0

0 AT I

Sk 0 Xk


∆x

kor

∆ykor

∆skor

 = −

 0

0

∆Xaf∆Safe

 (4.5)

kde ∆Xaf = diag(∆xaf) a ∆Saf = diag(∆saf). Aby sme mohli posúdit’ efektivitu korektor
smeru, uvažujme opät’ súčin xki s

k
i , ktorý by sme získali plným krokom pozdĺž kombi-

novného afinno-škálovacieho-korektor smeru. Dostaneme
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(xki +∆xaf
i +∆xkor

i )(ski +∆saf
i +∆skor

i )

= (xki +∆xaf
i )(s

k
i +∆saf

i )︸ ︷︷ ︸
=∆xaf

i ∆saf
i , podl’a (4.4)

+ xi∆s
kor
i + si∆x

kor
i︸ ︷︷ ︸

=−∆xaf
i ∆saf

i , podl’a (4.5)

+∆xaf
i ∆s

kor
i +∆xkor

i ∆saf
i +∆xkor

i ∆skor
i

= ∆xaf
i ∆s

kor
i +∆xkor

i ∆saf
i +∆xkor

i ∆skor
i . (4.6)

Ak je matica koeficientov na l’avej strane systému (4.3) a (4.5) v limite pre k → ∞ re-
gulárna, potom výraz (4.6) je bližšie k nule ako výraz (4.6), z čoho primo vyplýva efek-
tivita korektor smeru. Avšak vo všeobecnosti matica koeficientov v limite nemusí byt’
vždy regulárna, no napriek tomu použitie korekcie prostredníctvom korektor smeru aj v
takejto situácii zvyčajne zlepšuje celkovú efektivitu algoritmu v praxi. Nakoniec vypočí-
tame kombinovaný centrujúci-korektor smer (∆xck,∆yck,∆sck), ktorý zodpovedá rieše-
niu systému A 0 0

0 AT I

Sk 0 Xk


∆x

ck

∆yck

∆sck

 = −

 0

0

∆Xaf∆Safe− σµe

 .
Uvedená metóda tvorí podstatu pôvodného Mehrotrovho prediktor-korektor algoritmu
[18] z roku 1992. Vysoká efektivita a presvedčivé numerické výsledky tohto algoritmu
viedli prirodzene k snahám o jeho zlepšenie. Výsledkom boli rôzne modifikácie [16], [33],
ktoré vznikali predovšetkým za účelom praktických implementácií. Na záver kapitoly
uvedieme špecifický variant Mehrotrvoho algoritmu, ktorý je implementovaný naprí-
klad aj v programovom balíku LIPSOL [32].

Špecifická schéma Mehrotrovho prediktor-korektor algoritmu

vstup (x0, y0, s0) : (x0, s0) > 0, (ϵ, ϵP , ϵD) > 0

prirad’ k := 0

repeat
vyrieš A 0 0

0 AT I

Sk 0 Xk


∆x

af

∆yaf

∆saf

 = −

 rkP
rkD

XkSke


prirad’ αP

af := argmax {α ∈ [0, 1] | xk + α∆xaf ≥ 0}
αD

af := argmax {α ∈ [0, 1] | sk + α∆saf ≥ 0}
prirad’ µaf := (xk + αP

af∆x
af)T (sk + αD

af∆s
af)/n

prirad’ σ := (µaf/µ)
3
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vyrieš A 0 0

0 AT I

Sk 0 Xk


∆x

ck

∆yck

∆sck

 = −

 0

0

∆Xaf∆Safe− σµe


prirad’ (∆xk,∆yk,∆sk) := (∆xaf,∆yaf,∆saf) + (∆xck,∆yck,∆sck)

prirad’ αP
max := argmax {α ≥ 0 | xk + α∆xk ≥ 0}

αD
max := argmax {α ≥ 0 | sk + α∆sk ≥ 0}

prirad’ αP
k := min (0.99αP

max, 1)

αD
k := min (0.99αD

max, 1)

prirad’ xk+1 = xk + αP
k ∆x

k

(yk+1, sk+1) = (yk, sk) + αD
k (∆y

k,∆sk)

prirad’ k := k + 1

until (xk)T sk ≤ ϵ a ∥rkP ∥ ≤ ϵP a ∥rkD∥ ≤ ϵD

Paradoxom Mehrotrovho algoritmu je, že napriek jeho preukázanej výnimočnej efekti-
vite sa stále nepodarilo získat’ teoretické výsledky bežné pri iných, v praxi menej efektív-
nych algoritmoch. Teoretická analýza sa podarila zatial’ len pri niektorých jeho miernych
modifikáciách [1], [25].
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KAPITOLA 5

DODATOK

5.1 Dôkaz Lemy 2.1

(i) Pre všetky β > −1 platí ln (1 + β) ≤ β, pričom rovnost’ nastáva práve vtedy, ked’ β = 0.

Definujme pomocné funkcie f(β) = ln (1 + β), g(β) = β pre β > −1. Graf funkcie g
je dotyčnicou ku grafu funkcie f v bode β = 0. Je zrejmé, že funkcia f je konkávna, a
preto dotyčnica ku grafu funkcie f v l’ubovol’nom bode β > −1 leží nad grafom funkcie
f , pričom jediným spoločným bodom grafov je bod (β, f(β)) = (β, g(β)). Z toho priamo
vyplýva, že

ln (1 + β) = f(β) ≤ g(β) = β, ∀β > −1,

pričom ln (1 + β) = β práve vtedy, ked’ β = 0.

(ii) Pre l’ubovol’ný vektor z ∈ Rn, ∥z∥∞ ≤ τ < 1 platí

−
n∑

i=1

ln (1 + zi) ≤ −eT z + ∥z∥2

2(1− τ)
.

Definujme pomocnú funkciu f(z) = −
∑n

i=1 ln (1 + zi), ktorá je hladkou funkciou pre
∥z∥∞ ≤ τ < 1. Pre gradient ∇f a Hessovu maticu ∇2f zrejme platí

(∇f(z))i =
−1

1 + zi
, (∇2f(z))ij =

 1
(1+zi)2

ak i = j

0 ak i ̸= j.

Pomocou Taylorovho rozvoja funkcie f dostaneme

f(z) = f(0) + zT∇f(0) + 1

2

∫ 1

0
zT∇2f(ηz)zdη = −eT z + 1

2

∫ 1

0
zT∇2f(ηz)zdη.

Pre integrand zT∇2f(ηz)z platí

zT∇2f(ηz)z =

n∑
i=1

z2i
(1 + ηzi)2

≤
n∑

i=1

z2i
(1− ητ)2

=
∥z∥2

(1− ητ)2
.

Elementárnym integrovaním dostaneme∫ 1

0
zT∇2f(ηz)zdη ≤ ∥z∥2

∫ 1

0

dη

(1− ητ)2
= ∥z∥2 1

τ

∫ 1

1−τ

dν

ν2
= ∥z∥2 1

τ

[
−1

ν

]1
1−τ

=
∥z∥2

1− τ
,
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z čoho nakoniec vyplýva, že

f(z) = −
n∑

i=1

ln (1 + zi) = −eT z + 1

2

∫ 1

0
zT∇2f(ηz)zdη ≤ −eT z + ∥z∥2

2(1− τ)
.

5.2 Dôkaz Lemy 2.4

V dôkaze Lemy 2.4 sme využili skutočnost’, že vektory v a V −1e − v/µ sú navzájom
ortogonálne, teda že vT (V −1e − v/µ) = 0. Tento výsledok dokážeme. Pripomeňme, že
v = V e, V T = V , V TV = XS a xT s = nµ.

vT
(
V −1e− v

µ

)
= vTV −1e− vT v

µ

= (V e)TV −1e− (V e)TV e

µ

= eTV V −1e− eTV TV e

µ

= n− eTXSe

µ

= n− xT s

µ
= 0

5.3 Odvodenie špecifického okolia pre n = 2

V ilustráciách Obr. 3.3 a Obr. 3.4 sme špecifické okolie centrálnej trajektórie zobrazili
dvomi polpriamkami. Ukážeme, že v dvojrozmernom prípade (n = 2) špecifické oko-
lia N2(θ), N−∞(γ) naozaj zodpovedajú prieniku dvoch polrovín v priestore x1s1 × x2s2.

Špecifické okolie N2(θ)

Podmienku presnosti ∥XSe− µe∥2 ≤ θµ môžeme vyjadrit’ v tvare

(x1s1 − µ)2 + (x2s2 − µ)2 ≤ (θµ)2. (5.1)

Pre jednoduchost’ označme ϕ1 = x1s1, ϕ2 = x2s2. Dosadením µ = xT s
n = ϕ1+ϕ2

2 do
nerovnice (5.1) dostaneme(

ϕ1 − ϕ2
2

)2

+

(
ϕ1 − ϕ2

2

)2

≤ θ2
(
ϕ1 + ϕ2

2

)2

2(ϕ1 − ϕ2)
2 ≤ θ2(ϕ1 + ϕ2)

2

√
2|ϕ1 − ϕ2| ≤ θ(ϕ1 + ϕ2).
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Z poslednej nerovnice môžeme elementárnymi úpravami odvodit’, že

ϕ2 ≤

(√
2 + θ√
2− θ

)
ϕ1, ϕ2 ≥

(√
2− θ√
2 + θ

)
ϕ1.

Teda špecifickým okolím N2(θ) je množina ostro prípustných riešení z množiny F◦, ktoré
spĺňajú podmienku

x2s2 ≤

(√
2 + θ√
2− θ

)
x1s1, x2s2 ≥

(√
2− θ√
2 + θ

)
x1s1.

Špecifické okolie N−∞(γ)

Ked’že µ = xT s
2 , tak podmienku presnosti xisi ≥ γµ, i = 1, 2 môžeme vyjadrit’ v tvare

x1s1 ≥ γ
x1s1 + x2s2

2
, x2s2 ≥ γ

x1s1 + x2s2
2

.

Po elementárnych uprávách zistíme, že špecifickým okolím N−∞(γ) je množina ostro
prípustných riešení z množiny F◦, ktoré vyhovujú podmienkam

x2s2 ≤
(
2− γ

γ

)
x1s1, x2s2 ≥

(
γ

2− γ

)
x1s1.

5.4 Vzt’ah parametrov θ a σ v algoritme s krátkym krokom

V rámci algoritmov sledovania centrálnej trajektórie sme v schéme algoritmu s krátkym
krokom použili konkrétne parametre θ = 0.4 a σ = 1 − 0.4/

√
n. Dokážeme, že takto

zvolené parametre θ a σ spĺňajú podmienku (3.12) pre n ≥ 1.

θ2 + n(1− σ)2

23/2(1− θ)
≤ σθ

0.16 + n(0.4/
√
n)2

0.6
√
8

≤ 0.4− 0.16√
n

0.8

0.6
√
8

≤ 1− 0.4√
n

0.2

0.3
√
2

≤ 1− 0.4√
n

0.4√
n

≤ 0.3
√
2− 0.2

0.3
√
2

n ≥

(
0.12

√
2

0.3
√
2− 0.2

)2

≈ 0.76

Dokázali sme, že ak θ = 0.4 a σ = 1−0.4/
√
n, potom podmienka (3.12) platí pre n ≥ 0.76,

a preto zrejme platí aj pre n ≥ 1.
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Záver

V rigoróznej práci sme sa zaoberali primárno-duálnymi algoritmami metód vnútorného
bodu v lineárnom programovaní. V prvej kapitole sme zhrnuli teoretické výsledky z line-
árneho porgamovania a metód vnútorného bodu. Bez ujmy na všeobecnosti sme vychá-
dzali z primárno-duálnej dvojice lineárnych úloh (P ), (D) v štandardnom tvare. Sfor-
mulovali sme základné predpoklady (P1), (P2) a na základe systému (1.4)-(1.6) sme
definovali centrálnu trajektóriu. V závere prvej kapitoly sme opísali všeobecný princíp
primárno-duálnych metód, uviedli sme schému generického algoritmu a vysvetlili sme
spôsob označenia zložitosti algoritmov. V druhej kapitole sme sa zaoberali algoritmami
redukcie potenciálu, ktorých charakteristickým znakom je nepriamy prístup zmenšova-
nia duálnej medzery pomocou potenciálovej funkcie. Definovali sme primárno-duálnu
logaritmickú potenciálovú funkciu Φρ a uvideli sme jej dôležité špecifické vlastnosti.
Dokázali sme, že mechanizmus algoritmu spôsobuje redukciu funkcie Φρ, čo vedie k
redukcii duálnej medzery. Odvodili sme horný odhad funkcie Φρ pozdĺž prípustného
smeru, čo nám umožnilo bližšie určit’ odhad redukcie funkcie Φρ v každej iterácií. Vý-
sledkom bolo zistenie, že potenciálová funkcia Φρ je v každej iterácii redukovaná aspoň
konštantnou mierou. Na záver kapitoly sme dokázali, že algoritmus redukcie potenciálu
má polynomiálnu zložitost’. Vo štvrtej kapitole sme sa venovali primárno-duálnym algo-
ritmom sledovania centrálnej trajektórie. Charakteristickým znakom týchto algoritmov
je princíp sledovania centrálnej trajektórie v jej špecifickom okolí, v ktorom postupnost’
iteračných bodov konverguje k optimálnemu riešeniu. Zadefinovali sme dve štandardné
špecifické okolia N2(θ), N−∞(γ) a uviedli sme ich vlastnosti. V jednorozmernom prí-
pade sme ilustrovali kvalitatívny rozdiel špecifických okolí a dvojrozmernom prípade
sme ilustrovali ich vzájomný vzt’ah. Pre algoritmy sledovania centrálnej trajektórie sme
sformulovali a dokázali všeobecné tvrdenie o polynomiálnej zložitosti. V závislosti od
vol’by jednotlivých parametrov sme uviedli tri základné varinaty algoritmu – algoritmus
s krátkym krokom, prediktor-korektor algoritmus a algoritmus s dlhým krokom. Pod-
robne sme vysvetlili ich princíp, uviedli ich schému a dokázali ich vlastnosti. Zároveň
sme ilustrovali ich mechanizmus a na základe Vety 3.1 sme dokázali ich polynomiálny
charakter. V závere kapitoly sme sformulovali konvergenčné vlastnosti týchto algorit-
mov a uviedli sme ich vzájomné porovnanie. Vo štvrtej kapitole sme opísali triedu neprí-
pustných primárno-duálnych algoritmov. Opísali sme všeobecnú schému neprípustného
algoritmu, uviedli sme konvergenčné výsledky a sformulovali tvrdenie o polynomiálnej
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zložitosti. V rámci tejto kapitoly sme tiež opísali pôvodný Mehrotrov prediktor-korektor
algoritmus. Uviedli sme jeho princíp, ktorý spočíva v kombinácii korekcie smeru a adap-
tívneho spôsobu vol’by centrujúceho parametra. V závere kapitoly sme uviedli aj schému
špecifického variantu Mehrotrovho algoritmu.

V rigoróznej práci sme splnili ciele sformulované v úvode. Uviedli sme základnú ka-
tegorizáciu primárno-duálnych algoritmov metód vnútorného bodu v lineárnom prog-
ramovaní, vysvetlili ich princíp a uviedli ich charakteristické znaky a vlastnosti. V práci
sme sa zamerali na podrobnú analýzu algoritmov a dôkladné vysvetlovanie, pričom sme
dbali na jednotný spôsob prezentácie. V práci sme kládli dôraz na grafickú interpretáciu,
o čom svedčí niekol’ko zaujímavých ilustrácií. Poznamenajme, že rigorózna práca posky-
tuje len základný prehl’ad zaužívaných primárno-duálnych algoritmov. Z toho dôvodu je
možné prácu d’alej doplnit’ o d’alšie podtriedy algoritmov, alebo ju rozšírit’ o algoritmy,
ktoré využívajú iný prístup.
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