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Abstrakt

KABAT, Marek: Algoritmy metdéd vniitorného bodu v linedrnom programovani. [Rigorézna
préaca] — Univerzita Komenského v Bratislave. Fakulta matematiky, fyziky a informatiky.
Katedra aplikovanej matematiky a Statistiky. - Konzultant: doc. RNDr. Margaréta Halick4,
CSc. — Bratislava: FMFI UK, 2014, 55 s.

Rigor6zna praca sa zaoberd algoritmami metéd vnitorného bodu v linedrnom progra-
movani. Hlavnym ciel'om préce je uviest’ zakladnt kategorizaciu primarno-dudlnych
algoritmov met6d vnutorného bodu v linedrnom programovani, vysvetlit' a ilustrovat’
princip konkrétnych algoritmov a uviest’ a dokdzat’ ich podstatné vlastnosti. Praca vy-
chddza zo zdkladnych vysledkov z teérie met6d vnatorného bodu v linedirnom progra-
movani. Ustrednt &ast’ préace tvoria primarno-dudlne algoritmy redukcie potencidlu a
algoritmy sledovania centralnej trajektorie. Obsah préce je na zaver doplneny o triedu

primdrno-duélnych nepripustnych algoritmov.

KI'tacové slova: linedrne programovanie  metddy vnitorného bodu e centrdlna trajekto-

ria e primdrno-dudlny algoritmus e potencidlova funkcia.



Abstract

KABAT, Marek: Algorithms of Interior Point Methods in Linear Programming. [Rigorous The-
sis] — Comenius University in Bratislava. Faculty of Mathematics, Physics and Informa-
tics. Department of Applied Mathematics and Statistics. — Supervisor: doc. RNDr. Mar-
garéta Halickd, CSc. — Bratislava: FMFI UK, 2014, 55 p.

The rigorous thesis deals with interior point algorithms for linear programming. The
main objective of this work is to specify the basic categorization of primal-dual interior
point algorithms for linear programming, explain and illustrate the principle of specific
algorithms and state and prove their essential characteristics. The work is based on the
fundamental results of the theory of interior point methods in linear programming. The
main part of thesis consists of primal-dual potential reduction algorithms and path fol-
lowing algorithms. Content of thesis is completed at the end by a class of primal-dual

infeasible algorithms.

Keywords: linear programming e interior point methods e central path e primal-dual

algorithm e potential function.

II



Obsah

Uvod

1 Met6édy vnitorného bodu v linedirnom programovani

1.1
1.2
1.3
1.4
1.5

Zakladné vysledky z tedrie linedrneho programovania . . . .. ..
Zakladnépredpoklady . . . ... .. ... ... .. ...
Bariérovy problém a centralna trajektéria . . . . ... ... ... ..
Primdrno-dudlnemetédy . . .. .. ... ... . ... .......

O zloZitosti algoritmov . . . . . ... ... Lo Lo L

2 Algoritmy redukcie potencidlu

21
2.2
2.3
24
2.5
2.6

Potencidlové funkcia ®, . ... ... ... ... .. ... ... ..
Algoritmus . . . . .. ... L
Redukcia funkcie ®, a konvergencia . . . ... ... .........
Odhad funkcie @, pozdiz pripustného smeru . . . . . ... ... ..
Odhad redukcie funkcie ®, . ... ... ... ... ..... ... ..

Polynomidlna zlozitost . . . . ... ... .. ... ... . L.

3 Algoritmy sledovania centrilnej trajektorie

3.1
3.2
3.3
34
3.5
3.6
3.7

Specifické okolie centrdlnej trajektérie . . . . . ... ... ......
Polynomidlna zlozitost' . . . . . ... ... ...............
Algoritmus s kratkym krokom . . . . ... oo o0
Prediktor-korektor algoritmus . . . . . .. ... ... ...
Algoritmus s dlhym krokom . . . . .. .. ... .o 0000
Konvergencia . . ... ... ... ... ... ...

Porovnanie algoritmov . . . . .. ... ... . 0 0oL

III

10
10
12
13
14
17
19



OBSAH

4 Nepripustné algoritmy 40
41 Nepripustnost' . . . . ... ... ... oo 40
42 Algoritmus . . . . .. ... 40
4.3 Konvergencia a polynomidlna zloZitost' . . ... .. ... ...... 42
4.4 Mehrotrov prediktor-korektor algoritmus . . . ... ... ... ... 43

5 Dodatok 47
51 DokazLemy2.1 . ... ... ... ... ... .. .. .. .. ... .. 47
52 DokazLlemy24 ... ... ... ... . ... o 48
5.3 Odvodenie $pecifického okoliapren =2 .. ... ... ... .... 48
5.4 Vztah parametrov ¢ a o v algoritme s kratkym krokom . . . . . .. 49

Zaver 50

Zoznam pouZzitej literatary 52

v



Zoznam symbolov a znaciek

V préci budeme pouzivat’' nasledovné jednotné znacenie.

R" Priestor redlnych n -rozmernych vektorov.
R™*" Priestor redlnych matic rozmeru m x n.
i,7 Indexy oznacujtce zloZzky vektorov a matic.
0 Prézdna mnoZina.
[wilieyi, [uiliem Vektor so zlozkami u;, kde ¢ = 1,2,...,n, resp.i € M.
u® Transpozicia vektora u.
n
uTv Skalarny saéin vektorov u,v € R", u'v = Z UiV
i=1
n 1/2
111 11- Il Euklidova norma. Preu € R, |juls = (Z u$> .
i=1
n
IBIR Jednotkovd norma. Pre v € R", |ul|; = Z |uil-
i=1
|-l oo Maximova norma. Pre u € R", ||Ju/oc = max .
1= n

-----

Pozndmka: pre l'ubovol'ny vektor u € R" plati ||u|oo < ||ul2 < [Jull;.

fQ) Funkcia f.

V£Q) Gradient funkcie f.

V2£() Hessova matica funkcie f.

exp (.) Exponencidlna funkcia.

In(.) Prirodzeny logaritmus.

e Vektor jednotiek prislusného rozmeru, e = (1,1,...,1)T.
edanotkova matica prislusného rozmeru, 1 = aiag(e).

I Jednotkova ica prislusnéh , I = diag(e)

h(A) Hodnost’ matice A.

B! Inverzna matica k reguldrnej matici B, BB '=B7'B=1.



ZOZNAM SYMBOLOV A ZNACIEK

(P),(D) Standardna primarna, resp. duélna tloha linedrneho programovania.
x Vektor premennych primarnej tlohy (P),z € R".

y Vektor premennych duélnej dlohy (D),y € R™.

s Vektor doplnkovych premennych dudlnej dlohy (D), s € R".
(A,b,c) Vstupné udaje linedrneho programu, A € R"™*" b € R™,c € R".
P,D Mnozina pripustnych rieSeni dlohy (P), resp. tlohy (D).

F MnoZina primarno-dudlnych pripustnych rieSeni, 7 =P x D.
P*, D" Mnozina optimalnych rieSeni tilohy (P), resp. tlohy (D).

F* Mnozina primdrno-dudlnych optimdlnych rieSeni, 7* = P* x D*.
P°,D° Mnozina ostro pripustnych rieSeni tlohy (P), resp. dlohy (D).

F° Mnozina primarno-dudlnych ostro pripustnych rie$eni, 7° = P° x D°.
I Bariérovy parameter, ;1 > 0, 1 = zT's/n.

(% Yy Spu) Parametrizované rieSenie systému (1.4)-(1.6).

C Centrélna trajektoria, {(zu, yu, su) | 1 > 0}.

k Itera¢ny index, £ =0,1,2,....

(2", ", s) Iteraény bod primérno-dudlneho algoritmu.

(Azx, Ay, As) Primarno-dudlny Newtonov smer.

0,0k Centrujtci parameter.

o, o Parameter diiky kroku.

(z(),y(@), s(@))  (2,y,5) + a(Az, Ay, As)

(@) z(a)"s(a)/n

X, x* Diagondlna n x n matica so zlozkami vektora z, resp. z*,

X = diag(z), X* = diag(z").

S, Sk Diagondlna n x n matica so zloZkami vektora s, resp. sk,
S = diag(s), S* = diag(s").
D x1/26-1/2
AX,AS Diagondlna n x n matica so zlozkami vektora Az, resp. As,
AX = diag(Az), AS = diag(As).
0(.) Oznacenie zloZitosti algoritmov.
[ Horna celd ¢ast’ redlneho &isla.
n
D,(.) Potencidlové funkcia, ®,(z, s) = plna’s — Z Inz;s;, p>n.
i=1
rp, rﬂ% Priméarne reziduum, rp = Ax — b, rﬂ% = Az* —b.
rD, r’]f—) Dualne reziduum, rp = ATy + s — ¢, rl]f—) = ATy 4§ —¢.
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ZOZNAM SYMBOLOV A ZNACIEK

Specifické okolie centralnej trajektorie pre dané 6 € (0, 1),

{(2,,5) € F | | XSe — pe|| < 0p1, o = 2Ts/n}.

Specifické okolie centralnej trajektorie pre dané y € (0, 1),

{(z,y,s) € F°|xisi >y, i =1,2,...,n, p=ats/n}.

gpeciﬁcké okolie centrélnej trajektorie pre dané v € (0,1), 0 > 1, (22,40, s9),

{(x7y73) ‘ H(TPvTD)H < [H(T%7TOD)H/UO]Q,U/7 (1‘,3) >0,misi > yp,i=1,2,. .. 7n}‘
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Uvod

If God did not exist, it would be necessary to invent him.
Fortunately, there is no need to solve such a thought for
mathematics.

Linedrne programovanie je Specidlnym pripadom matematického konvexného progra-
movania, ktoré riesi problém minimalizacie alebo maximalizécie linedrnej tcelovej fun-
kcie na mnoZine pripustnych rieSeni, ktoréa je charakterizovand ststavou linedrnych rov-
nic alebo neostrych nerovnic. Standardnym algoritmom na riegenie tloh linedrneho prog-
ramovania je simplexova metéda, ktort navrhol George Dantzig [2] v roku 1947. Klee
a Minty [10] v roku 1972 zistili, Ze pocet iteracii simplexovej metédy moZe byt" expo-
nencidlny vzhl'adom k rozmeru tlohy, ¢o podnietilo odbornikov ku kostrukcii novych
algoritmov s polynomidlnou zloZitost'ou. Vznikalo niekol'’ko novych algoritmov, no pre-
vratnym sa stal aZ vysledok Narendra Karmarkara [8], ktory v roku 1984 predstavil svoj
projektivny algoritmus na rieSenie linedrnych tiloh v polynomidlnom ¢ase. Ukézalo sa, Ze
Karmarkarov algoritmus tizko stvisi s metédami vnatorného bodu, ktoré sa do toho ob-
dobia aplikovali najmé na rieSenie vSeobecnych tloh nelinedrneho programovania. Kar-
markarov algoritmus poloZil zdklady modernych metéd vniitorného bodu, ktoré okrem
linedrnych tloh dokazu efektivne riesit’ aj Siroka triedu Strukturovanych tloh nelinear-
neho konvexného programovania.

Rigor6zna praca sa zaoberd algoritmami metéd vnitorného bodu v linedrnom progra-
movani. V priebehu vyvoja metéd vnatorného bodu vznikla ur¢itd kategorizacia algo-
ritmov. Cielom préce je uviest’ zdkladnu kategorizdciu primédrno-dudlnych algoritmov
met6d vnitorného bodu v linedrnom programovanti, vysvetlit’ a ilustrovat’ princip kon-
krétnych algoritmov, uviest’ ich charakteristické znaky a dokdzat' ich podstatné vlast-
nosti. Praca nadvézuje na diplomovt pracu Metdédy vniitorného bodu v linedrnom progra-
movant a ich aplikdcie vo financidch [7], &im dopliia a roziruje ¢ast’ venovanu algoritmom.
Utelom préce je poskytnut’ zakladny prehl'ad zauZivanych primarno-duélnych algorit-
mov metdd vnitorného bodu v linedirnom programovani, pricom sa v préci kladie doraz
na podrobnu analyzu algoritmov, dokladné vysvetlovanie, ilustracie a jednotny sposob
prezentécie.



UvVOD

Rigorézna préaca je rozdelena do piatich kapitol. V prvej kapitole sti uvedené zakladné
vysledky z tedrie metéd vnatorného bodu v linedrnom programovani. Druha kapitola sa
zaoberé primarno-dualnymi algoritmami redukcie potencidlu. Ustrednou ¢ast'ou prace je
tretia kapitola, ktord prezentuje tri zdkladné varianty primarno-duélnych algoritmov sle-
dovania centrélnej trajektérie. Stvrtd kapitola sa venuje nepripustnym primarno-dudlnym
algoritmom, v rdmci ktorych je opisany Mehrotrov prediktor-korektor algoritmus. Ob-
sahom piatej kapitoly st technické vysledky a postupy, ktoré boli vyuzité v rigor6znej
préci.



KAPITOLA 1

METODY VNUTORNEHO BODU V
LINEARNOM PROGRAMOVANI

Prva kapitola prace je venovana kl'i¢ovym vysledkom z teérie metéd vniitorného bodu
v linedrnom programovani. Kapitola predstavuje Sirsi abstrakt teoretickej ¢asti diplomo-
vej prace Metdédy vniitorného bodu v linedrnom programovant a ich aplikdcie vo financidch [7].
V tejto kapitole sformulujeme Standardnd dlohu linedrneho programovania a uvedieme
zékladné pojmy a predpoklady. Zaroven vysvetlime myslienku metéd vnitorného bodu,
opiSeme princip primdrno-dudlnych metéd a vysvetlime spdsob oznacenia zloZitosti al-

goritmov.

1.1 Zakladné vysledky z tedrie linedrneho programovania
V praci budeme vychadzat’ z tlohy linedrneho programovania v standardnom tvare
(P) min {2 | Az = b,z >0},

kde c,x € R", b € R™, A €¢ R™*". K tlohe (P) definujeme mnoZinu pripustnych
rieSeni P a mnoZinu optimdlnych rieseni P*

P={zecR"| Az =b,z > 0},
P ={z*eP|clz* <clz, VoeP}.
Dualna tdloha k tlohe (P) ma tvar

(D) max {b"y|ATy+s=r¢cs>0},
y?s

kde s € R", y € R™. K tilohe (D) analogicky definujeme mnozinu pripustnych rieseni D

a mnozinu optimdlnych rieSeni D*
D= {(y,s) e R™ XR"\ATy—I—Szc,szO},

D* = {(y*,s*) e D|bTy* > bTy, Y(y,s) € D}.

Dvojicu tloh (P), (D) nazyvame primarno-dudlnou dvojicou a rozdiel hodnét ich ticelo-
vych funkcif ¢’ > — b7y nazyvame dudlnou medzerou. Pre dvojicu tloh (P), (D) zadefi-

nujeme mnoZinu primdrno-dudlnych pripustnych rieSeni 7



KAPITOLA 1. METODY VNUTORNEHO BODU V LINEARNOM PROGRAMOVANT

F = {(w,y,s)eR”mexR”|Ax:b,ATy+3:c,(x,s) >0}.

Veta 1.1 (Slaba dualita). Pre I'ubovolné primdrno-dudlne pripustné rieSenie (z,y, s) € F plati
0 < 2Ts = cT'z — bl'y. Naviac, ak pre nejakii trojicu (z*,y*,s*) € F plati cTx* = bTy*, potom
x* je optimdlnym rieSenim 1ilohy (P) a dvojica (y*, s*) je optimdlnym riesenim iilohy (D). [23]

Veta 1.2 (Dualita). Ak obe iilohy (P), (D) majii pripustné rieSenie, t.j. F # (), potom obe 1ilohy
(P), (D) majii optimdlne riesenie. Trojica (x*, y*, s*) je primdrno-dudlnym optimdlnym rieSenim
iiloh (P), (D) prdve vtedy, ked

Ax* =0, 2" >0 (1.1)
ATy 45" =¢, s> 0 (1.2)
X*S*e = 0. [23] (1.3)

Veta 1.2 formuluje nutné a postacujiice podmienky optimality pre primdrno-dudlnu
dvojicu (P), (D). Podmienky (1.1), (1.2) zodpovedaja podmienkam primérnej, resp. du-
alnej pripustnosti a podmienka (1.3) zodpovedd podmienke komplementarity. To zna-
mend, Ze za predpokladu F # () mozeme definovat’ mnozinu primarno-dudlnych opti-
malnych rieSeni F7*

F*={(z,y,8) € Flais; =0,i=1,2,...,n}.

Veta 1.3 (Silna dualita). Ak jedna z dvojice iiloh (P), (D) md optimdlne rieSenie, potom md aj
druhd a optimdlne hodnoty icelovych funkcii sa rovnaji. [23]

Veta 1.4 (Ostra komplementarita). Ak obe iilohy (P), (D) majii pripustné rieSenie, t.j. F # 0,
potom existuje primdrno-dudlne optimdlne riedenie (x*,y*, s*) € F* spliiajiice * + s* > 0.[23]

1.2 Zakladné predpoklady

Pri spracovani teérie metdd vnutorného bodu je doleZité a nevyhnutné vychadzat z
dvoch zdkladnych predpokladov.

Predpoklad 1. Matica A € R™*™ md plnii riadkovii hodnost’, t.j. h(A) = m < n.

Uvedeny predpoklad mé technicky charakter a zebezpeci jednoznaéné parovanie medzi
vektormi y € R™, s € R" tak, aby (y,s) € D. Pred formuldciou druhého predpokladu
najprv zadefinujeme mnoZinu ostro pripustnych primarno-duélnych rieSeni F°

F°=A{(z,y,s) € F|(z,s) >0}.

Poznamenajme, Ze mnoZina ostro pripustnych rieSeni 7° tvori relativne vniitro mnoZiny

F, a preto ostro pripustné rieSenia nazyvame aj vnatornymi bodmi.

Predpoklad 2. Kazdi z dvojice iiloh (P), (D) md vniitorny bod, t.j. F° # (.

4



KAPITOLA 1. METODY VNUTORNEHO BODU V LINEARNOM PROGRAMOVANT

Zatial' ¢o Predpoklad 1 je technicky, Predpoklad 2 o existencii vniatorného bodu je ne-
vyhnutny a zarucuje existenciu tstredného objektu metéd vniatorného bodu, ktorym je
centrdlna trajektdria. Pre jednoduchost’ budeme uvedené predpoklady oznacovat’

(P1) h(A)=m <n,
(P2) F°#0.

V d’al$ich castiach tejto prace budeme vZdy predpokladat/, Ze zakladné predpoklady
(P1) a (P2) st splnené.

1.3 Bariérovy problém a centrdlna trajektoria

Princip met6d vnitorného bodu spociva v postupnom rieSeni pomocnych bariérovych
uloh. Ku pévodnej dvojici tdloh (P), (D) prirad'me bariérové dlohy (P,), (D)

(P,) min {ch—uZlanAm: b}, (Dy) max {bTy+uZlnsi|ATy+S:c},

>0 ‘ s>0,y .
=1 =1

kde it > 0 je bariérovy parameter. Ak predpoklady (P1) a (P2) st splnené, potom kazda
z bariérovych tloh (P,), (D,) ma prave jedno optimélne rieSenie pre I'ubovolné ;. > 0.
Nutné a postacujiice podmienky optimality formuluje nasledujace tvrdenie.

Veta 1.5. Nech p > 0. Potom vektor x je optimdlnym rieSenim iilohy (P,) a dvojica (y, s) je
optimdlnym rieSenim iilohy (D,,) prdve vtedy, ked’

Ar = b, x>0 (1.4)
ATy+s = ¢,5>0
XSe = pe.[23] (1.6)

To znamend, Ze vyriesit’ dvojicu bariérovych tdloh (P,), (D,) znamena vyriesit’ sys-
tém (1.4)-(1.6). Presné riesenia systému (1.4)-(1.6) definujt centrdlnu trajektoriu, ktora je
kl'ti¢ovym elementom met6éd vnitorného bodu. Ak ozna¢ime (z,,y,,s,) rieSenie sys-
tému (1.4)-(1.6) parametrizované parametrom p > 0, potom pod centrdlnou trajektériou

rozumieme mnozinu
C= {(muaywsu) | p >0}

Poznamenajme, Ze centralna trajektoria C jednoznacne existuje prave vtedy, ked” predpo-
klady (P1) a (P2) sa splnené. Myslienka met6d vnttorného bodu spo¢iva v postupnom

T

zmensovani parametra ¢ — 0, ¢im sa dudlna medzera z* s = nu zmensuje, a tym sa

systém (1.4)-(1.6) priblizuje k nutnym a postacujicim podmienkam optimality z Vety 1.2.
Veta 1.6. Centrdlna trajektoria C konverguje pre . — 0 a jej jedinym limitnym bodom je primdrno-
dudlne optimdlne rieSenie (x*,y*,s*) € F* iloh (P), (D). Navyse, dvojica (x*, s*) zodpovedd
ostro komplementdrnemu primdrno-dudlnemu optimdlnemu rieSeniu. [24]

5



KAPITOLA 1. METODY VNUTORNEHO BODU V LINEARNOM PROGRAMOVANT

Inymi slovami, zmenSovanim parametra  postupnost’ rieSeni systému (1.4)-(1.6) kon-
verguje k primarno-dudlnemu optimdlnemu rieeniu (z*, y*, s*) € F*. V matematickom
kontexte to znamend, Ze

hm (xuay/t7su) = (Jj*ay*aS*)'
u—0+t

Na zédklade postupného rieSenia systému (1.4)-(1.6) pre p — 0 je tak mozné efektivne
vyriesit’ dvojicu tloh (P), (D) stcasne.

1.4 Primarno-dudlne metédy

Princip primédrno-dudlnych metéd spociva v sticasnom rieSeni tdloh (P), (D). Tieto me-
tody hl'adaja primdrno-dudlne optimalne rieSenie postupnym rieSenim systému (1.4)-
(1.6) pomocou modifikovanej Newtonovej metédy so skratenou dizkou kroku. Pre y > 0
definujme funkciu F : R?*t™ — R2n+m

Axr —b
F(x,y,s)= |ATy+s—c|, (z,8) >0.
XSe — pe

Néjst’ rieSenie systému (1.4)-(1.6) zrejme znamend vyrie$it' rovnicu F(z,y,s) = 0 s do-
dato¢nou podmienkou (z,s) > 0. Pouzitim Taylorovho rozvoja funkcie F' v okoli bodu
(2%, y*, s*) dostaneme

Fw,y,s) ~ F(a*,y*, ") + VF (2", 4", s*)(Az, Ay, As)T =0,
VF(xkvyk?sk)(Al"A?ﬁ AS)T = _F(xk)ykvsk)’ (17)

kde VF je Jakobiho matica funkcie F'a Az € R", Ay € R™, As € R" sti smerové vektory.

Rozpisanim rovnice (1.7) do maticového tvaru dostaneme

A 0 0 Ax Azk —b
0 AT I Ay| =— [ATyF + 55 —¢]| . (1.8)
Sk 0 XF| |As XkSke — e

Smerové vektory Az € R", Ay € R™, As € R", ktoré st rieSenim systému (1.8), sa nazy-
vaja primdrno-dudlne Newtonove smery. Itera¢né body Newtonovej metédy vypocitame
podla itera¢nej schémy

(:Ck+1,yk+1, 5k+1) = (.”L’k, yk7 sk) + a(Azx, Ay, As), (1.9)

kde o € [0,1] oznatuje dizku kroku pozdlz smeru (Az, Ay, As). Parameter o volime v
kazdej iterdcii tak, aby boli splnené podmienky z* + aAz > 0, s + aAs > 0. Tymto
sposobom Newtonova metéda generuje iteraéné body (z*, 4, s*) splitajice podmienku
(z*, s¥) > 0. Poznamenajme, Ze ak iteraény bod (z*, y*, s*) je ostro pripustnym priméarno-
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dualnym rieSenim, potom systém (1.8) mdzeme zjednodusit' do tvaru

A 0 O Az 0
0 AT T Ay| =— 0 . (1.10)
Sk0  Xk| |As XFSke — e

Zaroven plati, Ze Newtonova metdda zachovava ostrt pripustnost’. Z uvedenych vlast-
nosti vyplyva, Ze ak Starovaci bod Newtonovej metddy je ostro pripustnym rieSenim,
potom v kazdej iterdcii Newtonovej metddy rieSime systém (1.10). Tymto spdsobom nés
mechanizmus Newtonovej metédy udrzuje v kazdej itercii v mnoZine vnttornych bo-
dov F°. DéleZitou sticast'ou algoritmu je zabezpecit' spravny sposob zmensSovania pa-
rametra y. V praci sa budeme zaoberat’ algoritmami s implicitnou vol'bou ! bariérového

parametra

Tento implicitny spdsob vol'by parametra y: je dodatoéne upraveny centrujticim paramet-
rom o € [0, 1], ktorého ticelom je zlepsit’ priebeh konvergencie. Nakoniec ziskame systém

v tvare
A 0 0 Ax 0
0o AT I Ayl =— 0 . (1.11)
Sk 0 Xk| |As XkSke — ope

V kazdej iteracii algoritmu zaroveti kontrolujeme vel'’kost' dudlnej medzery z' s pomocou
vopred urcenej toleran¢nej konstanty e > 0. Na zdklade opisaného principu moéZeme sfor-
mulovat’' schému generického primarno-dudlneho algoritmu metéd vnatorného bodu na
rieSenie dloh (P), (D).

Schéma generického algoritmu

vstup (z°,9%,5%) € F°,e >0
prirad’ k£ :=0
repeat

zvol o;, € [0,1]

prirad’ py, := (¥)Ts*/n

vyries
A 0 0 Ax 0
0 AT I | |Ay|=- 0
Sk 0 XF| | As XFkSke — oy e

'Poznamenajme, Ze existujt aj algoritmy s explicitnou vol'bou parametra p. Takéto algoritmy zmensuja
bariérovy parameter podl'a schémy pr41 = (1 — 0)ur, kde 6 € (0, 1) je parameter redukcie.

7
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zvol oy, € [0,1] : zF + ap Az > 0,85 + apAs >0
prirad’ (zF 1 F L sy = (2F yF sF) 4+ ap(Az, Ay, As)
prirad’ k:=k + 1

until (2%)Ts* < ¢

Na zaver tejto casti uvedieme dve pomocné tvrdenia, ktoré dokazuju, Ze vektory Az
a As st navzdjom ortogndlne a postupnost’ {j;} generovana na zaklade generického

algoritmu ma nerasttci charakter.
Lema 1.1. Ak trojica (Ax, Ay, As) je rieSenim systému (1.11), potom AzxT As = 0. [24]

Dokaz. Pre trojicu (Ax, Ay, As) zrejmé plati AAr = 0, ATAy + As = 0. Z uvedenych

vzt'ahov jednoducho odvodime, Ze

AzTAs = A2 (—ATAy) = —(AAz)Ty = 0.
=0

O

Lema 1.2. Ak o}, € [0, 1], potom puy41 < pg, priom rovnost’ nastdva prdave vtedy, ked’ oj, = 1
alebo o, = 0.

Dokaz. Na zéklade schémy generického algoritmu odvodime, Ze

($k+1)TSk+1

k+1 —
[+ -

(2% 4+ . As)T (s + g As)
n

=0
——
(zF)T' sk ()T As 4+ (s9)T Az + oy, (Az)T As

n mn
(zF)"s" oy, Tkl — (z*)Ts*

=k — ol — op) . < pi.
—— ——
>0

Ked'Ze i, > 0, tak je zrejmé, Ze 41 = pui prave vtedy, ked’ o, = 0 alebo oy, = 1. O

Genericky algoritmus je zdkladnym konceptom primdrno-dudlnych algoritmov me-
téd vnatorného bodu v linedrnom programovani. Existuja dve zdkladné modifikacie,
ktoré sa odvijaji od generického algoritmu — algoritmus redukcie potencidlu a algoritmus
sledovania centrdlnej trajektorie. Zatial' ¢o algoritmus sledovania centrélnej trajektorie
pristupuje k redukcii dualnej medzery priamo, algoritmus redukcie potencidlu zmensuje
dudlnu medzeru nepriamo pomocou potencidlovej funkcie. V nasledujicich dvoch ka-
pitolach sa zameriame na tieto algoritmy, podrobne opiSeme ich princip a uvedieme ich
zékladné vlastnosti.
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1.5 O zlozZitosti algoritmov

Tedria zlozZitosti algoritmov sa zaobera hl'adanim horného odhadu poctu aritmetickych
operécii potrebnych na nédjdenie dostato¢ne presného riesenia v zavislosti od rozmeru
dlohy. V linedrnom programovani sa stalo zauZivanym povaZovat’ n za rozmer tdlohy.

Na oznacenie zlozitosti algoritmov budeme pouzivat’ standardni O(.) symboliku.

Definicia 1.1. Nech f a g st nezdporné redlne funkcie definované na mnoZine prirodze-
nych &isel. Piseme g(n) = O(f(n)), ak

I8 >0, mneR:g(n) <pBf(n), ¥n>mn.

Definicia 1.2. Hovorime, Ze algoritmus ma zloZitost' O(f(n)), ak pre horny odhad k(n)
poctu aritmetickych operacii algoritmu pre tlohu rozmeru n plati k(n) = O(f(n)).

Teéria zloZitosti zohrala doleZitti tlohu vo vyvoji linedrneho programovania a me-
téd vnatorného bodu. V roku 1972 matematici Klee a Minty [10] zistili, Ze pocet operdcii
simplexovej metédy mdZe byt exponencidlny vzhl'adom k rozmeru tlohy. ? Toto ziste-
nie podnietilo matematikov ku konstrukcii novych efektivnych algoritmov. Pod pojmom
,efektivne algoritmy” zvycajne rozumieme algoritmy s polynomidlnou zloZitost'ou. St
to algoritmy, v ktorych pocet aritmetickych operécii potrebnych na vyrie$nie tlohy roz-
meru n mdZeme odhadnut’ zhora polynémom v premennej n. Inymi slovami, algorit-
mus md polynomidlny charakter, ak ma zlozitost' O(f(n)), kde f(n) < n" pre nejaka
konstantu . V roku 1979 uviedol Leonid Khachiyan [9] eplipsoidny algoritmus na rie-
Senie tloh linedrneho porgramovania v polynomidlnom case. Sice Khachiyanov algorit-
mus mal polynomidlny charakter, no v praxi sa prejavil pomalsi ako simplexova metéda,
a preto sa neujal. Prevratnym sa stal az Karmarkarov projektivny algoritmus [8] z roku
1984, ktorého efektivita sa naplno osvedcila aj praxi.

*Poznamenajme, Ze simplexova metéda vyZaduje v praxi menej operécii, neZ uvadzaju teoretické vy-
sledky.



KAPITOLA 2

ALGORITMY REDUKCIE POTENCIALU

Algoritmy redukcie potencidlu predstavuji povodni triedu modernych algoritmov me-
tod vniatorného bodu. Tieto algoritmy pristupujt k redukcii dudlnej medzery nepriamo
pomcou potencidlovej funkcie so Specifickymi vlastnost'ami. V tejto kapitole definujeme
primarno-dudlnu logaritmickt potencidlovt funkciu a uvedieme jej zdkladné vlastnosti.
OpiSeme schému primérno-dudlneho algoritmu redukcie potenciédlu, vysvetlime jeho
princip a dokdZeme jeho polynomidlnu zloZitost'.

2.1 Potencialova funkcia @,

Potencidlové funkcie zohrali vo vyvoji metéd vniatorného bodu dolezita rolu. Hlavnou
ulohou tychto funkcii je merat’ kvalitu priebezného rieSenia. Poznamenajme, Ze Karmar-
kar vo svojom pdvodnom algoritme [8] na rieSenie Standardnej tlohy (P) pouzil logarit-
micku potencidlovi funkciu definovanu v tvare

T,(z) = pln (e — \) — znzlnxi, (2.1)
i=1

kde p = n + 1 a A je dolné ohranicenie ti¢elovej funkcie ¢ z. Stibezne s Karmarkarovymi
vysledkami vznikali préce [4], [5], [22], [27], ktoré prezentovali vyuZitie inych potencié-
lovych funkcii, ktoré vsak zaviseli vZdy len od vektora primdrnych premennych. Vyvoj v
oblasti primarno-dudalnych algoritmov podnietil odbornikov k itvahdm o potencidlovych
funkcidch, v ktorych by okrem vektora primarnych premennych vystupoval aj vektor
duélnych premennych. DéleZitym vysledkom vo vyvoji algoritmov redukcie potencidlu
sa stala primdrno-dudlna logaritmickd potencialova funkcia, ktorti prezentovali Tanabe
[26], Todd a Ye [28] v tvare

n

Q,(z,5) = plnz’s — Z Inx;s;, (2.2)

i=1

pre nejaky parameter p > n. VSimnime si vzt'ah medzi funkciami T, a ®,. Z teérie du-
ality v linedrnom programovani (Veta 1.1) vieme, Ze vyraz b’y je pre 'ubovolnd dvojicu
(y,s) € D dolnym ohrani¢enim primdarnej icelovej funkcie ¢ z. Z toho dévodu modzeme
vo funkcii Y, polozit' A = b7y andsledne pouzit' vztah z7s = cTz—bTy, &im vyraz ¢ z—\
nahradime vyrazom z”'s. Druhy ¢len funkcie @, vznikol pridanim s¢itanca — Y 1 ; In s;,

ktory reprezentuje bariérovy prvok zodpovedajici ohrani¢eniu s > 0.
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Obr. 2.1: Vrstevnice funkcie ®, pre n = 2 vykreslené v priestore x1s1 x 252 v zdvislosti
od parametra p.

Funkciu ¢, moZeme vyjadrit’ v tvare

P,(z,5) = (p—n)lnz’s+ ,(z,s) (2.3)
= (p—n)lnzls - Z In <xif/ln> +nlnn. (2.4)
i=1

Z toho vyplyva, Ze potencidlova funkcia ®, ma dve dolezité vlastnosti:

1. ®, = ocoakx;s; — 0 pre nejaké i = 1,2,...,n,alep:sz/n—/+O,

2. &, — —oo prave vtedy, ked’ (z,y,s) — F".

Prva vlastnost’ hovori o tom, Ze funkcia ®, pdsobi ako bariérova funkcia, ak mechaniz-
mus smeruje k 'ubovolnému bodu (z,y, s) na hranici mnoziny F° (z;s; = 0), ktory ale
nie je optiméalnym rieSenim (275 > 0). V tomto pripade prvy ¢len vyrazu (2.4) zostiva
ohraniceny, zatial' ¢o druhy clen nie, a preto ®, — co. Druhd vlastnost’ formuluje vzt'ah
medzi funkciou ¢, a mnozinou F*. Ak mechanizmus algoritmu sposobuje ¢, — —o0,
potom postupnost’ itera¢nych bodov konverguje k optimédlnemu rieSeniu. Lema 2.2 do-

11
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kazuje, Ze ¢len ®,(x,s) vo vyraze (2.3) je zdola ohrani¢eny, a preto ®, — —oo prave
vtedy, ked’ (p — n)InazTs — —oo, teda ked’ p — 0. Toto pozorovanie je podstatou al-
goritmu redukcie potencialu, ktory generuje postupnost’ ostro pripustnych itera¢nych
bodov (z*,y*, s*) z mnoziny F°, pre ktoré <I>p(:z:k, sF) — —o0, ¢im sa dudlna medzera
zmens3uje, a tym mechanizmus algoritmu smeruje k optimalite.

Existuje niekol'ko algoritmov [3], [6], [30] zaloZenych na potenciadlovej funkcii ®,. V d'al-
Sich castiach tejto kapitoly Specifikujeme primarno-dudlny algoritmus redukcie poten-
cidlu, ako ho prezentovali Kojima, Mizuno a Yoshise [12]. Uvedieme jeho zdkladné vlast-
nosti a vysvetlime dolezity vzt'ah medzi funkciou ®, a parametrom p, ktory je kl'icovym

elementom konvergencie a polynomialnej zloZitosti.

2.2 Algoritmus

Algoritmus redukcie potencidlu je Specidlnym pripadom generického algoritmu, ktory
pristupuje k zmensovaniu duédlnej medzery nepriamo. Tento algoritmus voli v kazdej ite-
racii konstantnii hodnotu centrujiiceho parametra o}, = n/p, kde p > n. Smer k d’alsiemu
itera¢nému bodu je standardnym Newtonovym smerom, ktory vypocitame zo systému
(1.11). Algoritmus voli dizku kroku ay, tak, aby minimalizovala funkciu ®, pozdiz ziska-
ného smeru, pri¢om v kaZzdej iteracii je zdroveni nutné zachovat’ ostri pripustnost’. Prave
kvoli podmienke ostrej pripustnosti definujeme hornt hranicu pre dizku kroku z bodu
(2%, y*, s*) € F° pozdlz smeru (Az, Ay, As)

amax = sup {a € [0,1] [ (z, 5) + a(Az, As) > 0}.

Schéma algoritmu redukcie potencialu

vstup p > n, (29,4°,5%) € F°, e >0
prirad’ k£ :=0
repeat

prirad’ oy, :=n/p, px == (2*)Ts¥/n

vyries
A 0 0 Ax 0
0 AT I Ayl = — 0
SE0 Xk |As XFkSke — o upe

prirad’ apay := sup {a € [0,1] | (2%, %) + a(Ax, As) > 0}
prirad’ oy = arg minge (0,0, ®,(zF + alAx, s* + als)
prirad’ (zF 1 F L sy = (2F ok sF) 4+ ap(Az, Ay, As)
prirad’ k:=k + 1

until (2%)Ts* < ¢

12
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2.3 Redukcia funkcie ¢, a konvergencia

Analyza v tejto Casti ukazuje, Ze hodnota funkcie @, je redukovana aspori konstantnou
mierou v kaZdej iteracii. DokdZeme, Ze ak ®, — —oo, potom p — 0. Nasledujtce po-
mocné tvrdenie je iba technickym vysledkom, a preto dokaz tohto tvrdenia tvadzame v
Dodatku.

Lema 2.1.
(i) Pre vsetky B > —1 platiIn (1 + 3) < 3, pricom rovnost” nastdva prdve vtedy, ked’ 5 = 0.
(ii) Pre l'ubovol'nyj vektor z € R", ||z]|oc < T < 1 plati

=11

21—71)° [29]

n
> m(1+z) < -z
=1

Nasledujtci vysledok dokazuje, Ze funkcia ®,, je zdola ohranicena.

Lema 2.2. Pre (z,s) > 0 plati ®,(z,s) > nlnn, pricom rovnost’ nastdva prdve vtedy, ked’
XSe = (z7s/n)e = pe. [29]

Dokaz. Zo vzt'ahov (2.3), (2.4) a pomocou Lemy 2.1(i) odvodime, Ze

O, (2, 5) —nlon = —izn;m (:Ef,ss/n) > Zn: <‘” - 1) = —(n—n)=0.

Z Lemy 2.1(i) zdroven vyplyva, Ze rovnost nastdva prave vtedy, ked” z;s;/pn = 1,7 =
1,2,...,n (& XSe = pe). O

Dalsie tvrdenie dokazuje, Ze funkcia ®, nie je zdola ohrani¢ena na svojom definicnom
obore a zdroven uvadza kl'a¢ovy vzt'ah medzi funkciou ®, a parametrom .

Lema 2.3.
(i) Funkcia ®, je zdola neohranicena na svojom definicnom obore.
(ii) Pre I'ubovol'ny bod (z,y, s) € F° plati

T
1< exp <<Dp(a:,s)>’ kde i = re [29] (2.5)
p—n n

Dokaz. Z existencie centralnej trajektorie C vieme, Ze pre p > 0 existuje ostro pripustny
bod (x4, yu, su) € F° taky, Ze (x,)i(sy)i = pprei = 1,2,...,n. Vy¢islenim funkcie ®, v
bode (x,, s,) dostaneme

®p(zy,su) = (p—n)ln %7;5;1 + Pn(zp, su)

= (p—n)ln(nu)+nlnn,

z ¢oho vyplyva, ze ®,(x,,s,) — —oo pre u — 0. Pre dokaz cCasti (ii) pouZijeme vzt'ahy
(2.3), (2.4) a Lemu 2.2. Dostaneme

13
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D,(z,5) = (p—n)lnals+ &,(z,s)
> (p—n)lnp+ (p—n)lnn+nlnn
> (10 - 7’L) In 122
z ¢oho priamo vyplyva pozadovany vysledok (2.5). O

Z uvedenych pozorovani vyplyva, Ze ak je moZzné generovat’ postupnost’ itera¢nych
bodov (z*,y*, s*) € F°, pre ktoré ®,(z*, s*) — —oo, potom py, — 0. Na zaver tejto Casti
dokazeme, Ze funkcia ®, je v kazdej itercii redukovana aspor konstantnou mierou > 0
nezavislou od n. V matematickom kontexte to znamena, Ze

¢p($k+1,sk+1) < Q)p(xk,sk) -6, k=0,1,2,.... (2.6)

Veta 2.1. Nech (2°,4°, s°) € F° je startovacim bodom algoritmu. Predpokladajme, Ze algoritmus
generuje postupnost’ iteracnyjch bodov (z*, y*, s*) € F°, ktoré splitajii nerovnicu (2.6) pre nejakii
kladnii konstantu § > 0. Potom pre 'ubovol'né € € (0, 1) existuje index

0 .0 o
k= P”(xé’s ) 4P 5”\1115\1 2.7)

taky, Ze puy, < e, Vk > k. [29]

Dokaz. Zlogaritmovanim oboch stran nerovnice (2.5) zistime, Ze kritérium s, < € je pria-

mym dosledkom nerovnice
®,(2F, ") < (p—n)lne = —(p—n)|Ing|. (2.8)
Zo vzt'ahu (2.6) zaroven vyplyva, Ze
O,(z, %) < @, (2", s%) — kS, k=1,2,...,
a preto nerovnica (2.8) plati, ak
P,(2%, %) —kd < —(p—n)|lng|, k=0,1,2,...,

z ¢oho je moZzné elementarnymi ipravami odvodit’ explicitny vzorec (2.7) pre k. O

2.4 Odhad funkcie ¢, pozdiz pripustného smeru

V tejto Casti sa zameriame na tu &ast’ algoritmu, ktora vol'bou dizky kroku a minimalizuje
funkciu @, pozdfz smeru (Ax, Ay, As). Poktisime sa odvodit’ kvadraticka funkciu ¢ ako
funkciu dizky kroku o pozdlz daného smeru (Az, Ay, As), ktord zodpoveda hornému
ohrani¢eniu funkcie ®,. Zdoraznime, Ze tento odhad je platny iba na intervale (0, a;] C
(0, amax), kde

oy max (|| X TAZ]oo, [|STTAS||0o) = 7, T € (0,1). (2.9)
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Poznamenajme, Ze mechanizmus algoritmu je stistredeny v mnoZine ostro pripustnych
rieSeni F°, a preto ma zmysel definovat’ matice X !, S~1. Kvadraticky odhad ¢ funkcie
o, pozdIZ smeru (Az, Ay, As) ziskame na zdklade Lemy 2.1. Z definicie funkcie ¢, a zo
skutocnosti, Ze vektory Az a As stt navzdjom ortogondlne (Lema 1.1), odvodime, Ze

Q,(r + alAz,s + als) — O,(z, s)

B [(z + aAx)T (s + als) T + alw; ozA:L"Z - si + als;
= pln T Zl — Z In R

R Gy

TAs + sTA n Az As;
pln <1 + a%) Sl (1 i ) Zln <1 a2 ) (2.10)
i=1

Na prvy s&itanec vo vyraze (2.10) aplikujeme Lemu 2.1(i), na zvysné ¢leny aplikujeme

=0

——
T As + sTAz + o (Azx)T As Zln (

= phh|l+a T

Lemu 2.1(ii). Dostaneme, Ze pre vsetky a € (0, a;] plati

Q,(z+ oAz, s + als)

2T As + sTAx | X~ tAz|? + ||S~1As|?
< ¢ Z =2 T2 = Al x A -1A 2
< Py(w,8) + pa T e’ ( r+SAs) +a 211
1
= O(z,5) +afi + ;0% (2.11)
kde
TA TA
6 = pL 2T AT T(xIAz+ SAs), 2.12)
TS
1
& = 7 (IXAz*+ ST As]) . (2.13)
Ak definujeme funkciu ¢ : @« — R v tvare
L o
g(a) = @)z, s) +aly + 5o, (2.14)

tak z nerovnice (2.11) dostaneme horny odhad funkcie ®, pozdii smeru (Az, Ay, As)
Q,(z+ aAz,s + alAs) < g(a), Yo € (0, 0]

Analyzujme bliZsie koeficienty &;, & vo funkcii ¢g. Podl'a (2.13) je zrejmé, Ze & > 0, a
preto ¢ je konvexnou kvadratickou funkciou, a teda a ak md stacionarny bod, tak v iom
funkcia ¢ dosahuje svoje minimum. Dalej ukdZeme, Ze &, < 0, ¢o implikuje, Ze funkcia ¢
klesd na intervale (0, @), kde @ je bod, v ktorom funkcia g dosahuje svoje minimum.

1/2

Pripometime, e D = X'/25~1/2 a zaved’'me nové pomocné oznacenie
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V= (X5)'2, v=Ve=[(zs) )Ly,
Umin = ;m2in v;, T=-—v+ E,uV_le.

Uvedieme pomocné vzt'ahy, ktoré budu uZito¢né v d’al$ich castiach
|v]|? = 2T's = nu, X =VD, S=vVD (2.15)

Na zéklade zavedeného oznadenia teraz moZeme rovnicu SAz + XAs = —XSe + opue,
kde o = n/p, zapisat' v troch ekvivalentnych tvaroch

SAx+ XAs = Vr
D 'Az+DAs = r (2.16)
X 'Az+ S 'As = V7l

Ked'ze podl'a Lemy 1.1 (Az)TAs = 0, tak z rovnice (2.16) mdZeme odvodit, Ze

Irl* = ID™'Az + DAs||?
|ID7'Az||? + (Az)T D™ DAs +|| DAs|?
~—_————

=0
= |D7'Az|* + ||DAs|?, (2.17)

apreto |[D7tAz| < 7| a|[DAs| < ||r]|. Zo vzt'ahov (2.15) a (2.17) dostaneme

X7 'Az|2 +]S7'As|? = |[VTIDlAz|? + ||V IDAs|?
< VTHP(IDT Az|)? + || DASs|]?)
1
< ——rl* (2.18)

Z toho vyplyva, Ze pre koeficient £, definovany podla (2.13) plati

& < ﬂ (2.19)
N (1 - T)Ugnin
Pre koeficient £; definovany podl'a (2.12) dostaneme
&= %eT (XAs + SAz) —el (X 'Az + S71As)
xl's
=Vr =V-1r
= %eTVr —elvly
xls
n T
S (—v+ —uV 16) r
n P
=T
= 22 (2.20)
n
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Vztahy (2.19) a (2.20) uvadzajui odhady koeficientov ¢;, & v zavislosti od ||r||2. Ked'ze
p,m, > 0, tak je zrejmé, Ze {; < 0, pricom &; = 0 prave vtedy, ked’ r = 0. V d’alSej casti
dokézZeme, Ze r # 0, z ¢oho bezprostredne vyplyva, Ze & < 0.

2.5 Odhad redukcie funkcie ¢,

Nasledujtice tvrdenie uvadza dolné ohranicenie pre ||r||.

Lema 2.4. Pre l'ubovol'ny bod (x,y,s) € F° apre p > n + \/n plati

Vianpu

Il = 23
PVUmin

. [29] (2.21)

Dokaz. Na zdklade zavedeného oznacenia dostaneme

p? p ?
2 —1
22 Il av V™e
= (Vv ieT(vle) — 2 P W Ty—le 4 v vlw
s n2u2
2
= (vl)T(vle) -2l 4 £
( )" ( ) o
2 9 2 _ 2 _
= (VlT(vle) 4 LTI 2.22)
nu nu

Ked'ze p> — 2np+n? —n = (p —n — /n)? + 2y/n(p — n — \/n), tak je zrejmé, ze vyraz
p>—2np+n?—n
np
toho doévodu plati

v rovnici (2.22) je nezaporny pre p > n + y/n a nulovy pre p = n + /n. Z

2 2
p _ _ n®—n
el = (Ve (Ve - == (223)

pri¢om rovnost’ nastdva, ak p = n + y/n. V d’alSej Casti dokazu vyuZzijeme technicky
vysledok, Ze vektory v a V~!e —v/u sti navzdjom ortogonalne, ¢o znamend, ze v* (V ~le—

v/p) = 0. Dékaz tohto vysledku je uvedeny v Dodatku. Dosadenim p = n + /n do

nerovnice (2.23) a pouzitim definicie vektora r = —v + nuV ~le/p dostaneme
2 2
V—l T V—l _ n-—n _ 14 2
VTV =T =
2
RG] R
= 55 e—v
n2u n+n
2
_ |yt + \/ﬁv
np
1| 1 2
= [[Vle— =0l - 2@ vl <Vle — v) + @
[ ny " ny
12 2
_ e LV (2.24)
[ ny
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Prvy sc¢itanec v rovnici (2.24) moZe byt zdola ohanic¢eny $tvorcom l'ubovol'nej zlozky

2 2
z( 1 _U) _
Umin 1%

Pomocou tohto ohrani¢enia mdZeme rovnicu (2.24) d’alej rozpisat’ do tvaru

vektora V~le — v/pu, a preto

1
HVle - —0

2

P 2 1 Umin 2 1 T
n2,u2 HTH > - + —SUvv

> 3
B 4’01211111 ’
z ¢oho priamo vyplyva vysledok (2.21). O

Na zdver tejto asti ukdZeme, Ze existuje takd dizka kroku @, ktora vedie ku kon-
Stantnej (fixnej) redukcii funkcie ¢ a ®,. Pre jednoduchost’ a bez ujmy na vSeobecnosti
pouzijeme konkrétnu hodnotu 7 = 0.5, pri¢om analogicky je mozné dokazat’ podobny
vysledok pre I'ubovol'nt hodnotu parametra 7 z intervau (0, 1).

Veta 2.2. Nech 7 = 0.5. Definujme & = Tomin/||7||. Potom g(a) — q(0) < —0.15, a tak spdsob
redukcie (2.6) plati s konstantou § = 0.15. [29]

Dokaz. Najprv overime, Ze dizka kroku @ vyhovuje podmienke 0 < @ < a,, kde a;
je dizka kroku definovana podla (2.9). Ked'Ze 7, vmin, ||7|| > 0, tak zrejme plati @ > 0.
Predpokladajme, Ze | X 1 Az||oo > [|S™1As||oo. Z nerovnice (2.18) vieme, Ze

T T
Ixanf < L gy, < L
m n

Um Um

aked'ze ||.||lso < ||.||2, tak

TUmin ||7]| .

a| X 'Az)e <a|| X 1Az < =7 = 0, | X 1Az | o
7]l vmin

Z toho priamo vyplyva, Ze @ < a,. Analogicky moéZeme odvodit’ rovnaky vysledok, ak
| X 1Az|loo < ||S7!AS||oo. Na zdklade odhadov (2.19) a (2.20) koeficientov &, & odvo-
dime, Ze

1
at + ~a’t

(@~ (0) .

1 r||?
—LEHTHQ—I-*aQ . H ||
n va. (1—7)

2 min

IN

18
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IN

2 2
_LTvminHrHQ —i—l (Tvmin> (|7l
ny HTHQ 2 HTHQ v1211in(1 - T)

= Lol +
ny

2(1—71)°

Pouzitim dolného ohranicenia (2.21) pre ||r|| a dosadenim 7 = 0.5 dostaneme

p V3npu 72
— ——TUmin +
nu 2Umin 2(1—1)
3 2
\/>T n T
2 2(1—71)

1—
= - 4\/3 < —0.15.

q(a@) — q(0)

IN

Podl'a definicie funkcie ¢ a zo vzt'ahu (2.11) nakoniec odvodime, Ze

min ®,(x + alAz,s +als) < @ (xr+ @Az, s+ als)
OéE(0,0éT)

< ¢q(@) <¢q(0) —0.15 = @,(z,s) — 0.15.

Z toho vyplyva, Ze spdsob redukcie (2.6) platis § = 0.15. ]

2.6 Polynomialna zloZitost

Na zaver tejto kapitoly sformulujeme tvrdenie, ktoré dokazuje polynomialnu zloZitost
algoritmu redukcie potencialu.

Veta 2.3. Nech p > n + /nae > 0. Predpokladajme, Ze 3tartovact bod (2°,y°, s°) € F° spliia
okrem podmienky (2.6) aj podmienku ®,(z°,s%) < k(p — n)|Ine| pre nejakii kladnii konstantu
k > 0 nezdvishi od n. Potom existuje index

F= | "5 - wlnel| = 0o~ m)lne)

taky, Ze (z*, y*, s*) € F°, i < e, Vk > k. [29]

Dokaz. Polynomiélna zloZitost' je priamym dosledkom Vety 2.1, ak v explicitnom vzorci
(2.7) pouzijeme ohranicenie ®,(z°, s°) < k(p —n)|Ine|. O

Predpoklady polynomidlnej zloZitosti z Vety 2.3 vedu prirodzene k otdzke vhodnej
vol'by parametra p. Kojima, Mizuno a Yoshise [12] vo svojom povodnom algoritme zvo-
lili p = n++/n, ¢o podl'a Vety 2.3 vedie k zloZzitosti O(y/n| In¢|). Na druhej strane, vol'bou
p = n++/n pren >> 1 ziskame hodnoty centrujiiceho parametra o blizke 1, ¢o podl'a
Lemy 1.2 spdsobuje mensiu redukciu dudlnej medzery. Mensie hodnoty parametra o mo-

Zeme ziskat’ vol'bou p = 10n alebo p = n+n?/2

3/2

, €o sice zniZuje odhad polynomiélnej zlo-
zitosti na O(n|lne¢l), resp. O(n* “|In¢l), no v praxi sa tdto vol'ba paramtera p osved¢ila a

vykazuje lepSie numerické vysledky. [29]
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KAPITOLA 3

ALGORITMY SLEDOVANIA
CENTRALNE] TRAJEKTORIE

V tvodnej kapitole sme uviedli, Ze ak zdkladné predpoklady (P1) a (P2) st splnené,
potom systém (1.4)-(1.6) definujtci centrdlnu trajektériu C ma jediné riesenie (x,, yu, 5.)
pre I'ubovol'né ;i > 0. Zaroven sme uviedli vysledok, podl'a ktorého riesenia (z,,, y,, s,)
konverguja pre ¢ — 0 k primarno-dudlnemu optimalnemu rieSeniu. Analytické rieSe-
nie nelinedrneho systému (1.4)-(1.6) nie je mozné, a preto je tento pristup nevhodny pre
praktické implementacie. Ked'Ze presné rieSenia (z,, y,, s,) konverguja k optimalnemu
rieSeniu, tak sa m6Zeme domnievat, Ze aj postupnost’ pribliZznych rieSeni konverguje. Ak
by sme pre nejaké p > 0 dokdazali identifikovat’ bod v dobre definovanom okoli presného
rieSenia (x,, Yy, s,) Na centrdlnej trajektorii, potom by sme zrejme vedeli néjst’ d’alsi bod
blizko presného rieSenia (xy, yg, sp) zodpovedajice parametru i < p. Ttto myslienku by
sme mohli pouZit' opakovane, ¢im by sme ziskali priblizné rieSenia systému (1.4)-(1.6),
ktoré by pozdlZ centralnej trajektérie C v smere zmensovania parametra ; smerovali do
mnoziny F*. Tato myslienka je podstatou algoritmov sledovania centralnej trajektorie.
Ich spolo¢nym charakteristickym znakom je princip sledovania centralnej trajektérie v
jej dobre definovanom $pecifickom okoli, v ktorom itera¢né body algoritmu konverguja
k primadrno-dudlnemu optimalnemu rieSeniu. K tomu, aby itera¢né body lezali v Speci-
fickom okoli, je nevyhnutné merat’ ich vzdialenost’ od centralnej trajektérie. To znamend,
Ze na vyrieSenie poévodnej dvojice dloh (P), (D) je postacujice najst’ len priblizné rieSe-
nia systému (1.4)-(1.6). Z toho dovodu moZeme tieto algoritmy interpretovat’ ako vol'né
sledovanie centrélnej trajektorie, kde centrdlna trajektoria slizi ako navigator uréujici

smer optimalizdcie z mnoZiny 7° do mnoZiny F*.

3.1 Specifické okolie centrilnej trajektérie

V stvislosti s generovanim pribliznych rieSeni systému (1.4)-(1.6) by sme mali byt schopni
definovat’ a merat’ ich presnost’. Ak bod (z,y, s) aproximuje presné rieSenie (x,, Yy, 5.)

pre nejaké ;1 > 0, potom presnost’ aproximdcie vieme sledovat’ Standardne pomocou

nejakej normy

||(l‘, Y, 3) - (:EM> Yus 8M>”7

na zédklade ktorej m6Zeme definovat’ mnoZinu pribliZnych rieSeni

{(z,y,5) € F°[[(x,y,5) = (2, Y, 5) | < w}, pre nejaké w > 0.
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krok a v

centralna
Newtonovom smere

trajektoria

iteracny bod

presné rieSenie
dvojice uloh
(P)a®)

€ — okolie
optimalneho
rieSenia
mnozina
pripustnych rieSeni
PxD

optimalne rieSenie
dvoijice tloh (P) a (D)
(1=0)

Specifické okolie
centralnej trajektorie

Obr. 3.1: Ilustracia primdrno-dudlneho algoritmu sledovania centrdlnej trajektorie.

Avsak ako sme uz uviedli, najst’ analytické rieSenie (z,,y,,s,) nie je mozné, a preto
by sme museli riesit’ systém (1.4)-(1.6) numericky. Namiesto toho vyuZijeme implicitny
popis rieSenia cez systém (1.4)-(1.6), ¢im ziskame mnozZiny, ktorych charakteristika im-
plikuje presnost’ aproximadcie. Takéto mnoziny nazyvame Specifickym okolim centralnej
trajektorie. V. modernych metédach vniatorného bodu sa standardne pouZiva dvojica Spe-
cifickych okoli

No(0) = {(x,y,8) € F°| || XSe — pell2 < Ou, u = 2"s/n}, predané g € (0,1),

N_o(y) ={(z,y,8) € F°lazis; >y, i =1,2,...,n, p= sz/n}, predanéy € (0,1).

Ak pre bod (z,y,s) plati
(z,y, s) spliia podmienku presnosti pre okolie N5(6). Analogicky hovorime o podmienke

XSe — pels < Opap = 27s/n, potom hovorime, Ze bod

presnosti pre okolie N_. (7). Analyzujme blizsie obe Specifické okolia. V pripade $peci-
fického okolia N> (6) pre podmienku presnosti zrejme plati

n 2

| X Se — pell2 < 0p < E <xlsl — 1) < 6%
—\ u
=1

To znamend, Ze stcet Stvorcov relativnych odchyliek z;s; od ich priemeru p nesmie pre-
siahnut’ §? < 1. Z toho dovodu okolie N5(6) obsahuje iba mald ¢ast’ ostro pripustnych
bodov z mnozZiny F°, a preto algoritmy vyuZivajtce toho Specifické okolie maji me-
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nej priestoru na manévrovanie pozdlZ centralnej trajektérie. Na druhej strane, $pecifické
okolie N (y) mdZe pre malé hodnoty parametra ~ zaberat’ skoro celt mnozinu F°. Je-
dinou podmienkou $pecifického okolia N_. () je, aby sti¢iny x;s; neboli vyrazne mensie
ako ich priemer p. Tato podmienka zabrani, aby sa dvojica (z, s) pribliZila k hranici neza-
porného ortantu (z, s) > 0. Z uvedenych pozorvani vyplyva, Ze Specifické okolia N>(6) a
N_oo(7) sa kvalitativne li$ia, comu nasvedcuje aj nasledujtica ilustracia, ktord porovnédva
obe $pecifické okolia v jednorozmernom pripade.

N,(0.2) N__(0.2)

%151

%151
X151

u u

Obr. 3.2: Kvalitativny rozdiel $pecifickych okoli NV2(0) a N_ () pre n = 1 ilustrovany v
priestore ;1 X z151. Cervend polpriamka predstavuje centrdlnu trajektoriu.

Specifické okolia NV3(0) a N () mdZeme vel'mi dobre ilustrovat’ aj v dvojrozmernom
pripade, kedy okolia majt kvalitativne podobny charakter. Tieto ilustracie uvddzame
na obrazkoch Obr. 3.3 a Obr. 3.4, pricom postup odvodenia nerovnic generujtcich tieto
okolia uvddzame v Dodatku.
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6=0.2 6=04
5 5
4 4
3 3
N N
(%)) ()
N N
X X
2 2
1 1
0 0
0 1 2 3 4 5 0 1 2 3 4 5
X151 X151
0=0.6 porovnanie

Obr. 3.3: gpecifické okolie N2 (0) pre n = 2 vykreslené v priestore x1s1 X z282 v zdvislosti
od parametra ¢ € (0, 1). Cervend polpriamka predstavuje centrélnu trajektoriu.
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y=0.2 y=0.4

y=0.6 porovnanie

%55,

Obr. 3.4: épecifické okolie N_ () pre n = 2 vykreslené v priestore x 51 X x2s2 v zdvislosti
od parametra v € (0, 1). Cervend polpriamka predstavuje centrdlnu trajektdriu.

Predchadzajtce ilustracie vedu prirodzene k domnienke, ktorti uvddzame v nasleduji-
com tvrdeni.

Lema 3.1. Pre dvojicu okoli N (6), N_oo(7) plati:

(i) ak 0 < 01 < O3 < 1, potom N (01) C Na(63);

(i1) ak 0 < y1 < y2 < 1, potom N_so(72) C N_oo(71);
(iii) ak v < 1 — 6, potom N5 (0) C N_so(7). [29]

Dokaz. Dokazy tvrdeni (i) a (ii) st zrejmé. DokdZeme tvrdenie (iii), v ktorom treba doka-
zat/ implikdciu V(z,y, s) € Na(0) : (z,y,s) € Na(0) = (z,y,s) € Nooo (), ¥ < 1—6. Nech
(z,y, s) je l'ubovolny bod z okolia N> (0). Ked'Ze (z,y, s) € N2(0), tak || X Se — pell2 < Op.
Pomocou nerovnosti ||.||ec < ||.||2 odvodime, Ze

0> || XSe — pells = e — XSella > e — XSelloo = max |~ zisi]

i=1,2,...,n
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Ked'Ze i > 0axz;s; > 0prei = 1,2,...,n, tak zrejme plati

max |p— s =p— min ;8.
i=1,2,....n 1=1,2,....n

Z odvodenych vzt'ahov za predpokladu v < 1 — ¢ dostaneme

g, min s = max I —zisil < 0p < (1—7)p.
Elementdrnymi tpravami nerovnice 1 — min; z;5; < (1 — 7)p nakoniec odvodime, Ze
min; x;s; > yp. Z toho bezprostredne vyplyva, Ze z;s; > yuprei = 1,2,...,n. Tym sme
dokézali, Ze F'ubovolny bod (z,y, s) z okolia N5(8) splita podmienku presnosti pre okolie
N_oso(7), apreto (z,y,s) € Nooo(7). O

Algoritmus sledovania centrdlnej trajektérie sleduje schému generického algoritmu,
pri¢om vzdy voli jedno z dvojice okoli N2 (6), N_ (7). Zdroven voli centrujici parameter
o a dlzku kroku « tak, aby kazdy iteraény bod (2%, y*, s*) lezal vo vybranom $pecifickom
okoli. V zévislosti od vol'by patrametrov o a « existuju tri zdkladné varianty algoritmu
sledovania centralnej trajektorie — algoritmus s kratkym krokom [13], [20], perdiktor-
korektor algoritmus [19] a algoritmus s dlhym krokom [14]. Spolo¢nym znakom tychto
algoritmov je polynomidlna zloZitost'. V nasledujticich castiach opiSeme princip tychto
algoritmov, uvedieme ich podstatné vlastnosti a na zdklade Vety 3.1 dokdZeme ich poly-
nomidlny charakter.

3.2 Polynomidalna zloZitost

V tejto ¢asti uvedieme vSeobecné tvrdenie o polynomialnej zloZitosti pre algoritmy sledo-
vania centrdlnej trajektorie. Veta hovori o tom, Ze ak zmenSovanie parametra ;. v kaZdej
iterdcii zavisi urc¢itym spésobom od rozmeru n, a ak pociatoénd dudlna medzera nie je
,prilis vel'ka”, potom algoritmus sledovania centralnej trajektérie méd polynomiélnu zlo-
Zitost'.

Veta 3.1. Nech ¢ € (0,1). Predpokladajme, Ze algoritmus na riesenie systému (1.11) generuje
postupnost’ iteracnyjch bodov (z*, ¥, s*), ktoré splriajii

0
HE+1 S (1 - nw> bk, k= 07 1727 cee (31)
pre nejaké kladné konstanty §,w > 0. Zdroveri predpokladajme, Ze Startovaci bod (0, y°, s°) splria

podmienku pg < 1/ pre nejakii kladnii konstantu x > 0. Potom existuje index k = O(n“|In¢|)
taky, Ze py, < e, Vk > k. [29]
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Doékaz. Zlogaritmovanim oboch stran nerovnice (3.1) dostaneme

4]
Inpgi1 <lIn (1 — ) + In pg. (3.2)

nw

Na zaklade rekurentného vzt'ahu (3.2) so za¢iato¢nou podmienkou yip < 1/¢" dostaneme

0
Inpr < kln (1— W) + In po

kn (1 _ i}) +kn <i) (3.3)

Aplikovanim Lemy 2.1(i) na prvy ¢len vyrazu (3.3) dostaneme

IN

1
Inpp < kln (—5> + kln <> (3.4)
n¥ €
Z nerovnice (3.4) vyplyva, Ze konvergencné kritérium i, < ¢ je splnené, ak
kln (—5> + k1In (1) <lIne. (3.5)
n €

Z nerovnice (3.5) nakoniec odvodime, Ze

ko> (”;) [m(i)-m%
_ (’?)(mm—mng—lng)
_ (i;) (—k —1)lne

_ (”;) (k4 1) Inel.

Tym sme dokézali, Ze existuje index k = (n*/§)(k + 1)| Ine| taky, Ze konvergen&né krité-
rium j1;, < € je splnené pre Vk > k, pricom k = O(n®|Ing|). O

3.3 Algoritmus s kratkym krokom

Najjednoduchsim variantom algoritmu sledovania centralnej trajektorie st algoritmy s
kratkym krokom. Tieto algoritmy sleduju centralnu trajektériu v $pecifickom okoli N3 (6),
pricom v kazdej iterdcii volia jednotkovt dizku kroku o), = 1 a konstantnt hodnotu
centrujticeho parametra o, = o, kde 6 € (0,1) a o € (0, 1) splfiajii niz&ie uvedeny vztah
(3.12). Pre jednoduchost’ uvedieme schému tohto algoritmu s konkrétnymi parametrami
f=04a0=1-04/\/n.
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Schéma algoritmu s kratkym krokom

vstup 0 = 0.4, 0 =1—0.4/\/n, (2°,4°,5°) € N2(0), e > 0

prirad’ £ :=0
repeat
prirad’ o}, := o, . := (2F)Ts¥/n
vyries
A 0 O Ax 0
0 AT I | |Ay|=- 0
Sk 0 XF| | As XFkSke — oy e

prirad’ (zF 1 yF 1 KL = (2 o sF) + (Ax, Ay, As)
prirad' k£ :=k + 1
until (2%)Tsk < ¢

centralna
4.51 trajektoria

X151

Obr. 3.5: Iteracie algoritmu s kratkym krokom v $pecifickom okoli N>(0.4) ilustrované v
priestore x151 X x252.

Pre algoritmus s kratkym krokom najprv dokdzeme jeho polynomidlnu zloZitost'. Za-

ved'me pomocné oznacenie
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(2(a),y(a),5(a) = (2,9,5) +a(Ax, Ay, As),
o) = w(@)s(a)/n.

Lema 3.2. Ak (Az, Ay, As) je rieSenim systému (1.11), potom (o) = [1 — (1 — o)]p. [29]

Dokaz. Tvrdenie dokdZeme pomocou rovnice XAs + SAx = —XSe + ope. S€itanim n
zloZiek na oboch stranédch rovnice dostaneme

tTAs+ sTAz = —2Ts +nop=—als +oxls = —(1 —o)als.
Rozpisanim vyrazu z(a)’ s(a) dostaneme
z(a)Ts(a) = zTs+a(z’As+sTAz) + o® AzT As
=0

= als+a[-(1-0)zls]

= [1-a—-o)2Ts.
Prenasobenim oboch strdn odvodenej rovnice z(a)Ts(a) = [1 — a(1 — o)]zT's vyrazom
1/n nakoniec dostaneme pozadovany vzt'ah. O

Ked'ze ap, = 1ao = 1-0.4//n, tak podl'a Lemy 3.9 pre algoritmus s kratkym krokom
plati

0.4
He+1 = [1 - O‘k(l - J)]/’Lk = Olg = (1 - \/ﬁ> 1273 k= 01 11 27 R (36)

a preto polynomidlna zlozitost O(y/nln1/e) tohto algoritmu je priamym dosledkom
vzt'ahu (3.6) a Vety 3.1. V d'alSej casti tejto kapitoly postupne dokdzZeme, Ze vSetky ite-
ratné body algoritmu s kratkym krokom leZia v $pecifickom okoli N> (6).

Lema 3.3. Pre l'ubovol'né &isla 8, € R splitajiice podmienku 3~ > 0 plati

1
VI < 518+l (37)
Lema 3.4. Nech u,v € R" sti l'ubovol né vektory spliiajiice podmienku u”v > 0. Potom
lUVel <2722 |lu+o|)%,

kde U = diag(u), V = diag(v). [29]

Dokaz. Na zéklade predpokladu u’v > 0 mdzeme odvodit, Ze

0<uTv= Y wwi+ > wvi=Y_|wvi| =Y |uwil, (3.8)

u;v; >0 u;v;<0 % €W

kde V = {i | ujv; > 0}, W = {i| ujv; < 0}. Postupnymi tipravami dostaneme
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TVell = (lfurwidiev]® + luiviliewll?)
< (Musviliev 3 + lwiviliewl) ked'ze ||.|l2 < [|-h
< (2ll[uvilievl?) podla (3.8)
<2 ’ [1(% —l—vi)Q] podl'a (3.7)
4 ievily

—973/2 Z(uz + ’UZ‘)2

2%
n
<2732 “(u; +v;)?
=1
= 2732y + 0|)?

Lema 3.5. Ak (z,y,s) € Na(0), potom

02 +n(1 —o)?

AXASe| <
H 6” — 23/2(1 _ 0)

- [29]

Dékaz. V tvode ddkazu pripometime, e D = X'/2571/2, Prenasobenim oboch stran
rovnice XAs + SAz = —XSe + oue maticou (XS)~/? dostaneme D~'Az + DAs =
(XS)~Y2(~XSe + ope). Teraz priradme u := D~'Ax, v := DAs a na takto definované
vektory u,v € R" aplikujme Lemu 3.4. Dostaneme

|AXASe| [(D7TAX)(DAS)e||
273/2| D7 Az + DAs||?

_3/2!!(X5)_1/2(—X56 +ope)||?

IN

_3/2 Z —xiS; + O—:u

Z;Sq

9—3/2 ”XS@ - 0M6H2_

< (3.9)

min; x;S;

Z predpokladu (z,y,s) € N2(§) mdZeme podobne ako v dokaze Lemy 3.1 odvodit, Ze
min; x;s; > (1 — ). Vyuzitim tohto vzt'ahu v nerovnici (3.9) dostaneme

3/2 | X Se — UM€||2

AXASe|| <27
[ | < i

(3.10)

Rozpisanim vyrazu || X Se — opel|? na pravej strane nerovnice (3.10) dostaneme

IXSe —opel* = [[(XS — pe) + (1 - o)uel?
= ||XS — pe|® +2(1 — o)uel (X Se — pe) +(1 — 0)?uele
~— —

=0

IN

0%u? + (1 — o)?u®n.
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Z toho vyplyva, Ze pre nerovnicu (3.10) d’alej plati

a2 0% + (1= )%

AXASe| <
024 n(l-0)?
o 23/2(1-9)

Désledok 3.1. Ak (z,y,s) € Na(0), potom

IX(a)S(a)e — plaell < |1 —all|XSe — pel| +a*AXASe]|

2 01— )2
92;2((11_9))] 429 (311

N

< |1—alfp+a? {
Dokaz. Vyuzitim Lemy 3.2 dostaneme, Ze

zi(a)si(a) — pla) = w8+ a(v;Asi + 5;Ax;) + o Ax;As; — [1 — a(l — o)
= w8:(1 — )+ aop + ?AxiAs; — (1 — a + ao)p
= z;5(1 — a) + ?Az;As; — (1 — a)p.

Zoradenim prvkov odvodenej rovnice do vektora dostaneme

X ()S(e)e — p(ae]]

[fzisi(1 — @) = (1 — @)+ ®AzAs ]I, |
11— af| XSe — pe|| + | AX ASe|
502 +n(1 —0)?

23/2(1 — 0)

VAN

< |1—alfp+«

O

Nasledujtce tvrdenie formuluje vzt'ah medzi parametrami 6 a o, ktory zabezpeci, ze
jednotlivé iterainé body algoritmu zotrvaja v $pecifickom okoli Nz (6). Tvrdenie zéroven
hovori o tom, Ze ani vol'bou plného kroku o = 1 pozdii Newtonovho smeru mechaniz-

mus optimalizécie neopusti $pecifické okolie N5 (6).
Veta 3.2. Nech parametre 6 € (0,1), o € (0, 1) splriajii vzt'ah

02 +n(l — o)?

< o0, 3.12
232(1—0) —° (812

Potom, ak (x,y, s) € Na(0), tak (z(a), y(a), s(a)) € Na(0),Va € [0,1]. [29]

Dokaz. Z nerovnice (3.11) a pomocou predpokladu (3.12) jednoducho odvodime, Ze

1X(@)S(@)e — p(ael] < [1— alfp + a%o0p
<(1-—a+oa)iu ked'ze a € [0,1]
=Ou(a). podl'a Lemy 3.2
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To znamend, Ze bod (z(«),y(a), s(a)), Yo € [0,1] spltia podmienku presnosti pre $peci-
fické okolie NV3(6). Nakoniec dokdZeme, Ze (z(a), y(«a), s(«)) € F°,Va € [0, 1]. Na zdklade
schémy algoritmu s kratkym krokom odvodime, Ze

ATy(a) + s(a) = AT (y + aAy) + s + aAs = ATy + s +a (AT Ay + As) = c.
=c -0

Ak a = 0, potom (z(«), s(a)) = (x,s) > 0. Ked'Ze 0,0 € (0,1), tak pre « € (0, 1] plati

zi(@)si(e) = (1 =0)pu(a) = (1 =0)[1 —a(l —o)lu > 0.

Z toho vyplyva, Ze ak a € (0, 1], potom pre Ziadny index ¢ = 1,2,...,n nemoZe platit
zi(a) = 0, ani s;(«) = 0. Z toho dovodu plati (z(a), s(a)) > 0, Va € [0,1]. Tym sme
dokazali, ze (z(), y(a), s(a)) € F°, Vo € [0, 1]. O

Na zaver zostdva overit/, Ze parametre § = 0.4, 0 = 1 — 0.4/n spliiaji podmienku
(3.12) pre n > 1. Ttto ¢ast’ uvddzame v Dodatku.

3.4 Prediktor-korektor algoritmus

V algoritme s kratkym krokom sme centrujtci parameter volili v kazdej iterdcii kostantne
o = o z intervalu (0, 1). Takto zvoleny cetrujici parameter v kazdej iteracii zlep$il cen-
trovanie smerom k centralnej trajektorii a zdroveni zmensil dudlnu medzeru. Prediktor-
korektor algoritmus riesi tieto dva problémy postupne, a to tak, Ze iterdcie algoritmu
alternuji medzi dvomi krokmi.

o Prediktor krok, ktory zodpovednd vol'be o}, = 0. Touto vol'bou ziskame afinno-skdlovaci
smer (Ax, Ay, As), ktory smeruje k hranici pripustnych rieSeni, a pozdii ktorého
dudlna medzera poklesne najviac.

e Korektor krok, ktory zodpovedd vol'be 0;, = 1. Touto vol'bou ziskame centrujiici smer
(Az, Ay, As), ktory zlepsuje centrovanie smerom k centrélnej trajektérii, a pozdiz
ktorého sa dudlna medzera nezmeni.

Délezitou sucast ou prediktor-korektor algoritmu je dvojica N2-okoli, kde jedno okolie
(vnatorné) tvori podmnoZzinu druhého (vonkajsieho). Parne iterdcie prediktor-korektor
algoritmu su ststredené vo vnutornom okoli, zatial’ ¢o neparne iterdcie leZia vo vonkaj-
Som okoli. Stru¢ne opiSeme prvé dve iterdcie prediktor-korektor algoritmu a na zdklade
nich sformulujeme schému tohto algoritmu. Zaginajtc §tartovacim bodom (z°,4°, s%) z
vnutorného okolia vypocitame prediktor krok vol'bou o¢ = 0. Pozdiz ziskaného afinno-
Skalovacieho smeru prejdeme aZ k hranici vonkajsieho okolia, kde definujeme novy ite-
raény bod (z!,y!, s!). Korektor krok vypotitame volbou o; = 1. Vol'bou jednotkovej
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dizky kroku a = 1 pozdiz centrujticeho smeru ziskame d’algiu iteraciu (2, y?, s2), ktora
opat’ lezi vo vnutornom okoli. Takto opisany dvojkrokovy cyklus sa opakuje, a tym ge-
neruje postupnost’ itera¢nych bodov s parnou iterdciou vo vniatornom okoli a s nepér-
nou iterdciou na hranici vonkajsieho okolia centrédlnej trajektérie. Pre jednoduchost’ a
bez ujmy na vSeobecnosti sformulujeme schému prediktor-korektor algoritmu s konkrét-
nymi okoliami N5(0.25) a N3(0.5). Poznamenajme, Ze podl'a Lemy 3.1 vnutorné okolie

N>(0.25) naozaj tvori podmnozinu vonkajsieho okolia N2 (0.5).

Schéma prediktor-korektor algoritmu

vstup (z°,9%,5°) € N2(0.25), ¢ > 0
prirad’ k£ :=0
repeat
ak k je parne
PREDIKTOR KROK
prirad’ o, := 0, py = (2¥)7s%/n

vyrie§
A 0 O Az 0
0 AT I | |Ay|=- 0
Sk 0 XF| | As XFkSke — o e

prirad’ o, := max {a € [0,1] | (z*(a),y"(a), s*(a)) € N2(0.5)}
prirad’ (a*+1, y*+1, $541) i (¥(a), y*(a), s*(a))
ak k je neparne
KOREKTOR KROK
prirad’ o, := 1, . == (2¥)7s%/n

vyries
A 0 0 Ax 0
0 AT I | |Ay|=- 0
Sk 0 XF| |As XFkSke — o e

prirad’ (zF 1 yF 1 KL = (2F o sF) + (Ax, Ay, As)
prirad k£ :=k + 1
until (2%)Tsk < ¢

Prediktor krok redukuje hodnotu parametra x faktorom (1 — «), kde « je dizka kroku.
Korektor krok sice neprispieva k redukcii dudlnej medzery, ale pri ndvrate spat’ do vna-

.....

Casti opiSeme zakladné vlastnosti prediktor-korektor algoritmu a dokdzeme jeho polyno-
mialnu zloZitost'. Prvé tvrdenie definuje spodna hranicu dizky prediktor kroku.
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centralna
45k trajektoria

4t N2(0.5)

35f N,,(0.25) .
|
1
|

o 05 1 15 2 25 3 35 4 45 5
%151

Obr. 3.6: Iteracie prediktor-korektor algoritmu alternujice medzi Specifickymi okoliami
N5(0.25) a M3(0.5) ilustrované v priestore z1$1 X x282.

Lema 3.6. Nech (x,y,s) € N2(0.25) a nech (Ax, Ay, As) je rieSenim systému (1.11) s o = 0.
Potom (x(c), y(c), s(a)) € N2(0.5), Va € [0, @], kde

B (1 u 1/2
@ = min (2, <8||AXAS6H> ) . [29] (3.13)

Dokaz. VyuZitim Dosledku 3.1 dostaneme

1X (@)S(a) — u(a)e] < (1 - a)||XSe — pel| + o[ AX ASe|
H ,

< — — B — .

< (1—a)||XSe— el + STAXASE] [AXASe|| podla (3.13)
1 1

< (1-— - (1- 7 .

< 4(1 a),u+8(1_a)(1 Q) ked'ze (x,y, s) € N2(0.25)

< 1(1 —a)u+ 1(1 — ) ked'ze o < 1

=g TR Tk “=3
1

< §,u(a) podlaLemy 3.2s o = 0.

To znamend, Ze pre a € [0,@) bod (z(a),y(a), s(a)) spliia podmienku presnosti pre okolie
N2(0.5). Dokaz ostrej pripustnosti bodu (z(a), y(a), s(«)) pre a € [0, @] je analogicky ako
vo Vete 3.2. O
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Désledok 3.2. Prediktor krok md dizku aspoii @ a novd hodnota parametra 1 je najviac (1—a)ju.
[29]

Dokaz. Spodna hranica @ dizky prediktor kroku vyplyva priamo z Lemy 3.6 a zo sposobu
vol'by dizky kroku

o, == max {a € [0,1] | (zF(a), y"(a), s"(a)) € N2(0.5)}.

Horné ohranicenie parametra ;v d’alSej iterdcii vyplyva priamo z Lemy 3.2, ak vo vzt'ahu
pi+1 = [1 — ag(l — o)]py polozime o = 0

pre1 = [1 = o(L — o) e = (1 — o) < (1 — @) -

O]

Poznamenajme, Ze pomocou Lemy 3.5 moZeme jednoducho odvodit’ spodnd hranicu
pre parameter @. Ak v Leme 3.5 poloZime 6 = 0.25 a 0 = 0, dostaneme

m - 2%2(1-0.25 _ 3v2 _ 016
S|AXAS| ~ 8[(0.25)2+n]  1+16n — n

Naésledne z nerovnice (3.13) odvodime, Ze

1 0.16 1/2 0.4
> mi == = —_, .
a2 min (2, ( ) ) \/ﬁ (3.14)

Ked'Ze kazdy krok typu prediktor zodpovednd parnej iteracii, tak Dosledok 3.2 a ohrani-
¢enie (3.14) implikuju, Ze

_ 0.4
,uk+1§(1—a)§<l—\/ﬁ>,uk, k=0,2,4,.... (3.15)

Vlastnosti krokov typu korektor formuluje nasludujiica lema, ktora hovori o tom, Ze
kazdy korektor krok vracia bod z vonkajsieho okolia NV3(0.5) do vnatorného okolia N3 (0.25)

bez zmeny parametra .

Lema 3.7. Nech (z,y,s) € N2(0.5) a nech (Ax, Ay, As) je rieSenim systému (1.11) s 0 = 1.
Potom (z(1),y(1),s(1)) € N2(0.25) a (1) = p. [29]

Doékaz. Dosadenim o = 1 do (3.2) dostaneme (1) = p. Dosadenim 6 = 0.5, = 1,0 =1
do nerovnice (3.11) dostaneme

IX()S(1)e = p()e]l < & = 7n(1).

Tym sme dokazali, ze bod (x(1), y(1), s(1)) spltia podmienku presnosti pre okolie N5(0.25).
Dokaz ostrej pripustnosti bodu (z(1), y(1), s(1)) je analogicky ako vo Vete (3.2). O
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Nakoniec zostdva ukazat/, Ze prediktor-korektor algoritmus ma polynomialny cha-
rakter. VSimnime si, Ze spojenim nerovnice (3.15) a Lemy 3.7 m6Zeme odvodit’, Ze

P2 = Phk+1 < (1 - %) Bk, k=0,2,4,.... (3.16)
To znamenad, Ze poZadovany spdsob zmensSovania bariérového parametra podl'a Vety 3.1
je takmer splneny pre 6 = 0.4 aw = 0.5, aZ na to, Ze zmen3ovanie parametra ;. neprebieha
v kazdej itercii ale v dvojkrokovom cykle. Avsak kniha [29] uvddza, Ze dokaz Vety 3.1 je
mozné upravit’ tak, aby spdsob redukcie (3.16) vyhovoval predpokladom tvrdenia, ¢im
je mozné dokdzat’ polynomidlnu zloZzitost’ O(y/n1n1/¢) tohto algoritmu.

3.5 Algoritmus s dlhym krokom

Algoritmus s dlhym krokom generuje postupnost’ itera¢nych bodov (z*, y*, s*) v gpeci-
fickom okoli N (7), ktoré sa vyznacuje tym, Ze pre malé hodnoty parametra v (~ 10~3)
zaberd podstatna ¢ast’ mnoziny F°. Tento algoritmus voli v kaZdej iteracii centrujtci pa-
rameter oy, z intervalu [0min, Omax), kde 0 < omin < Omax < 1. Algoritmus zdroven voli
dizku kroku oy maximélnu moznt tak, aby d’alsi itera¢ny bod zotrval vo vnutri okolia
N_s (7). Schéma algoritmu s dlhym krokom teda vyzerd nasledovne.

Schéma algoritmu s dlhym krokom

vstup v € (0,1), 0min, Omax : 0 < Omin < Omax < 1, (20,9°,5%) € Noo(7), e >0
prirad’ k£ := 0
repeat

zvol’ o) € [Omin, Omax]

prirad’ py, := (¥)Ts*/n

vyries
A 0 O Az 0
0 AT I | |Ay|=- 0
Sk 0 XF| | As XFSke — o e

prirad’ oy, := max {a € [0,1] | (z(),y(a), s(a)) € N_oo(7)}
prirad’ (zF 1 P+ kL) = (2(a),y(a), s(a))
prirad' k :=k + 1

until (2)7s% <
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25 3
%151

Obr. 3.7: Tterdcie algoritmu s dlhym krokom v $pecifickom okoli N_,(0.2) ilustrované v

priestore x1s1 X T252.

Lema 3.8. Ak (z,y,5) € N_oo(7), potom || AX ASe| < 273/2(1 4 1/v)npu. [29]

Dokaz. Z ddokazu Lemy 3.5 vyuZzijeme nerovnicu

IAXASe| <2732 (XS) V(=X Se + ape)||%.

(3.17)

Rozpisanim vyrazu na pravej strane nerovnice (3.17) dostaneme

IAXASe|| <272 — (X5)!%e + ou(X )"/ %e)||?

S 2—3/2
S 2—3/2

S 2—3/2

1
< 273/2 (1 + —> ny.
v

i n
1

zls — 20,ueTe +o2p? Z ]

— T;Si
L =1
2ls — 2opele + 02u2i] ked'ze x;s; > yu
L TH
r 2
1—-20+ U—] nu
L v

ked'ze o € (0,1)
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Veta 3.3. Pre dané parametre vy, 0min, Omax algoritmu s dlhym krokom existuje kladnd konstanta
0 > 0 nezdvisld od n takd, Ze

0
HE+1 < (1 - n) HE, k= 172) [29]

Dékaz. Najprv dokazeme, Ze (z(a),y(a), s(a)) € N_oo(v), Vo € [O, 23/271%% , €0 im-

plikuje dolné ohranicenie pre dizku kroku o > 23/ 27;—:// %’“

Z Lemy 3.8 vyplyva, Ze pre 'ubovolny index i = 1,2, ..., n plati

|Az;Asi| < [|AXFASFe|ly < 2732(1 + 1/7)npu. (3.18)

k

Rozpisanim vyrazu z¥(a)s¥(a) dostaneme

z¥(a)st(a) = (zF + alAz) (sF + aAs))

= 2Fst + a(zfAs; + sFAz) + o? Az As;

> afsy (1 — @) + aoguy, — o | Az As| podla (1.11)
> y(1 = o)k + aoppr — o®27 (1 + 1/ ). afsf >y, podla (3.18)

Pripomenime, Ze podl'a Lemy 3.2 plati p () = [1 — o(1 — o). Z uvedenych vzt'ahov
vyplyva, Ze podmienka presnosti 2% (a)s¥(a)) > v () pre okolie N_oo(7) je splnend, ak

V(1= @) + g — 27321+ 1/ ) > (1 — a1 = o) g (3.19)

Elementdrnymi tipravami modZeme ukdzat’, Ze nerovnica (3.19) plati pre o < 23/ 27% %k,
To znamend, Ze bod (2%(a), y*(a), s*(a)) splia podmienku presnosti pre okolie N_ (),

ak o € [0, 23/ 271% %"] Analogickym spdsobom, ako vo Vete 3.2, moéZeme dokazat/, Ze

(zF(a),y* (), s*(a)) € F°,Va € {0, 23/2,),}% %] . Z toho jednoznacne vyplyva, Ze

(2*(a), ¥ (), () € Voo (7), Va € [0,23/27;3?] |

a preto zrejme plati aj dolné ohranicenie pre parameter oy,

1—~vop
> 93/2y 1k 2
ar =2 (3.20)

Vyuzitim ohranicenia (3.20) vo vzt'ahu (o) = [1 — a(1 — o) i, dostaneme

per1 = [1—og(l —ow)]
23/2 1~
1—771+70k(1—0k) - (3.21)
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Je zrejmé, Ze vyraz o(1 — o) je konkdvnou funkciou v premmenej o, a preto na I'ubo-
vol'nom uzavretom intervale dosahuje svoje minimum v niektorom z dvojice krajnych
bodov daného intervalu. Z toho dovodu plati

Ok(l - Uk) > min {Umin(l - Umin)a Umax(l - O'max)}avo'k S [Umina Umax]-

To znamend, Ze nerovnicu (3.21) moéZeme d’alej rozpisat’ do tvaru

)
<(1-2
Hk+1 > ( n) Mk,

kde 6 = 23/27% min {O'min(1 - O'min)a Umax(l - Umax)}- o

Polynomidlna zlozitost' O(n1n1/¢) je opéat’ priamym dosledkom Vety 3.1 a Vety 3.3.

3.6 Konvergencia

V tejto casti uvedieme konvergencné vlastnosti algoritmov sledovania centrélnej trajek-
torie. V diplomovej préci [7] sme dokézali, Ze centrdlna trajektoria C konverguje v smere
zmen$ovania parametra p k optimdlnemu rieSeniu (z*, y*, s*) € F*. Dokaz konvergen-
cie itera¢nych bodov v $pecifickom okoli centralnej trajektérie je podobny. Postupnost’
iteraénych bodov (z*, 4, s*) je pozdiz $pecifického okolia ohrani¢ena, a preto mé aspoii
jeden limitny bod (z*,y*, s*). Je zrejmé, Ze pre l'ubovolny iteraény bod (z*, y*, s*) z oko-
lia N> () alebo N_oo(7) plati

AzF = b, ATyk 4 s+ = ¢, (2%, s%) > 0.
Tteraéné body v $pecifickom okoli N5(#) navyse spliiaju podmienku
0 < | X*S% — upel| < Op.

Ked'Z?e mnoziny {z € R" | Az = b}, {(y,5) € R™ x R" | ATy + s = ¢} st uzavreté a
pr, — 0, tak limitnym prechodom pre k£ — oo dostaneme

Az* = b, ATy + s = ¢, (x*,8") >0, X*S*e = 0.

V pripade $pecifického okolia N_(7) je tiez mozné ukazat, Ze limitny bod (z*, y*, s*)
spltia podmienku komplementarity X*S*e = 0, ¢o viak vyZaduje pojem optimalneho
rozkladu. To znamend, Ze limitny bod (z*, y*, s*) v oboch pripadoch vyhovuje nutnym a
postacujtiicim podmienkam optimality z Vety 1.2, a preto bod (z*,y*, s*) je optimalnym
rieSenim dvojice dloh (P), (D). Navyse, dvojica (z*, s*) zodpoveda ostro komplementar-
nemu primarno-dudlnemu optimalnemu rieSeniu. Tento vysledok tivddza aj nesledujace
tvrdenie, ktorého dokaz je mozné néajst’ v knihe [29].
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Veta 3.4. Nech {(z*,y*, s*)} je postupnost’ iteracnych bodov generovand algoritmom s krdt-
kym krokom, prediktor-korektor algoritmom alebo algoritmom s dlhym krokom. Nech i, — 0
pre k — oo. Potom postupnost’ {(z*,y*, s*)} je ohranitend, a preto md aspori jeden limitny bod
(x*,y*, s*), pricom kaZdd dvojica (x*, s*) je ostro komplementdrnym primdrno-dudlnym riesenim
iiloh (P), (D). [29]

3.7 Porovnanie algoritmov

Algoritmus s kratkym krokom je najjednoduchsou verziou primarno-dudlnych algorit-
mov. Tento algoritmus voli v kazdej iterdcii konstantnt hodnotu centrujiceho parametra
o ajednotkovt dizku kroku a. Uréitou nadstavbou tohto algoritmu je prediktor-korektor
algoritmus, ktorého iterdcie alternuji medzi dvomi krokmi. Zatial' ¢o prediktor krok
(c = 0) pozdii afinno-8kdlovacieho smeru zmensuje dudlnu medzeru, korektor krok
(o = 1) pozdlZ centrujticeho smeru zlepsuje centrovanie smerom k centrélnej trajektorii.
Oba algoritmy vyuzivaja Specifické okolie N2 (6), ktorého restriktivny charakter posky-
tuje algoritmom menej priestoru na manévrovanie v mnoZzine 7°. Désledkom toho je, Ze
oba algoritmy generuja kratsie kroky, a preto sa iteracné body nachddzaja blizsie k cen-
tralnej trajektorii. Z toho dovodu st algoritmy s krdtkym krokom a prediktor-korektor al-
goritmy presnejsie, rychlejsie konverguju, pricom sa vyznacuju zloZitost ou O(y/n1n1/e).

Opacny charakter ma algoritmus s dlhym krokom. Tento algoritmus zvycajne voli cen-
trujaci parameter o blizko nuly, ¢o sposobuje vyraznti redukciu duédlnej medzery v kazdej
iteracii. Zarove voli najvasiu moznu dizku kroku « tak, aby d’alf iteraény bod zotrval
v $pecifickom okoli N_ (). Okolie N_ () poskytuje algoritmu viac priestoru na ma-
névrovanie, ¢co mechanizmus algoritmu prirodzene vyuZiva, a preto generuje iteracné
body d’alej od centrélnej trajektorie a bliZzSie k hranici mnoziny F°. Z toho dévodu sa
moZe stat/, Ze iteracné body zostant zaseknuté pri vrcholoch mnoziny F°, ¢im sa kon-
vergencia mdZe spomalit, a preto algoritmus nemusf vzdy spiiiat’ teoretické vysledky.
Napriek tomu sa algoritmus s dlhym krokom v praxi ¢asto vyuZiva, aj ked’ vykazuje o
nie¢o horsiu zlozitost O(nln1/e).
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Doteraz sme sa zaoberali algoritmami, pri ktorych sme vzdy vychadzali zo Startova-
cieho bodu, ktory bol ostro pripustnym rieSenim z mnoziny F°. Tato skutoc¢nost’ za-
rudila, Ze kazdy d’alsi iteraény bod algoritmu bol tieZ ostro pripustnym rieSenim z mno-
ziny F°. AvSak vo vSeobecnosti ostro pripustné rieSenie nemusi vZdy existovat/, a aj ked’
existuje, tak pri inicializacii algoritmu nemusi byt’ jednoduché najst' ho. V tejto kapi-
tole opiSeme triedu primdrno-dudlnych nepripustnych algoritmov, ktoré sice vyuzivaja
podobny pristup ako algoritmy sledovania centrélnej trajektorie, ale nevyzadujt, aby
Startovaci bod bol ostro pripustnym rieSenim. Uvedieme vSeobecnt schému takéhoto
algoritmu a sformulujeme tvrdenia, ktoré dokazuji jeho konvergenciu a polynomidlnu
zlozitost'. Zaroven opiSeme konkrétny variant nepripustného algoritmu — Mehrotrov
prediktor-korektor algoritmus.

4.1 Nepripustnost

Uvazujme konkrétnu primarnu tlohu
min{?:rl — 3z3 ’ 3x1+x9+x3=4,00+23 =4, > O},

kde mnozinou pripustnych rieSenije {(0,n,4—n)|n € [0,4])}. Ked'Ze 1 = 0, tak je zrejmé,
Ze mnoZzina ostro pripustnych rieSeni F° je prazdna, a preto na rieSenie takejto tlohy
nie je mozné aplikovat’ Ziadny z doteraz prezentovanych algoritmov. Jednym zo sposo-
bov, ako predist’ tomuto problému, je previest' dand tlohu do ekvivalentného tvaru vo
vac¢Som rozmere, kde ostro pripustné rieSenie existuje [14], [17], [20]. Inym pristupom je
rie§it’ tlohu nepripustnym algoritmom, ktory nevyZaduje, aby startovaci bod (x°, 3, s%)
bol ostro pripustnym rieSenim, poZzaduje iba splnenie podmienky (z°, s%) > 0. Zdoraz-
nime, Ze v pripade I'ubovolného nepripustného bodu (z,y, s) podmienky pripustnosti
nie st splnené, a preto v prvych dvoch zloZkédch na pravej strane systému (1.11) vznikajt
rezidua rp, rp, kde
rp=Ax —b, rp=ATy+s—c

Rezidud vy¢islené v nepripustnom itera¢nom bode (z*, y*, s*) budeme oznacovat’ r%, %

4.2 Algoritmus

Nepripustny algoritmus sledovania centralnej trajektérie je uréitou modifikdciou algo-
ritmu s dlhym krokom. Princip sledovania centralnej trajektorie naznacuje, Ze algoritmus
vychéadza z predpokladu F° # (), no napriek tomu $tartovaci bod (z°, 4, s°) voli mimo
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mnozZiny F°, pricom zachovdva podmienku (z°,s) > 0. DdleZitou sti¢ast ou nepripust-
ného algoritmu je Specifické okolie N_ (7, 0), ktoré zodpoveda rozsireniu Specifického
okolia N_ () obsahujtce aj nepripustné primérno-duélne rieSenia. Okolie N_ (7, 0) je
definované ako

I, )l

N, 0) = {(:c,y,s) e, < 102

op, (x,8) >0, xis; >y, i = 1,2,...,n},
kdey € (0,1),0 > 1a (r%,r%) a g > 0 st vycislené v startovacom bode (22,4, s°). V&im-
nime si, Ze pre vietky body v okoli N_ (7, 0) je nepripustnost’ rovnomerne ohranic¢ena
nejakym ndsobkom parametra p. Z toho dovodu mozeme predpokladat’, Ze zmensova-
nim parametra y, a udrZiavanim itera¢nych bodov (z*, y*, s*) v okoli N_ o (7, 0) rezidud
konvergujd do nuly (r%, %) — 0 pre k — co. Pri vol'be dizky kroku oy, implementujeme

dodato¢nt podmienku
pe(ar) < (1 — 0.01ay)p, (4.1)

ktora zabezpeci, Ze hodnota parametera 1, bude klesat’ aspori nejakou minimalnou mie-
rou. Pritom v kazdej iterdcii algoritmu kontrolujeme okrem duélnej medzery aj primarnu
a dudlnu pripustnost’, a to pomocou vopred uréenych toleran¢nych konstant ep > 0,
ep > 0. Schéma nepripustného algoritmu teda vyzerd nasledovne.

Schéma nepripustného algoritmu

vstup v € (0,1), 0 > 1, Omin, Omax : 0 < Omin < Omax < 1,
(20,940,589 : (29,8°) > 0, (¢,ep,ep) > 0
prirad’ £ :=0
repeat
zvol oy, € [min, Omax]

prirad’ i, := (2F)Ts*/n

vyries
A 0 0 Az i,
0o AT T Ay| = — 1“]’5
Sk 0 XF| |As XFkSke — o upe

prirad’ o := max {a € [0,1] | (z(o),y(a), s(a)) € N_oo (7, 0), pr(c) < (1 —0.01a)pur }
prirad (+++1, g1, $541) = (2(a), y(a), 5(0))
prirad’ k:=k + 1

until (2F)Tsk <ea|rk|| <epalrh| <ep
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4.3 Konvergencia a polynomidlna zloZitost

Na zaklade uvedenej schémy nepripustného algoritmu mozeme pre rezidua r%, r% od-
vodit, ze

rﬂ% = AzF —b
= A+ Az —b
= (A2 —b) + a1 (AAZFTY
= 7“53_1 + ak,lrlfg_l

= (1- ak_l)rég_l

rp = ATyF 4 sF —c
— AT 4 o AP 4 55 b A — e
= (AT 1 F 7 o) b (AT AYF T 4 AP
= rf)_l — ak_lrlf)_l
= (1- ak_l)r]k‘;l.

Z toho vyplyva, Ze pre dvojicu rezidui (%, %) plati

(ng,rf’)) = (1- ak—l)(réil’rll%il)
= (1 —ak_l)...(l—ao)(T%aT%)
= Yp(rp. D), (4.2)

kde vy, = H?;&(l — aj) a1y = 1. Rovnica (4.2) je len technickym vysledkom, ktory vedie
k dokazu konvergencie [11] a polynomidlnej zloZitosti [31] nepripustného algoritmu. Av-
Sak formalny dokaz oboch vlastnosti vyZaduje ndro¢nejsie a rozsiahle technické postupy,
a preto uvedieme len kl'i¢ové vysledky s naznakom dokazu, pricom cely dokaz je mozné
néjst’ v knihe [29].

Veta 4.1. Postupnososti {ju} a {||(r%,7%)||} generované nepripustnijm algoritmom konvergujii
do nuly.

Kl'ti¢ovym medzikrokom je dokdazat/, Ze existuje kladna konstanta @ > 0 takd, Ze
ap > aprek =1,2,....Potom z podmienky (4.1) a z rovnice (4.2) mdZeme odvodit, Ze

Pr+1 < (1 — 0.010&].3)[% < (1 — 0.01@)[%, k=1,2,...,

I B DI < A= a)llp, )l k=1,2,...,

z ¢oho modZeme ustdit, Ze ak k — oo, potom p — 0a || (7%, 7%)|| — 0. Nepriamym do-

sledkom tohto pozorovania je nasledujtice tvrdenie, ktoré formuluje konvergen¢né vlast-
nosti nepripustného algoritmu.
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Veta 4.2. Nech {(z*,y*, s*)} je postupnost’ iteracnych bodov generovand nepripustnyjm algorit-
mom. Predpokladajme, Ze mnoZina F° je neprdzdna. Potom postupnost’ {(z*,y*, s*)} je ohra-
nicend, a preto md aspori jeden limitny bod (z*,y*,s*), pricom kazdd dvojica (z*,s*) je ostro
komplementdrnym primdrno-dudlnym rieSenim iiloh (P), (D). [29]

O polynomidlnej zlozitosti hovori nasledujtca veta.

Veta 4.3. Nech € > 0. Predpokladajme, Ze Startovaci bod je tvaru (z°,4°,s°) = (e, 0, Ce),
kde ¢ spliia podmienku ¢? < /<" pre nejaké kladné konstanty 9,k > 0. Potom existuje index
k = O(n?|In¢|) taky, Ze iteracné body (z*, y*, s*) generované nepripustnym algoritmom spliajii
e < e, Yk > k. [29]

4.4 Mehrotrov prediktor-korektor algoritmus

Mehrotrov prediktor-korektor algoritmus [18] patri k najaspesnej$im primdrno-dudlnym
algoritmom met6éd vnatorného bodu. Tento algoritmus sa odlisuje od generického algo-
ritmu tym, Ze zlepSuje Standardny Newtonov smer o korekciu, ktord je vypoctovo ne-
naro¢nd a vedie k lepsim numerickym vysledkom. Algoritmus v sebe zahffia niekol'ko
heuristickych prvkov, ktoré boli do algoritmu implementované pocas niekol'’kych rokov
vypoctovych skisenosti z praxe. Konkrétne ide o spojenie nepripustného algoritmu sle-
dovania centrélnej trajektorie [15] a pouZitia aproximécie centralnej trajektérie pomocou
vyssich radov [17], [21]. NavySe, Mehrotra doplnil tato kombinédciu o adaptivny sposob
vol'by centrujticeho parametra o v kazdej iteracii. Vysledkom bol vysoko efektivny algo-
ritmus, ktory tvori zakladny koncept va¢siny sacasnych primarno-dudlnych algoritmov
met6d vnitorného bodu.

Algoritmus

Mehrotrov prediktor-korektor algoritmus generuje postupnost’ nepripustnych itera¢nych
bodov (z*,y*, s*), kde (2%, s*) > 0. Vysledny smer v kazdej iteracii je kombinéciou
niekol'’kych prvkov — afinno-skalovaci prediktor smer, centrujtca zlozka zodpovedajtica
adaptivne zvolenému parametru o, korektor smer.

Pre iteraény bod (z*,y*, s*), (2%, s*) > 0 vypotitame afinno-§kélovaci prediktor smer
(Az*f, Ay?t, As?f), ktory zodpoveda riegeniu systému

A 0 0 Azaf r}%
0 AT 1| |Ayfl=—| & |. (4.3)
Sk 0 XF| |Asf XkGke

Afinno-gkédlovaci smer (Azf, Ay*, As?) je teda tandardnym Newtonovym smerom ne-
pripustného algoritmu, ktory ziskame vol'bou ¢ = 0. Pre primdrnu a dudlnu zlozku
vypotitame samostatne dizku kroku pozdiz smeru (Az*, Ay?f, As?)
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aff — argmax {a € [0,1] | z* + aAr?®f > 0},
ol} = argmax {a € [0,1] | s* + aAs* > 0.

Aby sme mohli postdit’ kvalitu ziskaného afinno-gkalovacieho smeru (Az?f, Ay?f, As?f),
definujme /1,¢ ako hypoteticktit hodnotu parametra 41, ktort by sme ziskali pInym krokom
pozdiz smeru (Az*, Ay, As?f) aZ k hranici, teda

Laf = (x + aafoaf) (s + aafAsaf)/

AK [1,¢ je vyrazne mensie ako y, potom afinno-gkdlovaci smer (Az?, Ay, As®) je vhod-
nym smerom, pozdiZ ktorého sa dudlna medzera vyrazne zmensi, centrovanie nie je
potrebné, a preto volime parameter o blizko 0. Na druhej strane, ak /¢ je len o niec¢o
mensie ako j, potom potrebujeme vyraznejsie centrovanie, a preto volime parameter
o blizko 1. Tato vol'ba vedie k centrovaniu blizko centrélnej trajektorie, ¢o algoritmu po-
skytuje lepsiu poziciu na redukciu duédlnej medzery v d'alSej iterdcii. Mehrotra vo svojom
povodnom algoritme [18] navrhol nasledovny heuristicky spdsob vol'by centrujtceho pa-

3
-(%)
1 ’

od ktorého sa d’alej odvija korekéna zlozka algoritmu. Aby sme vysvetlili jej vyznam,

rametra

analyzujme sacin z¥s¥, ktory by sme ziskali plnym krokom pozdiZ afinno-gkélovacieho
smeru (Az*, Ay, Asaf). Dostaneme

(2F + Az (sF + AsH) = 2Fsb + A + 5, Ax Az A = A A (4.4)

f:z: s ,podla (4.3)

To znamend, Ze plnym krokom pozdiZ afinno-8kélovacieho smeru sa stéin z¥s¥ trans-
formuje na Az3fAs3f namiesto nulovej hodnoty. Korektor smer (Azkr, Aykor, Askor) sa
snaz{ korigovat’ ttto odchylku, &m by sa saginy z¥s¥ priblizili k nule. Korektor smer
(Azkor Aykor  Askor) zodpoveda rieseniu systému

A 0 0] [Agker 0
0 AT I | [Ayker| =— 0 (4.5)
Sk 0 XFk| | Agker AXAAGafe

kde AX? = diag(Az®) a ASY = diag(As*). Aby sme mohli posudit’ efektivitu korektor
smeru, uvazujme opat’ stéin z¥s¥, ktory by sme ziskali plnym krokom pozdiz kombi-
novného afinno-skalovacieho-korektor smeru. Dostaneme
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(2% + Ax? + Azkor)(sF + As? + Askor)
= (2F + Az (sF 4+ As?) + 2, A5KT 4+ 5, AxKOT LA AT 4 Agkor At 4 Agkor A gkor

~~

—Az3fAs3 podla (4.4) —— Az As¥, podla (4.5)
= Az¥Askr 4 AgkorAsE 4 Agkor pgkor, (4.6)

Ak je matica koeficientov na l'avej strane systému (4.3) a (4.5) v limite pre k — oo re-
guldrna, potom vyraz (4.6) je blizsie k nule ako vyraz (4.6), z ¢oho primo vyplyva efek-
tivita korektor smeru. Avsak vo vSeobecnosti matica koeficientov v limite nemusi byt
vzdy reguldrna, no napriek tomu pouZitie korekcie prostrednictvom korektor smeru aj v
takejto situdcii zvycajne zlepsuje celkovu efektivitu algoritmu v praxi. Nakoniec vypoci-
tame kombinovany centrujtci-korektor smer (Azk, Ay Ask), ktory zodpoveda riege-

niu systému

A 0 0] [Azck 0
0 AT I | |Ay*| =- 0
Sk0 XF| | Ask AXYASYe — gpe

Uvedena metdda tvori podstatu povodného Mehrotrovho prediktor-korektor algoritmu
[18] z roku 1992. Vysoka efektivita a presvedcivé numerické vysledky tohto algoritmu
viedli prirodzene k snahdm o jeho zlepSenie. Vysledkom boli rozne modifikacie [16], [33],
ktoré vznikali predovsetkym za tcelom praktickych implementacii. Na zaver kapitoly
uvedieme Specificky variant Mehrotrvoho algoritmu, ktory je implementovany napri-
klad aj v programovom baliku LIPSOL [32].

Specifickd schéma Mehrotrovho prediktor-korektor algoritmu

vstup (z°,9%,5°) : (29,59) > 0, (e,ep,ep) > 0

prirad’ £ :=0
repeat
vyries
A 0 0 Azt T?_—,
0 AT I Ayt | = — r%
Sk0 XF| | Asf XkSke

prirad’ of} ;= argmax {a € [0,1] | 2* + aAz? > 0}

al) := argmax {a € [0,1] | s* + aAs¥ > 0}
prirad’ 11,6 == (2% + ol AT (sF + al)As?) /n
prirad’ o := (ja¢/p)>
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vyries
A 0 0] [Azk 0
0 AT I | |Ayk| =- 0
Sk0 XF| | Ask AX¥ASYe — ope

prirad’ (Az®, Ay*, AsF) == (Az?, Ay, As?h) + (Azk, Ay, Ask)
prirad’ o, := argmax {a > 0| 2" + aAz* > 0}
ab = argmax {a > 0| sF + aAsk > 0}
prirad’ ol := min (0.99aL ., 1)
aP :=min (09902, 1)
prirad’ z**! = 2% 4 of Ak
(YL, sE 1) = (45 5%) + D (AyF, Ask)
prirad’ k:=k + 1
until (2F)Tsk <ea|rk|| <epalrh| <ep

Paradoxom Mehrotrovho algoritmu je, Ze napriek jeho preukdzanej vynimocnej efekti-
vite sa stdle nepodarilo ziskat’ teoretické vysledky beZné pri inych, v praxi menej efektiv-
nych algoritmoch. Teoretickd analyza sa podarila zatial’ len pri niektorych jeho miernych
modifikaciach [1], [25].
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DODATOK

5.1 Doékaz Lemy 2.1

(i) Pre vsetky 8 > —1 plati In (1 + 3) < 3, priCom rovnost” nastdva prive vtedy, ked’ 5 = 0

Definujme pomocné funkcie f(8) = In(1+ 5), g(8) = B pre 8 > —1. Graf funkcie g
je doty¢nicou ku grafu funkcie f v bode 8 = 0. Je zrejmé, Ze funkcia f je konkdvna, a
preto doty¢nica ku grafu funkcie f v 'ubovolnom bode 3 > —1 lezi nad grafom funkcie
f, pri¢om jedinym spolo¢nym bodom grafov je bod (3, f(8)) = (B, 9(B)). Z toho priamo
vyplyva, Ze

In (14 8) = £(8) < g(8) = B, V8> 1,

pricom In (1 + ) = § préve vtedy, ked’ g = 0.

(ii) Pre I'ubovol'nyj vektor z € R"™, ||2||cc < 7 < 1 plati

=1

—Zln 1+ 2;) _—e 2(1_7_).

Definujme pomocnt funkciu f(z) = —> " ;In(1+ z;), ktord je hladkou funkciou pre
|z]lc <7 < 1.Pre gradient V f a Hessovu maticu V2 f zrejme plati

-1 aki=j
14 2z

I
(Vf(2))i= ) (V2f(2))i; = {(1+zl)2

0 aki # j.

Pomocou Taylorovho rozvoja funkcie f dostaneme

1t 1t
f(z)=f(0)+ zTVf(O) + 3 /0 ZTV2f(77z)zdn =—elz + 5 /0 ZTVQf(T]Z)Zdﬁ.

Pre integrand 27 V2 f(nz)z plati

- .

'V f(nz)z = Z (1 + TIZz Z: 1-— 777 (L)

Elementarnym integrovanim dostaneme

1 ! dn 1/t 1 17° |z
T2 2 2 2-
2" Vof(nz)zdn < ||z / = / = [ } = ,

47




KAPITOLA 5. DODATOK

z ¢oho nakoniec vyplyva, Ze

=11

n 1
flz) = — ;m (1+2)=—el2+ ;/O 2TV f(n2)zdn < —e’z + 2l—7)

5.2 Dokaz Lemy 2.4

V dokaze Lemy 2.4 sme vyuzili skuto¢nost, ze vektory v a V=te — v/u st navzéjom
ortogonélne, teda Ze vT(V~le — v/u) = 0. Tento vysledok dokédZeme. Pripometime, Ze
v="Ve, VT :V,VTV:XSawTs:nu.

T
vl <V_16 — U) = vle— ve
I

5.3 Odvodenie Specifického okolia pre n = 2

V ilustracidch Obr. 3.3 a Obr. 3.4 sme Specifické okolie centralnej trajektdrie zobrazili
dvomi polpriamkami. UkdZeme, Ze v dvojrozmernom pripade (n = 2) $pecifické oko-
lia N2(0), N_s () naozaj zodpovedaju prieniku dvoch polrovin v priestore z1s1 X z2s2.

Specifické okolie N3(6)
Podmienku presnosti | X Se — pell2 < p mdZeme vyjadrit' v tvare
(z151 — p)* + (was2 — p)* < (). (5.1)

Pre jednoduchost’ ozna¢me ¢1 = x1s1, 2 = z252. Dosadenim p = £° = w do

nerovnice (5.1) dostaneme

(¢1;¢2>2+<¢1;¢2>2 < ¢ <¢>1-2F¢2>2
2pr — ¢2)° < 6(d1+ o)’
V2(p1 — da| < 0(d1 + b2).

A
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Z poslednej nerovnice moéZeme elementarnymi tpravami odvodit/, Ze

P2 < <\/§+9) o1, P2 > (ﬂ_9> ¢1-

V20

Teda $pecifickym okolim N> () je mnoZzina ostro pripustnych rieSeni z mnoziny F°, ktoré
spltiaju podmienku

TSy < @xs X989 > @ajs
252 = \/5_9 151, 252 =2 \/§—|—9 151-

Specifické okolie N (7)
Ked'ze u = “’CTTS, tak podmienku presnosti z;s; > yp, @ = 1,2 mdZeme vyjadrit' v tvare

X181 + T2S9 181 + 289

T181 = 7 ; T2S2 > 7y 5

Po elementdrnych upravach zistime, Ze Specifickym okolim N_.,(y) je mnoZina ostro
pripustnych rieSeni z mnoziny F°, ktoré vyhovuji podmienkam

2 _
T9Sg < ( 7) 181, T9Sg > (7) T181.
v 2—v

5.4 Vzt'ah parametrov 0 a o v algoritme s kratkym krokom

V rdmci algoritmov sledovania centrédlnej trajektérie sme v schéme algoritmu s kratkym
krokom pouzili konkrétne parametre § = 0.4 a 0 = 1 — 0.4//n. DokdZeme, Ze takto
zvolené parametre 6 a o Spiflajﬁ podmienku (3.12) pre n > 1.

92 o 2
+n(l—o0) < o0
23/2(1 — 0)
0.16 + n(0.4/\/n)? 0.16
< 04-—=
0.61/8 NG
0.8 - 1_%
0.6v/8 NG
0.2 < 0.4
0.3vV2 NG
0.4 0.3v/2 — 0.2
NG 0.3v/2
2
n o> [O2V2 ) o
0.3v/2 - 0.2

Dok4zali sme, Ze ak § = 0.4a o = 1—0.4/,/n, potom podmienka (3.12) plati pre n > 0.76,
a preto zrejme plati aj pre n > 1.
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Zaver

V rigor6znej praci sme sa zaoberali primdrno-dudlnymi algoritmami metéd vniatorného
bodu v linedrnom programovani. V prvej kapitole sme zhrnuli teoretické vysledky z line-
arneho porgamovania a metéd vnatorného bodu. Bez ujmy na vSeobecnosti sme vyché-
dzali z primédrno-dudlnej dvojice linedrnych tloh (P), (D) v standardnom tvare. Sfor-
mulovali sme zdkladné predpoklady (P1), (P2) a na zaklade systému (1.4)-(1.6) sme
definovali centrdlnu trajektériu. V zdvere prvej kapitoly sme opisali vSeobecny princip
primarno-dudlnych metéd, uviedli sme schému generického algoritmu a vysvetlili sme
spOsob oznacenia zloZitosti algoritmov. V druhej kapitole sme sa zaoberali algoritmami
redukcie potencidlu, ktorych charakteristickym znakom je nepriamy pristup zmensova-
nia dudlnej medzery pomocou potencidlovej funkcie. Definovali sme primarno-dudlnu
logaritmickd potencidlovt funkciu ®, a uvideli sme jej doleZité Specifické vlastnosti.
Dokézali sme, Ze mechanizmus algoritmu spdsobuje redukciu funkcie ®,, ¢o vedie k
redukcii duélnej medzery. Odvodili sme horny odhad funkcie ®, pozdl pripustného
smeru, ¢o nam umoznilo blizsie ur¢it’ odhad redukcie funkcie ®, v kaZdej iteracii. Vy-
sledkom bolo zistenie, Ze potencidlova funkcia ®, je v kazdej iteracii redukovand aspori
konstantnou mierou. Na zaver kapitoly sme dokazali, Ze algoritmus redukcie potencidlu
mé polynomidlnu zloZitost'. Vo Stvrtej kapitole sme sa venovali primdrno-dudlnym algo-
ritmom sledovania centrélnej trajektérie. Charakteristickym znakom tychto algoritmov
je princip sledovania centralnej trajektorie v jej Specifickom okoli, v ktorom postupnost’
itera¢nych bodov konverguje k optimdlnemu rieSeniu. Zadefinovali sme dve Standardné
Specifické okolia N>(0), N_o () a uviedli sme ich vlastnosti. V jednorozmernom pri-
pade sme ilustrovali kvalitativny rozdiel Specifickych okoli a dvojrozmernom pripade
sme ilustrovali ich vzdjomny vzt'ah. Pre algoritmy sledovania centralnej trajektorie sme
sformulovali a dokdzali vSeobecné tvrdenie o polynomidlnej zlozitosti. V zdvislosti od
vol'by jednotlivych parametrov sme uviedli tri zakladné varinaty algoritmu — algoritmus
s kratkym krokom, prediktor-korektor algoritmus a algoritmus s dlhym krokom. Pod-
robne sme vysvetlili ich princip, uviedli ich schému a dokazali ich vlastnosti. Zarover
sme ilustrovali ich mechanizmus a na zdklade Vety 3.1 sme dokézali ich polynomidlny
charakter. V zavere kapitoly sme sformulovali konvergenéné vlastnosti tychto algorit-
mov a uviedli sme ich vzajomné porovnanie. Vo stvrtej kapitole sme opisali triedu nepri-
pustnych primarno-dudlnych algoritmov. Opisali sme vSeobecnti schému nepripustného
algoritmu, uviedli sme konvergencné vysledky a sformulovali tvrdenie o polynomidlnej
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zlozitosti. V rdmci tejto kapitoly sme tieZ opisali povodny Mehrotrov prediktor-korektor
algoritmus. Uviedli sme jeho princip, ktory spoc¢iva v kombindcii korekcie smeru a adap-
tivneho spdsobu vol'by centrujiiceho parametra. V zdvere kapitoly sme uviedli aj schému

Specifického variantu Mehrotrovho algoritmu.

V rigoréznej praci sme splnili ciele sformulované v tvode. Uviedli sme zdkladnt ka-
tegorizdciu primarno-dudlnych algoritmov met6d vnatorného bodu v linedrnom prog-
ramovani, vysvetlili ich princip a uviedli ich charakteristické znaky a vlastnosti. V préci
sme sa zamerali na podrobnt analyzu algoritmov a dokladné vysvetlovanie, pricom sme
dbali na jednotny spdsob prezentacie. V praci sme klddli doraz na grafickd interpretaciu,
o ¢om sved¢i niekol'’ko zaujimavych ilustrdcii. Poznamenajme, Ze rigorézna praca posky-
tuje len zdkladny prehl'ad zauzivanych primdrno-duélnych algoritmov. Z toho dévodu je
mozné pracu d’'alej doplnit’ o d’alSie podtriedy algoritmov, alebo ju rozsirit’ o algoritmy,

ktoré vyuzivaja iny pristup.
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