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Foreword

The main goal of this survey paper is to investigate qualitative and
numerical issues related to the evolution of plane curves and surfaces
evolving in the normal direction by the velocity which may depend
on the main curvature, position and the orientation of the normal
vector. In the case of evolution of planar curves we assume that
the normal velocity is a function of the curvature, tangential angle
and the position vector of an evolving curve in the plane. As for
the evolution of two dimensional manifolds we assume that they are
evolving in the normal direction by the mean curvature and given
external force.

We follow the direct Lagrangian approach and we analyze the so-
called intrinsic heat equation governing the motion of plane curves
obeying such a geometric equation. We show how to reduce the geo-
metric problem to a solution of fully nonlinear parabolic equation for
important geometric quantities. Using the theory of fully nonlinear
parabolic equations we present results on local time existence of clas-
sical solutions. We investigate the stability of stationary curves and
network of curves. We discuss numerical approximation schemes for
computing curvature driven flows and we present various examples
of applications of theoretical results in practical problems.

The paper is organized as follows. In the introductory Chapter 1
we briefly recall typical applications of curvature driven flows. We re-
view various applications in interface dynamics, edge detection prob-
lems arising in image segmentation, geodesic flows, dislocation dy-
namics, spiral motions of open curves as well as flows driven by non-
locally dependent normal velocities arising in conserved and gradient
geometric flows. In Chapter 2 we present the basic ideas of the direct
Lagrangian approach of description of curvature driven evolution of
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curves and surfaces. We recall the system of governing equations for
the relevant geometric quantities like the curvature and position vec-
tor. We show how a nontrivial tangential velocity can be incorporated
in the governing equations. We also mention and discuss other meth-
ods for computing curvature driven flows like, e.g. level set methods.
The next Chapter 3 is devoted to theoretical results on existence,
uniqueness and continuation of the classical solution of the parabolic
system of governing equations. The methodology is based on the the-
ory of fully nonlinear parabolic equations. In Chapter 4 we focus on
the numerical aspects of the direct Lagrangian approach. We discuss
the role of a nontrivial tangential velocity for the construction of ef-
ficient numerical scheme. Special attention is put on analysis of the
so-called curvature adjusted tangential velocity. Chapter 5 is devoted
to various applications of the direct Lagrangian approach. Several
computational examples are presented in order to illustrate the en-
hancement of numerical results of the direct approach combined with
a suitably chosen tangential velocity. Furthermore, we show how the
geodesic curvature driven flow of curves on a given surface can be
solved by the direct approach. We also present applications of the di-
rect approach in edge detection problems in segmentation of images.
The direct approach has been also applied to stability analysis of a
flow of network open curves forming a triple junction. Furthermore,
we show how the idea tangential redistribution can be generalized to
mean curvature driven flows of surfaces. In the last part of the chap-
ter we focus our attention to applications of conserved and gradient
geometric flows. In more detail, we investigate and analyze the area
and length preserving flows as well as gradient flows minimizing the
isoperimetric ratio in the Euclidean and relative Finsler geometry. We
end this chapter by analysis of the inverse Wulff problem enabling us
to construct an underlying anisotropy by minimizing the anisoperi-
metric ratio for a given planar curve or interface. The last Chapter 6
consists of nine selected papers by the author.

Finally, I want to express my sincere gratitude and highest respect
to all co-authors and collaborators. Many of them contributed to my
research in the field of analysis of geometric equations. I thank Karol
Mikula who always had very positive influence during all my research
carrier and life. It was a great pleasure for me to work with him
and follow his enthusiasm for applied mathematics and everything
in life. I appreciate very much collaboration with Harald Garcke and
Yoshihito Kohsaka from whom I learned a lot on how the mathemat-
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ical preciseness is really important in analyzing applied problems. I
very much appreciate joint work with Michal Beneš who revealed me
many important applications of direct approach in the field of mate-
rial science. I thank Shigetoshi Yazaki for his long-term fruitful and
friendly collaboration, broadening my scope of knowledge in related
fields of research and suggestions leading to improvements in this pa-
per. Special thanks go to Mariana Remeš́ıková who made it possible
to push forward our tangential redistribution ideas to higher space
dimensions enabling us to deal with the motion of surfaces. Last,
but not the least, I am thankful Mária Trnovská who motivated my
recent interests to the field of nonlinear optimization and its applica-
tions, and who gave me new inspiration for future research.

Daniel Ševčovič,
January 2016
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Chapter 1
Introduction

In this section, we are concerned with the time evolution of curves
and surfaces driven in the normal direction by a function of the mean
curvature. As for the evolution of one dimensional curves we will
assume the normal velocity to be a function of the curvature k, the
tangent angle ν and the position vector x of the plane curve Γ, i.e.

v = β(k, x, ν), (1.1)

where v is the normal velocity at the point x ∈ Γt of an evolving fam-
ily {Γt, t ≥ 0} of planar closed or open curves. As for the evolution of
two dimensional surfaces with or without boundary we investigate
the flows of surfaces {Mt, t ≥ 0} in the Euclidean space R3 driven in
the normal direction with the speed v

v = H + F, (1.2)

where H is the mean curvature and F is a given external force.
Geometric equations of the form (1.1) and (1.2) can be often

found in variety of applied problems like, e.g. material science, dy-
namics of phase boundaries in thermo-mechanics, in modeling of
flame front propagation, in combustion, in computations of first ar-
rival times of seismic waves, in computational geometry, robotics,
semiconductors industry, etc. They also have a special conceptual
importance in image processing and computer vision theories.

One of the pioneer works in the field of curvature driven flows
is due to Mullins [95]. He studied the two-dimensional motion of
idealized grain boundaries. Geometrical or Lagrangian approach to

7



8 Introduction

crystal growth can be found in subsequent works by Mullins, Sekerka,
J.Taylor, Brower, Kessler, Koplik, Levine and many others.

In Nature, there are no substances of curves, surfaces or bound-
aries which are mathematical functions or sets. In this sense, the
motion of curves and surfaces is an idealized object. On the other
hand, it accurately approximates physical phenomena.

A typical case in which the normal velocity v may depend on the
position vector x can be found in image segmentation [26, 64] or
dislocation dynamics [70]. For a comprehensive overview of other
important applications of the geometric equation (1.1) we refer to
books by Sethian, Sapiro and Osher and Fedkiw [116, 107, 98] or to
the review paper [113] by Ševčovič.

The aim of this section is to present various application of the
mean curvature flows of curves and interfaces with special focus on
the direct Lagrangian approach. Direct Lagrangian methods have
been developed and studied by many authors especially in the last
thirty years, as well as indirect approaches such as level set methods
and phase-field approaches.

1.1 Mathematical models leading to curva-
ture driven flows of planar curves

1.1.1 Interface dynamics

If a solid phase occupies a subset Ωt
s ⊂ Ω and a liquid phase - a

subset Ωt
l ⊂ Ω, Ω ⊂ R2, at a time t, then the phase interface is the set

Γt = ∂Ωt
s ∩ ∂Ωt

l , which is assumed to be a closed smooth embedded
curve. The sharp-interface description of the solidification process is
then described by the Stefan problem with a surface tension

ρc∂tU = λ∆U in Ωt
s and Ωt

l ,

[λ∂nU ]ls = −Lv on Γt, (1.3)
δe

σ
(U − U∗) = −δ2(ν)k + δ1(ν)v on Γt, (1.4)

subject to initial and boundary conditions for the temperature field
U and initial position of the interface Γ (see, e.g. [12]). The con-
stants ρ, c, λ represent material characteristics (density, specific heat
and thermal conductivity), L is the latent heat per unit volume, U∗ is
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a melting point and v is the normal velocity of an interface. Discon-
tinuity in the heat flux on the interface Γt is described by the Stefan
condition (1.3). The relationship (1.4) is referred to as the Gibbs
– Thomson law on the interface Γt, where δe is the difference in en-
tropy per unit volume between liquid and solid phases, σ is a constant
surface tension, δ1 is a coefficient of attachment kinetics and the di-
mensionless function δ2 describes anisotropy of the interface. One
can see that the Gibbs–Thomson condition can be viewed as a geo-
metric equation having the form (1.1). In this application the normal
velocity v = β(k, ν, x) has a special form

β = β(k, ν) = δ(ν)k + F.

In the theory of phase interfaces separating solid and liquid
phases, the geometric equation (1.1) with β(k, ν, x) = δ(ν)k + F cor-
responds to the so-called Gibbs–Thomson law governing the crystal
growth in an under-cooled liquid [51, 14]. Angenent and Gurtin in
the series of papers [1, 2, 3] studied motion of phase interfaces. They
proposed to study the equation of the form

µ(ν, v)v = h(ν)k − g,

where µ is the kinetic coefficient and quantities h, g arise from con-
stitutive description of the phase boundary. The dependence of the
normal velocity v on the curvature k is related to the surface tension
effects on the interface, whereas the dependence on ν (orientation of
interface) introduces anisotropic effects into the model. In general,
the kinetic coefficient µmay also depend on the velocity v itself giving
rise to a nonlinear dependence of the function v = β(k, ν) on k and
ν. If the motion of an interface is very slow, then β(k, ν, x) is linear in
k (cf. [1]) and (1.1) corresponds to the classical mean curvature flow
studied extensively from both the mathematical (see [40, 4, 5, 50])
and the numerical point of view (see [34, 31, 83, 96, 99]).

In the papers [1, 3], Angenent and Gurtin studied perfect conduc-
tors where the problem can be reduced to a single equation on the
interface. Following their approach and assuming a constant kinetic
coefficient one obtains the equation

v = β(k, ν) ≡ δ(ν)k + F

describing the interface dynamics. It is often referred to as the
anisotropic curve shortening equation with a constant driving force
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F (energy difference between bulk phases) and a given anisotropy
function δ.

The direct Lagrangian approach taking into account topological
changes has been applied in the modeling of forest fire front propa-
gation by Balažovjech et al. in [9].

In [43, 44, 42] Garcke et al. studied evolution of a network
of open plane curves driven by the curvature or surface diffusion
(Laplace-Beltrami operator of the curvature) (see also [76]).

1.1.2 Image segmentation

A similar equation to (1.1) arises from the theory of image segmen-
tation in which detection of object boundaries in the analyzed image
plays an important role. A given black and white image can be repre-
sented by its intensity function I : R2 → [0, 255]. The aim is to detect
edges of the image, i.e. closed planar curves on which the gradient
∇I is large (see [62]). The idea behind the so-called active contour
models is to construct an evolving family of plane curves converging
to an edge (see [63]). One can construct a family of curves evolved
by the normal velocity v = β(k, ν, x) of the form

β(k, ν, x) = δ(x, ν)k + c(x, ν),

where c(x, ν) is a driving force and δ(x, ν) > 0 is a smoothing coef-
ficient. These functions depend on the position vector x as well as
orientation angle ν of a curve. Evolution starts from an initial curve,
which is a suitable approximation of the edge and then it converges
to the edge provided that δ, c are suitable chosen functions.

In the context of level set methods, edge detection techniques
based on this idea were first discussed by Caselles et al. and Malladi
et al. in [25, 75]. Later on, they have been revisited and improved
in [26, 27, 64]. Recently, Mikula et al. applied level set techniques
in image segmentation and lineage tracking of embryo-genesis (cf.
[91, 126]). The direct Lagrangian approach has been also applied
by Mikula and Urbán [92] to evolution of open curves in R3 with
application in the virtual colonoscopy.

A case with special importance in image segmentation and fil-
tering is the so-called affine scale space flow in which the normal
velocity is given by

β = k1/3
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analyzed by Angenent, Shapiro and Tannenbaum in [7] and [106].
The flow is invariant with respect to affine transformations. Since
ellipses are invariant with respect to affine transformations they are
self-similar solutions of this flow (see also [84]).

In [118, 119] Srikrishnan, Chaudhuri, Dutta Roy and Ševčovič ap-
plied the direct approach in tracking moving boundaries in sequences
of images.

1.1.3 Geodesic curvature driven flow of curves on a
surface

Another interesting application of the geometric equation (1.1) arises
from differential geometry. The purpose is to investigate the evolu-
tion of curves on a given surface driven by the geodesic curvature and
prescribed external force. We restrict our attention to the case when
the normal velocity V is a linear function of the geodesic curvature
Kg and external force F , i.e.

V = Kg + F

and the surfaceM in R3 can be represented by a smooth graph. The
idea how to analyze a flow of curves on a surfaceM consists in the
vertical projection of surface curves into the plane. This allows for
reducing the problem to the analysis of the evolution of planar curves
instead of surface ones. Although the geometric equation V = Kg+F
is simple the description of the normal velocity v of the family of
projected planar curves is rather involved. Nevertheless, it can be
written in the form of equation (1.1).

It is interesting to note that the geodesic flow can be related to
edge detection problems in image segmentation.

1.1.4 Evolution of open curves and dislocation dy-
namics

All real crystals contain some imperfections, which locally disturb the
regular arrangements of the atoms. These imperfections may have
point, line, surface or volume character and they occur in nanoscale.
However, their presence can significantly influence the physical and
mechanical properties of crystalline solids. Dislocations are defects of
the crystalline lattice. They act in such a way that the crystallographic
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arrangement of atoms is disturbed along a so-called dislocation line.
From the mathematical point of view, dislocations can be represented
as closed curves (acting inside the crystal) or open curves (ending on
a surface of the crystal), which can, under certain physical condi-
tions, evolve in time and space and even interact with each other.
At certain physical conditions, e.g., at low homologous temperature,
the motion is only two-dimensional and dislocations can move only
along the so-called slip planes, i.e., some crystallographic planes with
the highest density of atoms. We can describe the motion by means
of the mean curvature flow of the form:

β(k, ν, x) = k + F,

where F = Fapp + Fwall + Fint − Ffr is the external force, which can
be decomposed into the following acting forces: Fapp caused by the
resolved shear stress, Fwall caused by the stress from the walls of
the channel, force Fint caused by the mutual interaction stress be-
tween the dislocations in the channel and the force Ffr caused by
the crystalline lattice resistance. The reader is refereed for details to
papers by Kratochv́ıl et al. [70, 13, 72, 71]. In this application the
fixed end boundary condition were prescribed for evolution of open
curves representing dislocation lines. Recently, Pauš et al. [101] con-
structed exact solutions for dislocation bowing and developed a new
numerical technique for dislocation touching-splitting.

There are other important application of curvature driven flows
of open curves. For example, in [92] Mikula and Urbán studied cur-
vature driven evolution of open curves in R3 having applications in
the virtual colonoscopy. In this application Mikula and Urbán derived
a law for movement of end-points of a curve representing a virtual
camera in a gut.

Another possible application of curvature driven evolution of
open curves arises from modeling spiral motion of pattern formations
observed in various nonlinear phenomena such like, e.g. Belousov-
Zhabotinsky reaction, crystal growth of some materials. In [97] Osaki
et al. proposed a simple evolution law for the motion of open curves
with the boundary conditions towards realizing spiral growth. The
model is based on the well-known model established by Davydov,
Mikhailov and Zykov [81]. Similarly to the application in virtual
colonoscopy, the tangential velocity at end-points have to be pre-
scribed by following the model derived in [81].
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Open curves evolution has been also studied in the context of op-
timal design of a truss of network curves on a given surfaces studied
recently by Remeš́ıková, Mikula, Sarkoci and šSevčovič in [102]. The
goal was to design a network of curves minimizing the discrepancy
of lengths of truss elements.

1.1.5 Nonlocal flows and variational problems

In this section we discuss the role and importance of geometric equa-
tion (1.1) with a non-local term FΓ depending the entire curve Γ.
The normal velocity is given by β(x, k, ν) ≡ β̃(x, k, ν) + FΓ, where
β̃(x, k, ν) : R2 × R × R → R is the local part of the normal velocity
and FΓ = F (L,A, E) represents its non-local part depending on the
global quantities like, e.g. the total length L, the enclosed area A, or
the elastic energy E =

∫
Γ
k2ds computed over the entire curve Γ.

Our first example is the area-preserving flow having the normal
velocity of the form:

v = k − 2π

L
. (1.5)

For such a normal velocity one can derive that the enclosed area A
of the evolved curve Γ is preserved. This geometric flow was inves-
tigated by Gage [41]. This geometric law originates in the theory
of phase transitions for crystalline materials and describes the evo-
lution of closed embedded curves with constant enclosed area. The
area preserving mean curvature flow usually appears in applications
where physical systems like cell structures, soap films and bubbles
evolve to minimize its surface energy while preserving mass. In [103]
Rubinstein and Sternberg studied the mean-curvature flow with the
constraint of constant area enclosed by the evolving curve (see, e.g.
[24, 38, 78] and references therein). In particular, problem (1.5)
was studied by Beneš et al. [20] in the context of a non-local mod-
ification of the Allen-Cahn equation. The area preserving flow has
been recently investigated by Sakakibara and Yazaki [104, 125] in
the context of the Hele-Shaw flow.

The area preserving flow can be also viewed as a gradient flow
for the following variational problem with a constraint:

min
Γ
L(Γ)

s.t. A(Γ) = const.
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Another important non-local geometric flow is the total length
preserving flow. Recently, Yazaki and Ševčovič [110] investigated the
gradient flow for the isoperimetric ratio in which the normal velocity
has the form

v = k − L

2A
. (1.6)

Such flow minimizes the isoperimetric ratio Π = L2/(4πA) and Πt →
1 as t → ∞. It means that it is a gradient flow for the following
variational problem:

min
Γ

L(Γ)2

4πA(Γ)
.

In [114] Yazaki and Ševčovič generalized the gradient flow (1.6)
to the case of minimization of the isoperimetric ratio in the relative
Finsler geometry described by the Finsler metric (cf [39]). In this
case, the normal velocity has the form

v = kσ −
Lσ
2A

, (1.7)

where kσ and Lσ are the curvature and length in the corresponding
Finsler geometry defined through the anisotropy function σ. Again,
this is a gradient flow for the following variational problem:

min
Γ

Lσ(Γ)2

4|Wσ|A(Γ)
,

where |Wσ| is the area of the Wulff shape Wσ (see Chapter 5 for
details).

The inverse variational problem for finding the optimal anisotropy
function σ

min
σ

Lσ(Γ)2

4|Wσ|A(Γ)

has been recently addressed and investigated by Trnovská and
Ševčovič in [111, 112, 121].



Chapter 2
Preliminaries and description of
the direct Lagrangian approach

The purpose of this chapter is to review basic facts and results con-
cerning the curvature driven flow of planar curves. We will focus
our attention on the so-called direct (or Lagrangian) description of a
moving curve in which we follow the evolution of point positions of
the curve. This is also referred to as a direct approach in the context
of curvature driven flows of planar curves. We refer the reader to pa-
pers by Abresch and Langer [4], Angenent, Sapiro and Tannenbaum
[7], [33, 34], Deckelnick [31], Mikula and Kačur [83], Mikula and
Ševčovič [84, 85, 88, 87] and other papers referred therein.

First, we recall some basic facts and elements of differential geom-
etry. Then, we derive a system of equations for important geometric
quantities like, e.g. a curvature, local length and tangential angle.
With help of these equations we will be able to derive equations de-
scribing evolution of the total length, enclosed area of an evolving
curve and transport of a scalar function quantity.

2.1 Notations and elements of differential
geometry

An embedded regular plane curve (a Jordan curve) Γ is a closed C1

smooth one dimensional non-self-intersecting curve in the plane R2.
It can be parametrized by a smooth function x : S1 → R2. It means
that Γ = Img(x) := {x(u), u ∈ S1} and g = |∂ux| > 0. Taking into

15



16 Preliminaries and notations

account the periodic boundary conditions at u = 0, 1 we can hereafter
identify the unit circle S1 with the interval [0, 1]. The unit arc-length
parametrization of a curve Γ = Img(x) is denoted by s and it satisfies
|∂sx(s)| = 1 for any s. Furthermore, the arc-length parametrization
is related to the original parametrization u via the equality ds = g du.
Notice that the interval of values of the arc-length parameter depends
on the curve Γ. More precisely, s ∈ [0, L(Γ)], where L(Γ) is the length
of the curve Γ. Since s is the arc-length parametrization the tangent
vector ~T of a curve Γ is given by ~T = ∂sx = g−1∂ux. We choose the
orientation of the unit inward normal vector ~N in such a way that
det(~T , ~N) = 1 where det(~a,~b) is the determinant of the 2 × 2 matrix
with column vectors ~a,~b. In what follows, a · b denotes the standard
Euclidean scalar product in R2 and |a| =

√
a · a the Euclidean norm.

Notice that 1 = |~T |2 = ~T · ~T . Therefore, 0 = ∂s(~T · ~T ) = 2(~T · ∂s ~T ).
Thus, the direction of the normal vector ~N must be proportional to
∂s ~T . It means that there is a real number k ∈ R such that ~N = k∂s ~T .
Similarly, as 1 = | ~N |2 = ( ~N · ~N) we have 0 = ∂s( ~N · ~N) = 2( ~N · ∂s ~N)

and so ∂s ~N is collinear to the vector ~T . Since ~N · ~T = 0 we have
0 = ∂s( ~N · ~T ) = ∂s ~N · ~T+ ~N ·∂s ~T . Therefore, ∂s ~N = −k~T . In summary,
for the arc-length derivative of the unit tangent and normal vectors
to a curve Γ we have

∂s ~T = k ~N, ∂s ~N = −k~T , (2.1)

where the scalar quantity k ∈ R is called the curvature of the curve Γ
at a point x ∈ Γ. In the literature, equations (2.1) are referred to as
Frenét formulae. The quantity k fulfilling (2.1) is indeed a curvature
in the sense that it is a reciprocal value of the radius of a circle having
C2 smooth contact with Γ point at a point x(s). Since ∂s ~T = ∂2

sx we
obtain a formula for the signed curvature

k = det(∂sx, ∂
2
sx) = g−3 det(∂ux, ∂

2
ux) . (2.2)

Notice that, according to our notation, the curvature k is positive on
the convex side of a curve Γ whereas it is negative on its concave part
(see Fig. 2.1). By ν we denote the tangent angle to Γ, i.e. ν = arg(~T )

and ~T = (cos ν, sin ν)T . Then, by Frenét’s formulae, we have

k(− sin ν, cos ν)T = k ~N = ∂s ~T = ∂sν(− sin ν, cos ν)T

and therefore ∂sν = k. For an embedded planar curve Γ, its tangen-
tial angle ν varies from 0 to 2π and so we have 2π = ν(1) − ν(0) =
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Figure 2.1: Description of a planar curve Γ enclosing a domain Ω, its signed
curvature k, unit inward normal ~N and tangent vector ~T , position vector x.
Source: Ševčovič [113].

∫ 1

0
∂uν du =

∫ 1

0
kg du =

∫
Γ
k ds and hence the total curvature of an

embedded curve satisfies the following equality:∫
Γ

kds = 2π . (2.3)

This equality can be generalized to the case when a closed non-
selfintersecting smooth curve Γ belongs to an orientable two dimen-
sional surfaceM. According to the Gauss-Bonnet formula we have∫

int(Γ)

Kdx+

∫
Γ

k ds = 2π χ(M),

where K is the Gaussian curvature of a orientable two dimensional
surfaceM and χ(M) is the Euler characteristics of the surfaceM. In
the trivial case whenM = R2 we have K ≡ 0 and χ(M) = 1 and so
the equality (2.3) is a consequence of the Gauss-Bonnet formula.

2.2 Methodology based on the Lagrangian
direct approach

Our methodology on how to solve (1.1) is based on the so-called di-
rect approach investigated by Dziuk, Deckelnick, Gage and Hamil-
ton, Grayson, Mikula and Ševčovič and other authors (see, e.g.
[31, 34, 35, 40, 50, 83, 82, 84, 85, 86, 87] and references therein).
The main idea is to use the so-called Lagrangian description of mo-
tion and to represent the flow of planar curves by a position vector x,
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which is a solution to the geometric equation

∂tx = β ~N + α~T ,

where ~N, ~T are the unit inward normal and tangent vectors, re-
spectively. It turns out that one can construct a closed system of
parabolic-ordinary differential equations for the relevant geometric
quantities: the curvature, tangential angle, local length and position
vector. Other well-known techniques, like, e.g. level-set method due
to Osher and Sethian [116, 98] (see also Giga [45]) or phase-field ap-
proximations (see e.g. Caginalp, Nochetto et al., Beneš [23, 96, 12])
treat the geometric equation (1.1) by means of a solution of a higher
dimensional parabolic problem. In the direct approach one space
dimensional evolutionary problems are solved only. Notice that the
direct approach for solving (1.1) can be accompanied by a proper
choice of tangential velocity α significantly improving and stabilizing
numerical computations as it was documented in many papers (see,
e.g. [31, 56, 55, 66, 84, 85, 86, 87]).

2.3 Governing equations

We will assume that the normal velocity v of an evolving family of
plane curves {Γt, t ≥ 0}, is equal to a function β of the curvature k,
tangential angle ν and position vector x ∈ Γt,

v = β(k, ν, x)

(see (1.1)). Hereafter, we will suppose that the function β(k, ν, x) is
a smooth function, which is increasing in the k variable, i.e.

β′k(k, x, ν) > 0 .

The idea behind the direct approach consists of representation of a
family of embedded curves Γt by the position vector x ∈ R2, i.e.

Γt = Img(x(·, t)) = {x(u, t), u ∈ [0, 1]},

where x is a solution to the geometric equation

∂tx = β ~N + α~T , (2.4)

where β = β(k, ν, x), ~N = (− sin ν, cos ν)T and ~T = (cos ν, sin ν)T

are the unit inward normal and tangent vectors, respectively. For
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the normal velocity v = ∂tx · ~N we have v = β(k, ν, x). Notice that
the presence of the arbitrary tangential velocity functional α has no
impact on the shape of the evolving closed curves.

The goal of this section is to derive a system of PDEs governing the
evolution of the curvature k of Γt = Img(x(·, t)), t ∈ [0, T ), and some
other geometric quantities where the family of regular plane curves
where x = x(u, t) is a solution to the position vector equation (2.4).
These equations will be used in order to derive a-priori estimates
of solutions. Notice that such an equation for the curvature is well
known for the case when α = 0, and it reads as follows: ∂tk = ∂2

sβ +
k2β (cf. [40, 1]). Here, we present a brief sketch of the derivation
of the corresponding equations for the case of a nontrivial tangential
velocity α.

Differentiating the curvature expression (2.2) and taking into ac-
count the governing equation (2.4) for the position vector x one can
derive the second-order nonlinear parabolic equation for the curva-
ture:

∂tk = ∂2
sβ + α∂sk + k2β . (2.5)

The Frenét identities (2.1) can be used in order to derive an
evolutionary equation for the local length |∂ux|. Indeed, ∂t|∂ux| =
(∂ux . ∂u∂tx)/|∂ux| = (~p . ∂t~p)/|∂ux|. By (2.1) we have the

∂t|∂ux| = −|∂ux| kβ + ∂uα, (2.6)

where (u, t) ∈ QT = [0, 1] × [0, T ). In other words, ∂tds = (−kβ +
∂sα)ds. It yields the commutation relation

∂t∂s − ∂s∂t = (kβ − ∂sα)∂s. (2.7)

Next, we derive equations for the time derivative of the unit tangent
vector ~T and tangent angle ν. Using the above commutation relation
and Frenét formulae we obtain

∂t ~T = ∂t∂sx = ∂s∂tx+ (kβ − ∂sα)∂sx ,

= ∂s(β ~N + α~T ) + (kβ − ∂sα)~T ,

= (∂sβ + αk) ~N .

Since ~T = (cos ν, sin ν)T and ~N = (− sin ν, cos ν)T we conclude that
∂tν = ∂sβ+αk. Summarizing, we end up with evolutionary equations
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for the unit tangent and normal vectors ~T , ~N and the tangent angle
ν

∂t ~T = (∂sβ + αk) ~N ,

∂t ~N = −(∂sβ + αk)~T , (2.8)
∂tν = ∂sβ + αk .

Since ∂sν = k and ∂sβ = β′k∂sk+β′νk+∇xβ · ~T we obtain the following
closed system of parabolic-ordinary differential equations:

∂tk = ∂2
sβ + α∂sk + k2β , (2.9)

∂tν = β′k∂
2
sν + (α + β′ν)∂sν +∇xβ · ~T , (2.10)

∂tg = −gkβ + ∂uα , (2.11)
∂tx = β ~N + α~T , (2.12)

where (u, t) ∈ QT = [0, 1] × (0, T ), ds = g du and ~T = ∂sx =

(cos ν, sin ν)T , ~N = ~T⊥ = (− sin ν, cos ν)T . The functional α may de-
pend on the variables k, ν, g, x. A solution (k, ν, g, x) to (2.9) – (2.12)
is subject to initial conditions

k(·, 0) = k0 , ν(·, 0) = ν0 , g(·, 0) = g0 , x(·, 0) = x0(.) ,

and periodic boundary conditions at u = 0, 1, except of the tan-
gent angle ν for which we require that the tangent vector ~T (u, t) =
(cos(ν(u, t)), sin(ν(u, t)))T is 1-periodic in the u variable, i.e. ν(1, t) =
ν(0, t) + 2π. Notice that the initial conditions for k0, ν0, g0 and x0

(the curvature, tangent angle, local length element and position vec-
tor of the initial curve Γ0) must satisfy the following compatibility
constraints:

g0 = |∂ux0| > 0 , k0 = det(g−3
0 ∂ux0, ∂

2
ux0) , ∂uν0 = g0k0 .

2.4 First, integrals for geometric quantities

The aim of this section is derivation of basic identities for various
geometric quantities like, e.g. the length of a closed curve and the
area enclosed by a Jordan curve in the plane. These identities (first
integrals) will be used later in the analysis of the governing system
of equations.
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2.4.1 The total length equation

By integrating (2.6) over the interval [0, 1] and taking into account
that α satisfies periodic boundary conditions, we obtain the total
length equation

d

dt
Lt +

∫
Γt
kβds = 0, (2.13)

where Lt = L(Γt) is the total length of the curve Γt, Lt =
∫

Γt
ds =∫ 1

0
|∂ux(u, t)| du. If kβ ≥ 0, then the evolution of the planar curves

parametrized by a solution of (1.1) represents a curve shortening
flow, i.e., Lt2 ≤ Lt1 ≤ L0 for any 0 ≤ t1 ≤ t2 ≤ T . The condition
kβ ≥ 0 is obviously satisfied in the case β(k, ν) = γ(ν)|k|m−1k, where
m > 0 and γ is a non-negative anisotropy function. In particular, the
Euclidean curvature driven flow (β = k) is curve shortening flow.

2.4.2 The area equation

Let us denote by A = At the area of the domain Ωt enclosed by
a Jordan curve Γt. Then, by using Green’s formula we obtain, for
P = −x2/2, Q = x1/2,

At =

∫∫
Ωt

dx =

∫∫
Ωt

∂Q

∂x1

− ∂P

∂x2

dx =

∮
Γt
Pdx1 +Qdx2

=
1

2

∮
Γt
−x2dx1 + x1dx2 .

Since dxi = ∂uxidu, u ∈ [0, 1], we have

At =
1

2

∫ 1

0

det(x, ∂ux) du .

Clearly, integration of the derivative of a quantity along a
closed curve yields zero. Therefore 0 =

∫ 1

0
∂u det(x, ∂tx)du =∫ 1

0
det(∂ux, ∂tx) + det(x, ∂u∂tx)du, and so

∫ 1

0
det(x, ∂u∂tx)du =∫ 1

0
det(∂tx, ∂ux)du because det(∂ux, ∂tx) = − det(∂tx, ∂ux). As ∂tx =

β ~N + α~T , ∂uxdu = ~Tds and d
dt
At = 1

2

∫ 1

0
2 det(∂tx, ∂ux)du we can

conclude that
d

dt
At +

∫
Γt
βds = 0. (2.14)

Remark. In the case when a curve is evolving according to the curva-
ture, i.e. β = k, then it follows from (2.3) and (2.14) that d

dt
At = −2π
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and so
At = A0 − 2πt .

It means that the curve Γt does not exist for t = Tmax = A0

2π
, i.e. the

lifespan of the curve evolution with β = k is finite.

2.5 Gage-Hamilton and Grayson’s theorems

Assume that a smooth, closed, and embedded curve evolves by the
normal velocity proportional to its curvature, i.e. β = k. This curve
evolution is known as the Euclidean curve shortening flow. Since
the curvature is positive on the convex side and it is negative on the
concave side one may expect that the evolving curve becomes more
convex and less concave as time t increases. Finally, it becomes a
convex shape and it shrinks to a circular point in finite time. This
natural observation has been rigorously proven by Grayson in [50].
He used already known result due to Gage and Hamilton. They con-
sidered the evolution of convex curves in the plane and proved that
evolved curves shrink to a circular point in finite time.

Theorem 2.1 (Gage and Hamilton [40]) Any smooth closed convex
curve embedded in R2 evolved by the curvature converges to a point
with asymptotic circular shape in finite time.

What Grayson added to this proof was the statement that any em-
bedded smooth planar curve (not necessarily convex) when evolving
according to the curvature becomes convex in finite time, stays em-
bedded and then it shrinks to a circular point in finite time.

Theorem 2.2 (Grayson [50]) Any smooth closed curve embedded in
R2 evolved by the curvature becomes convex in finite time and then it
converges to a point in finite time with asymptotically circular shape.

In Fig. 2.2 we show computational results of curvature driven
evolution of two initial planar curve evolved with the normal velocity
v = k and v = k1/3.

Although we will not go into the details of proofs of the above
theorems it is worthwhile to note that the proof of Grayson’s theorem
consists of several steps. First, one needs to prove that an embedded
initial curve Γ0 when evolved according to the curvature stays embed-
ded for t > 0, i.e. self-intersections cannot occur for t > 0. Then, it is
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Figure 2.2: An example of evolution of planar curves evolved by the nor-
mal velocity v = k (left) and power-like velocity v = k1/3. Source: Ševčovič
[85].

necessary to prove that eventual concave parts of the curve decrease
their length. To this end, one can construct a partition a curve into its
convex and concave part and show that concave parts are vanishing
when time increases. The curve eventually becomes convex. Then,
Grayson applied the previous result due to Gage and Hamilton. Their
result says that any initial convex curve asymptotically approaches a
circle when t → Tmax where Tmax is finite. To interpret their result
in the language of parabolic partial differential equations we notice
that the solution to (2.9) with β = k remains positive provided that
the initial value k0 was non-negative. This is a direct consequence of
the maximum principle for parabolic equations.

2.5.1 Asymptotic profile of shrinking curves for
other normal velocities

There are some partial results in this direction. If β = k1/3 then
the corresponding flow of planar curves is called affine space scale
flow. It has been studied and analyzed by Angenent, Shapiro and
Tannenbaum in [7] and [106]. In this case, the limiting profile of
a shrinking family of curves is an ellipse. Self-similar property of
shrinking ellipses in the case β = k1/3 has been also addressed in
[84]. In Fig. 2.2 (right) we present a computational result of evolu-
tion of shrinking ellipses in which the curve is evolved with velocity
v = k1/3. Notice that the normal velocity of form β(k) = kp has
been investigated by Ushijima and Yazaki in [122] in the context of
crystalline curvature numerical approximation of the flow. It can be
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shown that p = 1/(n2 − 1), n = 2, 3, · · · , are bifurcation values for
which one can prove the existence of local branches of self-similar
solutions of evolving curves shrinking to a point as a rounded poly-
gon with n facets.

2.6 Failure of the Grayson theorem for evo-
lution of closed surface by the mean
curvature

In Fig. 2.3 we present evolution of a two dimensional dumb-bell like
surface, which is evolved by the mean curvature. Since the mean
curvature for a two dimensional surface is the sum of two principal
cross-sectional curvatures one can conclude that the mean curvature
at the bottle-neck of the surface is positive because of the dominating
principal curvature of the section plane perpendicular to the axis of
the rotational symmetry of the dumb-bell. Thus the flow of a surface
tends to shrink the bottle-neck. Notice that this is a purely three
dimensional feature and can not be observed in two dimensions.
Furthermore, we can see from Fig. 2.3 that dumb-bell’s bottle-neck
shrinks to a pinching point in a finite time. After that time evolution
continues in two separate sphere–like surfaces, which shrink to two
points in finite time. This observation enables us to conclude that a
three dimensional generalization of Grayson’s theorem (see Section
2) is false.

Another intuitive explanation for the failure of the Grayson the-
orem in three dimensions comes from the description of the mean
curvature flow of two dimensional embedded surfaces in R3. Accord-
ing to Huisken [57] the mean curvature H of the surface is a solution
of the following system of nonlinear parabolic equations

∂tH = ∆MH + |A|2H ,

∂t|A|2 = ∆M|A|2 − 2|∇MA|2 + 2|A|4,

where |A|2 is the second trace (Frobenius norm) of the second funda-
mental form of the embedded manifoldM. Here, ∆M is the Laplace-
Beltrami operator with respect to the surfaceM. The above system
of equations is a two dimensional generalization of the simple one di-
mensional parabolic equation ∂tk = ∂2

sk+k3 describing the Euclidean
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Figure 2.3: Time evolution of a dumb-bell initial surface driven by the
mean curvature. Source for computation: I. Mitchell, ToolboxLS, available
at: www.cs.ubc.ca/~mitchell.
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flow of planar curves evolving by the curvature. Now, one can inter-
pret Grayson’s theorem for embedded curves in terms of non-increase
of nodal points of the curvature k. This result is known in the case of
a scalar reaction diffusion equation and is referred to as Sturm’s the-
orem or non-increase of lap number theorem due to Zelenyak [127]
and Matano [77]. However, in the case of a system of two dimen-
sional equations for the mean curvature H and the second trace |A|2
one cannot expect similar result, which is known to be an intrinsic
property of scalar parabolic equations and cannot be extended for
systems of parabolic equations.

2.7 Level set methods for curvature driven
flows of planar curves and comparison
to the direct Lagrangian approach

By contrast to the direct approach, level set methods are based on in-
troducing an auxiliary shape function whose zero level sets represent
a family of planar curves, which evolves according to the geometric
equation (1.1) as well as to (1.2) (see, e.g. [99, 115, 116, 117, 45]).
The level set approach handles implicitly the curvature-driven mo-
tion, passing the problem to higher dimensional space. One can deal
with splitting and/or merging of evolving curves in a robust way.
However, from the computational point of view, level set methods
are much more computationally expensive than methods based on
the direct approach. The purpose of this section is to present ba-
sic ideas and results concerning the level set approach in curvature
driven flows of planar curves.

2.7.1 Level set representation of Jordan curves in
the plane

In the level set method the evolving family of planar curves {Γt, t ≥
0}, is represented by the zero level set of the so-called shape func-
tion φ : Ω × [0, T ] → R where Ω ⊂ R2 is a simply connected do-
main containing the whole family of evolving curves {Γt, t ∈ [0, T ]}.
We adopt a notation according to which the interior of a curve is
described as: int(Γt) = {x ∈ R2, φ(x, t) < 0} and, consequently,
ext(Γt) = {x ∈ R2, φ(x, t) > 0} and Γt = {x ∈ R2, φ(x, t) = 0} (see
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Figure 2.4: Description of the level set representation of a planar embed-
ded curve by a shape function φ : R2 × [0, T )→ R. Source: Ševčovič [113].

Figure 2.5: Representation of a planar embedded curve by the level set of a
function φ : R2 → R. The level set function (left) and its level cross-sections
(right). Source: Ševčovič [113].
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Fig. 2.4). With this convection, the unit inward normal vector ~N can
be expressed as

~N = −∇φ/|∇φ| .

In order to express the signed curvature k of the curve Γt we make
use of the identity φ(x(s, t), t) = 0. Differentiating this identity with
respect to the arc-length parameter s we obtain 0 = ∇φ·∂sx = ∇φ· ~T .
Differentiating the latter identity with respect to s again and using
the Frenét formula ∂s ~T = k ~N we obtain 0 = k(∇φ · ~N) + ~T⊥∇2φ~T .
Since ~N = −∇φ/|∇φ| we have

k =
1

|∇φ|
~T T∇2φ~T . (2.15)

It is a straightforward computation to verify the identity

|∇φ|div
(
∇φ
|∇φ|

)
= ~T⊥∇2φ~T .

Hence the signed curvature k is given by the formula

k = div
(
∇φ
|∇φ|

)
.

In other words, the curvature k is just minus the divergence of the
normal vector ~N = ∇φ/|∇φ|, i.e. k = −div ~N .

Let us differentiate the equation φ(x(s, t), t) = 0 with respect to
time. We obtain ∂tφ+∇φ · ∂tx = 0. Since the normal velocity of x is
β = ∂tx · ~N and ~N = −∇φ/|∇φ| we obtain

∂tφ = |∇φ|β .

Combining the above identities for ∂tφ, ~N, and k we conclude that
the geometric equation (1.1) can be reformulated in terms of the
evolution of the shape function φ = φ(x, t) satisfying the following
fully nonlinear parabolic equation:

∂tφ = |∇φ|β (div (∇φ/|∇φ|) , x,−∇φ/|∇φ|) , x ∈ Ω, t ∈ (0, T ) .
(2.16)

Here, we assume that the normal velocity β may depend on the cur-
vature k, the position vector x and the tangent angle ν expressed
through the unit inward normal vector ~N, i.e. β = β(k, x, ~N). Since
the behavior of the shape function φ in a far distance from the set of
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evolving curves {Γt, t ∈ [0, T ]}, does not influence their evolution, it
is usual in the context of the level set equation to prescribe homo-
geneous Neumann boundary conditions at the boundary ∂Ω of the
computational domain Ω, i.e.

φ(x, t) = 0 for x ∈ ∂Ω . (2.17)

The initial condition for the level set shape function φ can be con-
structed as the signed distance function measuring the signed dis-
tance of a point x ∈ R2 and the initial curve Γ0, i.e.

φ(x, 0) = dist(x,Γ0), (2.18)

where dist(x,Γ0) is a signed distance function defined as

dist(x,Γ0) = inf
y∈Γ0
|x− y|, for x ∈ ext(Γ0) ,

dist(x,Γ0) = − inf
y∈Γ0
|x− y|, for x ∈ int(Γ0) ,

dist(x,Γ0) = 0, for x ∈ Γ0 .

If we assume that the normal velocity of an evolving curve Γt is an
affine function in the k variable, i.e.

β = µk + f,

where µ = µ(x, ~N) is a coefficient describing dependence of the
velocity speed on the position vector x and the orientation of the
curve Γt expressed through the unit inward normal vector ~N and
f = f(x, ~N) is an external forcing term.

∂tφ = µ |∇φ|div
(
∇φ
|∇φ|

)
+ f |∇φ|, x ∈ Ω, t ∈ (0, T ) . (2.19)

2.7.2 Pros and cons of the Level set method and the
direct Lagrangian approach

By contrast to the direct approach, level set methods are based on
introducing an auxiliary function whose zero level sets represent an
evolving family of planar curves undergoing the geometric equation
(1.1) (see, e.g., [99, 115, 116, 117, 53]). Another indirect method
is based on the phase-field formulations (see, e.g., [23, 96, 37, 14]).
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The level set approach handles implicitly the curvature-driven mo-
tion, passing the problem to a higher dimensional space. One can
deal with splitting and/or merging of evolving curves in a robust way.
However, from the computational point of view, level set methods are
much more expensive than methods based on the direct approach.
For some non-local flows, open curves evolution and/or evolution of
curves in R3 application of the level set method might be unclear or
even impossible.

The advantage of the direct approach consists mainly in the fact
that the corresponding governing equations are one dimensional in
the spatial variable (for the evolution of curves). They can handle
open curves as well as curves in R3. A certain disadvantage of the di-
rect approach consists in handling of topological changes. This draw-
back can be however overcome by a fast algorithm recently proposed
by Mikula and Urbán [92].



Chapter 3
Results on existence and
qualitative behavior of solutions

In this chapter we focus our attention on mathematical analysis and
qualitative behavior of curvature driven flows of planar curves. We
present a functional analytic method for the proof of the local time
existence of a smooth family of curves evolving with the normal ve-
locity given by a general function β = β(k, ν, x) depending on the
curvature k, position vector x as well as the tangential angle ν. The
main idea is to transform the geometric problem into the language
of a time depending solution to an evolutionary partial differential
equation like, e.g. (2.9)–(2.12). First, we present an approach due to
Angenent describing the evolution of an initial curve by a fully non-
linear parabolic equation for the distance function measuring the nor-
mal distance of the initial curve tΓ0 the evolved curve Γt for small val-
ues of t > 0. The second approach presented in this chapter is based
on the solution of the system of nonlinear parabolic-ordinary differ-
ential equations (2.9)–(2.12) also proposed by Angenent and Gurtin
[1, 2] and further analyzed and applied by Mikula and Ševčovič in
the series of papers [85, 86, 87] (see also Ševčovič and Yazaki [110]).
Both approaches are based on the solution to a certain fully nonlinear
parabolic equation or system of equations. To prove a local existence
and continuation result we apply the theory of nonlinear analytic
semi-flows due to Da Prato and Grisvard, Lunardi [29, 30, 73] and
Angenent [5, 6].

31
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3.1 Local existence of smooth solutions

The idea of the proof of the local existence of an evolving family
of closed embedded curves is to transform solution of the geometric
equation (1.1) into a solution of a fully nonlinear parabolic equation
for the distance φ(u, t) of a point x(u, t) ∈ Γt from its initial value
position x0(u) = x(u, 0) ∈ Γ0. This idea is due to Angenent [6] who
derived the fully nonlinear parabolic equation for φ and proved local
existence of smooth solutions by the method of abstract nonlinear
evolutionary equations in Banach spaces [6].

3.1.1 Local representation of an embedded curve

Let Γ0 = Img(x0) be a smooth initial Jordan curve embedded in R2.
Because of its smoothness and embeddednes one can construct a lo-
cal parametrization of any smooth curve Γt = Img(x(·, t)) lying in
the thin tubular neighborhood along Γ0, i.e. distH(Γt,Γ0) < ε where
distH is the Hausdorff set distance function. This is why there ex-
ists a small number 0 < ε � 1 and a smooth immersion function
σ : S1 × (−ε, ε)→ R2 such that

• x0(u) = σ(u, 0) for any u ∈ S1,

• for any u ∈ S1 there exists a unique φ = φ(u, t) ∈ (−ε, ε) such
that σ(u, φ(u, t)) = x(u, t),

• the implicitly defined function φ = φ(u, t) is smooth in its vari-
ables provided the function x = x(u, t) is smooth.

It is easy to verify that the function σ(u, φ) = x0(u)+φ ~N0(u) is the im-
mersion having the above properties. Here, ~N0(u) is the unit inward
vector to the curve Γ0 at the point x0(u) (see Fig. 3.1).

Now we can evaluate ∂tx, ∂ux, ∂2
ux and |∂ux| as follows:

∂tx = σ′φ∂tφ ,

∂ux = σ′u + σ′φ∂uφ ,

∂2
ux = σ′′uu + 2σ′′uφ∂uφ+ σ′′φφ(∂uφ)2 + σ′φ∂

2
uφ ,

g = |∂ux| =
(
|σ′u|2 + 2(σ′u.σ

′
φ)∂uφ+ |σ′φ|2(∂uφ)2

) 1
2 .
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Figure 3.1: Description of a local parametrization of an embedded curve
Γt in the neighborhood of the initial curve Γ0. Source: Ševčovič [113].

Hence we can express the curvature k = det(∂ux, ∂
2
ux)/|∂ux|3 as fol-

lows:

g3k = det(∂ux, ∂
2
ux) = ∂2

uφ∂uφ det(σ′φ, σ
′
φ) + ∂2

uφ det(σ′u, σ
′
φ)

+ (∂uφ)2
[
det(σ′u, σ

′′
φφ) + ∂uφ det(σ′φ, σ

′′
φφ)
]

+ 2∂uφ det(σ′u, σ
′′
uφ)

+ 2(∂uφ)2 det(σ′φ, σ
′′
uφ) + det(σ′u, σ

′′
uu) + ∂uφ det(σ′φ, σ

′′
uu) .

Clearly, det(σ′φ, σ
′
φ) = 0. Since σ′φ = ~N0 and σ′u = ∂ux

0 + φ∂u ~N
0 =

g0(1 − k0φ)~T 0 we have det(σ′u, σ
′
φ) = g0(1 − k0φ) and (σ′u.σ

′
φ) = 0.

Therefore the local length g = |∂ux| and the curvature k can be ex-
pressed as

g = |∂ux| =
(
(g0(1− k0φ))2 + (∂uφ)2

) 1
2 ,

k =
g0(1− k0φ)

g3
∂2
uφ+R(u, φ, ∂uφ),

where R(u, φ, ∂uφ) is a smooth function.
We proceed with evaluation of the time derivative ∂tx. Since

∂ux = σ′u + σ′φ∂uφ we have ~T = 1
g
(σ′u + σ′φ∂uφ). The vectors ~N and ~T

are perpendicular to each other. Thus

∂tx · ~N = − det(∂tx, ~T ) =
1

g
det(σ′u, σ

′
φ)∂tφ =

g0(1− k0φ)

g
∂tφ

because det(σ′φ, σ
′
φ) = 0. Hence, a family of embedded curves {Γt, t ∈

[0, T )} evolves according to the normal velocity

β = µk + c

if and only if the function φ = φ(u, t) is a solution to the nonlinear
parabolic equation

∂tφ =
µ

g2
∂2
uφ+

g

g0(1− k0φ)
(µR(u, φ, ∂uφ) + c),
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where
g =

(
|g0|2(1− k0φ)2 + (∂uφ)2

) 1
2 .

In a general case when the normal velocity β = β(k, x, ~N) is a func-
tion of curvature k, position vector x and the inward unit normal
vector ~N, φ is a solution to a fully nonlinear parabolic equation of
the form:

∂tφ = F (∂2
uφ, ∂uφ, φ, u), u ∈ S1, t ∈ (0, T ) . (3.1)

The right-hand side function F = F (q, p, φ, u) is C1 is a smooth func-
tion of its variables and

∂F

∂q
=
β′k
g2

> 0

and so equation (3.1) is a nonlinear strictly parabolic equation. Equa-
tion (3.1) is subject to an initial condition

φ(u, 0) = φ0(u) ≡ 0 , u ∈ S1 . (3.2)

3.1.2 Nonlinear analytic semi-flows

In this section we recall basic facts from the theory of nonlinear an-
alytic semi-flows, which can be used in order to prove local in time
existence of a smooth solution to the fully nonlinear parabolic equa-
tion (3.1) subject to the initial condition (3.2). The theory has been
developed by S. Angenent in [6] and A. Lunardi in [73].

Equation (3.1) can be rewritten as an abstract evolutionary equa-
tion

∂tφ = F(φ) (3.3)

subject to the initial condition

φ(0) = φ0 ∈ E1, (3.4)

where F is a C1 smooth mapping between two Banach spaces E1, E0,
i.e. F ∈ C1(E1, E0). For example, if we take

E0 = h%(S1), E1 = h2+%(S1) ,

where hk+%(S1), k = 0, 1, · · · , is the little Hölder space, i.e. the clo-
sure of C∞(S1) in the topology of the Hölder space Ck+σ(S1) (see



Qualitative behavior of solutions 35

[6]), then the mapping F defined as in the right-hand side of (3.1) is
indeed a C1 mapping from E1 into E0. Its Frechét derivative dF(φ0)
is given by the linear operator

dF(φ0)φ = a0∂2
uφ+ b0∂uφ+ c0φ,

where

a0 = F ′q(∂
2
uφ

0, ∂uφ
0, φ0, u) =

β′k
(g0)2

, b0 = F ′p(∂
2
uφ

0, ∂uφ
0, φ0, u),

c0 = F ′φ(∂2
uφ

0, ∂uφ
0, φ0, u) .

Suppose that the initial curve Γ0 = Img(x0) is sufficiently smooth,
x0 ∈ (h2+%(S1))

2 and regular, i.e. g0(u) = |∂ux0(u)| > 0 for any u ∈
S1. Then a0 ∈ h1+%(S1). A standard result from the theory of analytic
semigroups (cf. [54]) enables us to conclude that the principal part
A := a0∂2

u of the linearization dF(φ0) is a generator of a analytic
semigroup {exp(tA), t ≥ 0}, in the Banach space E0 = h%(S1).

Maximal regularity theory

In order to proceed with the proof of local in time existence of a
classical solution to the abstract nonlinear equation (3.3) we have to
recall a notion of a maximal regularity pair of Banach spaces.

Assume that (E1, E0) is a pair of Banach spaces with E1 densely
included into E0. By L(E1, E0) we will denote the Banach space of all
linear bounded operators from E1 into E0. An operatorA ∈ L(E1, E0)
can be considered as an unbounded operator in the Banach space E0

with a dense domain D(A) = E1. By Hol(E1, E0) we will denote
a subset of L(E1, E0) consisting of all generators A of an analytic
semigroup {exp(tA), t ≥ 0}, of linear operators in the Banach space
E0 (cf. [54]).

Neither the theory of C0 semigroups (cf. Pazy [100]) nor the the-
ory of analytic semigroups (cf. Henry [54]) can treat fully nonlinear
parabolic equations. This is mainly due to the methodology based
on the solution of an integral equation, which is suitable for semi-
linear equations only. The second reason why these methods cannot
provide a local existence result is due to the fact that semigroup the-
ories are working with function spaces, which are fractional powers
of the domain of a generator of an analytic semigroup (see [54]).
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Therefore we need a more robust theory capable of handling fully
nonlinear parabolic equations. This theory is due to Angenent and
Lunardi [5, 73] and it is based on abstract results by Da Prato and
Grisvard [29, 30]. The basic idea is the linearization technique where
one can linearize the fully nonlinear equation at the initial condition
φ0. Then one sets up a linearized semi-linear equation with the right
hand side, which is of the second order with respect to deviation
from the initial condition. In what follows, we will present key steps
of this method. First, we need to introduce the maximal regularity
class, which will enable us to construct an inversion operator to a
non-homogeneous semi-linear equation.

Let E = (E1, E0) be a pair of Banach spaces for which E1 is
densely included in E0. Let us define the following function spaces

X = C([0, 1], E0), Y = C([0, 1], E1) ∩ C1([0, 1], E0) .

We will identify ∂t with the bounded differentiation operator from Y
to X defined by (∂tφ)(t) = φ′(t). For a given linear bounded operator
A ∈ L(E1, E0) we define the extended operator A : Y → X × E1

defined by Aφ = (∂tφ − Aφ, φ(0)). Next we define a classM1(E) as
follows:

M1(E) = {A ∈ Hol(E), A is an isomorphism between Y andX×E1} .

It means that the class M1(E) consists of all generators of analytic
semigroups A such that the initial value problem for the semi-linear
evolution equation

∂tφ− Aφ = f(t), φ(0) = φ0,

has a unique solution φ ∈ Y for any right-hand side f ∈ X and the
initial condition φ0 ∈ E1 (cf. [5]). For such an operator A we obtain
boundedness of the inverse of the operator φ 7→ (∂t − A)φ mapping
the Banach space Y (0) = {φ ∈ Y, φ(0) = 0} onto the Banach space X,
i.e.

‖(∂t − A)−1‖L(X,Y (0)) ≤ C <∞ .

The classM1(E) is refereed to as the maximal regularity class for the
pair of Banach spaces E = (E1, E0).

The following useful perturbation result has been proved by An-
genent.
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Definition 3.1 We say that the linear bounded operator B : E1 → E0

has a relative zero norm if for any ε > 0 there is a constant kε > 0 such
that

‖Bx‖E0 ≤ ε‖x‖E1 + kε‖x‖E0

for any x ∈ E1.

Lemma 3.2 [5, Lemma 2.5] The setM1(E1, E0) is closed with respect
to perturbations by linear operators with zero relative norm.

Using properties of the classM1(E) we can recall the result due to
Angenent [5] on local existence of a smooth solution to the abstract
fully nonlinear evolutionary problem (3.3)–(3.4).

Theorem 3.3 [5, Theorem 2.7] Assume that F is a C1 mapping from
some open subset O ⊂ E1 of the Banach space E1 into the Banach space
E0. If the Frechét derivative A = dF(φ) belongs to M1(E) for any
φ ∈ O and the initial condition φ0 belongs to O then the abstract fully
nonlinear evolutionary problem (3.3)–(3.4) has a unique solution φ ∈
C1([0, T ], E0) ∩ C([0, T ], E1) on some small time interval [0, T ], T > 0.

Application of the abstract result for the fully nonlinear parabolic
equation for the distance function

Now we are in position to apply the abstract result contained in The-
orem 3.3 to the fully nonlinear parabolic equation (3.1) for the dis-
tance function φ subject to a zero initial condition φ0 = 0. Notice
that one has to carefully choose function spaces to work with. Bail-
lon in [8] showed that, if we exclude the trivial case E1 = E0, the
class M1(E1, E0) is nonempty only if the Banach space E0 contains
a closed subspace isomorphic to the sequence space (c0). As a con-
sequence of this criterion we conclude thatM1(E1, E0) is empty for
any reflexive Banach space E0. Therefore the space E0 cannot be re-
flexive. On the other hand, one needs to prove that the linearization
A = dF(φ) : E1 → E0 generates an analytic semigroup in E0. There-
fore it is convenient to work with little Hölder spaces satisfying these
structural assumptions.

Applying the abstract result from Theorem 3.3 we are able to state
the following theorem, which is a special case of a more general re-
sult by Angenent [6, Theorem 3.1] to the evolution of planar curves.
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Theorem 3.4 [6, Theorem 3.1] Assume that the normal velocity β =
β(k, ν) is a C1,1 smooth function such that β′k > 0 for all k ∈ R
and ν ∈ [0, 2π]. Let Γ0 be an embedded smooth curve with Hölder
continuous curvature. Then there exists a unique maximal solution
Γt, t ∈ [0, Tmax), consisting of curves evolving with the normal veloc-
ity equal to β(k, ν).

Remark. Verification of non-emptiness of the set M1(E1, E0) might
be difficult for a particular choice of Banach pair (E1, E0). There is
however a general construction of the Banach pair (E1, E0) such that
a given linear operator A belongs toM1(E1, E0). Let F = (F1, F0) be
a Banach pair. Assume that A ∈ Hol(F1, F0). We define the Banach
space F2 = {φ ∈ F1, Aφ ∈ F1} equipped with the graph norm ‖φ‖F2 =
‖φ‖F1 + ‖Aφ‖F1. For a fixed σ ∈ (0, 1) we introduce the continuous
interpolation spaces E0 = Fσ = (F1, F0)σ and E1 = F1+σ = (F2, F1)σ.
Then, by result due to Da Prato and Grisvard [29, 30] we have A ∈
M1(E1, E0).

3.1.3 Local existence, uniqueness and continuation
of classical solutions for the direct Lagrangian
approach

In this section we present another approach for the proof of local
existence of a classical solution, which is based on analysis of the
governing system of equations describing the direct Lagrangian ap-
proach. Now we put our attention to the solution of the system of
parabolic-ordinary differential equations (2.9) – (2.12). Let a regu-
lar smooth initial curve Γ0 = Img(x0) be given. Recall that a family of
planar curves {Γt = Img(x(·, t)), t ∈ [0, T )}, satisfying (1.1) can be
represented by a solution x = x(u, t) to the position vector equation
(2.4). Notice that β = β(k, ν, x) depends on x, k, ν and this is why
we have to provide and analyze a closed system of equations for the
variables k, ν as well as the local length g = |∂ux| and the position
vector x. In the case of a nontrivial tangential velocity functional α
the system of parabolic–ordinary governing equations has the follow-
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ing form:

∂tk = ∂2
sβ + α∂sk + k2β , (3.5)

∂tν = β′k∂
2
sν + (α + β′ν)∂sν +∇xβ · ~T , (3.6)

∂tg = −gkβ + ∂uα , (3.7)
∂tx = β ~N + α~T , (3.8)

where (u, t) ∈ QT = [0, 1] × (0, T ), ds = g du, ~T = ∂sx =

(cos ν, sin ν)T , ~N = ~T⊥ = (− sin ν, cos ν)T , β = β(k, ν, x). A solution
(k, ν, g, x) to (3.5) – (3.8) is subject to initial conditions

k(·, 0) = k0 , ν(·, 0) = ν0 , g(·, 0) = g0 , x(·, 0) = x0(.)

and periodic boundary conditions at u = 0, 1 except of ν for which we
require the boundary condition ν(1, t) ≡ ν(0, t) mod(2π). The initial
conditions for k0, ν0, g0 and x0 have to satisfy natural compatibility
constraints: g0 = |∂ux0| > 0 , k0 = det(g−3

0 ∂ux0, ∂
2
ux0) , ∂uν0 = g0k0

following from the equation k = det(∂sx, ∂
2
sx) and Frenét’s formulae

applied to the initial curve Γ0 = Img(x0). Notice that the system of
governing equations consists of coupled parabolic-ordinary differen-
tial equations.

Since α enters the governing equations a solution k, ν, g, x to (3.5)
– (3.8) does depend on α. On the other hand, the family of planar
curves {Γt = Img(x(·, t)), t ∈ [0, T )}, is independent of a particular
choice of the tangential velocity α as it does not change the shape of a
curve. The tangential velocity α can be therefore considered as a free
parameter to be suitably determined later. For example, in the Eu-
clidean curve shortening equation β = k we can write equation (2.4)
in the form ∂tx = ∂2

sx = g−1∂u(g
−1∂ux) + αg−1∂ux where g = |∂ux|.

Epstein and Gage [36] showed how this degenerate parabolic equa-
tion (g needs not to be smooth enough) can be turned into the strictly
parabolic equation ∂tx = g−2∂2

ux by choosing the tangential term α in
the form α = g−1∂u(g

−1)∂ux. This trick is known as ”De Turck’s trick”
named after De Turck who uses this approach to prove short time ex-
istence for the Ricci flow (see [32]). Numerical aspects of this ”trick”
have been discussed by Dziuk and Deckelnick in [34, 35, 31]. In
general, we allow the tangential velocity functional α appearing in
(3.5) – (3.8) to be dependent on k, ν, g, x in various ways including
non-local dependence, in particular (see the next chapter for details).

Let us denote Φ = (k, ν, g, x). Let 0 < % < 1 be fixed. By Ek we
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denote the following scale of Banach spaces (manifolds)

Ek = h2k+% × h2k+%
∗ × h1+% × (h2+%)2, (3.9)

where k = 0, 1
2
, 1, and h2k+% = h2k+%(S1) is the ”little” Hölder

space (see [5]). By h2k+%
∗ (S1) we have denoted the Banach mani-

fold h2k+%
∗ (S1) = {ν : R → R , ~N = (− sin ν, cos ν)T ∈ (h2k+%(S1))2}.

1

Concerning the tangential velocity α we will make a general reg-
ularity assumption:

α ∈ C1(O 1
2
, h2+%(S1)) (3.10)

for any bounded open subset O 1
2
⊂ E 1

2
such that g > 0 for any

(k, ν, g, x) ∈ O 1
2
.

In the rest of this section we recall a general result on local exis-
tence and uniqueness a classical solution of the governing system of
equations (3.5) – (3.8). The normal velocity β depending on k, x, ν
belongs to a wide class of normal velocities for which local exis-
tence of classical solutions has been shown by Mikula and Ševčovič
in [86, 87]. This result is based on the abstract theory of nonlinear
analytic semigroups developed by Angenent in [5] an it utilizes the
so-called maximal regularity theory for abstract parabolic equations.

Theorem 3.5 [86, Theorem 3.1] Assume Φ0 = (k0, ν0, g0, x0) ∈ E1

where k0 is the curvature, ν0 is the tangential vector, g0 = |∂ux0| > 0 is
the local length element of an initial regular closed curve Γ0 = Img(x0)
and the Banach space Ek is defined as in (3.9). Assume β = β(k, ν, x)
is a C4 smooth and 2π-periodic function in the ν variable such that
minΓ0 β

′
k(x0, k0, ν0) > 0 and α satisfies (3.10). Then there exists a

unique solution Φ = (k, ν, g, x) ∈ C([0, T ], E1) ∩ C1([0, T ], E0) of the
governing system of equations (3.5) – (3.8) defined on some small time
interval [0, T ] , T > 0. Moreover, if Φ is a maximal solution defined on
[0, Tmax) then we have either

• either Tmax = +∞,

• or lim inft→T−
max

minΓt β
′
k(x, k, ν) = 0,

1Alternatively, one may consider the normal velocity β depending directly on the
unit inward normal vector ~N belonging to the linear vector space (h2k+%(S1))2, i.e.
β = β(k, x, ~N).
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• or Tmax < +∞ and maxΓt |k| → ∞ as t→ Tmax.

Remark. The structural condition (3.10) has been relaxed for the
case of the curvature adjusted tangential velocity by Ševčovič and
Yazaki in [110]. In Chapter 4 we present a generalization of The-
orem 3.5 to the case of the so-called curvature adjusted tangential
velocity (see Theorem 4.1). It extends Theorem 3.5 for curvature
driven flows whose normal velocity may contain non-local terms.
Remark. In a general case where the normal velocity may depend on
the position vector x, the maximal time of existence of a solution can
be either finite or infinite. Indeed, as an example one can consider
the unit ball B = {|x| < 1} and function δ(x) = (|x| − 1)γ for x 6∈ B,
γ > 0. Suppose that Γ0 = {|x| = R0} is a circle with a radius R0 > 1
and the family Γt, t ∈ [0, T ), evolves according to the normal velocity
function β(x, k) = δ(x)k. Then, it is an easy calculus to verify that the
family Γt approaches the boundary ∂B = {|x| = 1} in a finite time
Tmax < ∞ provided that 0 < γ < 1 whereas Tmax = +∞ in the case
γ = 1.

At the end of this section we recall result due to Mikula and
Ševčovič [85] on existence and uniqueness of solution to curvature
driven flow with degenerate normal velocity. We will assume that the
normal velocity function v = β(k, ν) has the form

β(k, ν) = γ(ν)|k|m−1k,

where m > 0 and γ : R → R+ is a strictly positive and bounded C∞

smooth anisotropy function. The proof of the following theorem is
based on iterative boot-strap estimates of Nash-Moser type.

Theorem 3.6 [85, Theorems 5.6 and 6.3] Suppose that β(k, ν) =
γ(ν)|k|m−1k, where 0 < m ≤ 2. Let Γ0 = Img(x0) be a smooth regular
plane curve such that (k0, ν0, g0)T ∈ O1 ⊂ E1 = h2+%×h2+%

∗ ×h1+%. We
also suppose that Γ0 satisfies the condition

∫
Γ0 |k0|1−m ds <∞.

Then there exists T > 0 and a family of regular plane curves Γt =
Img(x(., t)), t ∈ [0, T ] such that

1) x, ∂ux ∈ (C(QT ))2, ∂2
ux, ∂tx, ∂u∂tx ∈ (L∞(QT ))2;

2) the flow Γt = Img(x(., t)), t ∈ [0, T ] of regular plane curves satis-
fies the geometric equation

∂tx = β ~N + α~T ,
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where β = β(k, ν) and α is the tangential velocity preserving the
relative local length, i.e.,

|∂ux(u, t)|
Lt

=
|∂ux0(u)|

L0

for any t ∈ [0, T ] and u ∈ [0, 1].

The assumption
∫

Γ0 |k0|1−m ds < ∞ might seem to be restrictive.
But it is fulfilled in the case when the initial curve Γ0 is strictly convex
or in the case of a non-convex smooth curve whose inflection points
have at most (2+1/(m− 1))-order contact with their tangents. As an
example one can consider the Bernoulli lemniscate (x2 + y2)2 = 4xy
having the third-order contact with its tangents at the origin so this
condition is satisfied iff 1 < m < 2.



Chapter 4
Numerical methods for the
direct approach

Analytical methods for mathematical treatment of the geometric
equation (1.1) are strongly related to numerical techniques for com-
puting curve evolutions. In the direct approach one seeks for a
parametrization of the evolving family of curves. By solving the so-
called intrinsic heat equation

∂tx = β ~N + α~T

one can directly find a position vector of a curve (see, e.g. Deckelnick
[33, 34, 35], Mikula and Ševčovič [84, 85, 86, 87, 88]). There are
also other direct methods based on the solution of a porous medium–
like equation for curvature of a curve (see Mikula and Kačur [83,
82]), a crystalline curvature approximation due to Girão and Kohn
[46, 47], Ushijima and Yazaki [122], special finite difference schemes
by Kimura [65, 66], motion of polygonal curves in an equivalent class
by Beneš, Kimura, Tagami and Yazaki [16, 15, 67], and a method
based on erosion of polygons in the affine invariant scale case due to
Moissan [93].

The direct approach for solving (1.1) can be accompanied by a
suitable choice of a tangential velocity α significantly improving and
stabilizing numerical computations. It was documented by many
authors (see, e.g. Deckelnick [31], Hou, Lowengrub and Shelley
[56, 55], Mikula and Ševčovič [84, 85, 86, 87]). We show that tan-
gential velocity stabilizes semi-implicit scheme. The tangential re-
distribution is related to an integral average of kβ along the curve

43



44 Numerical methods for the direct approach

and not to point-wise values of kβ. The point-wise influence of this
term would lead to severe time step restriction in a neighborhood of
corners while our approach benefits from an overall smoothness of
the curve. Thus the method allows for choosing of larger time steps
without loss of stability.

In this chapter we discuss a fully discrete numerical scheme for
the direct approach for solving the geometric equation (1.1). It is
based on numerical approximation of a solution to the system of
governing equations (2.9)–(2.12). The numerical scheme is semi-
implicit in time, i.e. all nonlinearities are treated from the previous
time step and linear terms are discretized at the current time level.
Then we solve tridiagonal systems in every time step in a fast and
simple way by means of the Thomas algorithm.

We remind ourselves that other popular techniques, like, e.g.
level-set method due to Osher and Sethian [116, 98] or phase-
field approximations (see e.g. Caginalp, Elliott et al. or Beneš
[23, 37, 12, 14]) treat the geometric equation (1.1) by means of
a solution to a higher dimensional parabolic problem. In compari-
son to these methods, in the direct approach one space dimensional
evolutionary problems are solved only.

4.1 A role of the choice of a suitable tan-
gential velocity

The main purpose of this section is to discuss various possible choices
of the tangential velocity functional α appearing in the system of
governing equations (2.9)–(2.12). In this system α can be viewed
as a free parameter, which has to be determined in an appropri-
ate way. Recall that k, ν, g, x do depend on α but the family {Γt =
Img(x(·, t)), t ∈ [0, T )}, itself is independent of a particular choice of
α.

To motivate further discussion, we recall some computational ex-
amples in which the usual choice α = 0 fails and may lead to serious
numerical instabilities like, e.g. formation of the so-called swallow
tails. In Fig. 4.1 and 4.2 we computed the mean curvature flow of two
initial curves (bold faced curves). We chose α = 0 in the experiment
shown in Fig. 4.1. It should be obvious that numerically computed
grid points merge in some parts of the curve Γt preventing thus nu-
merical approximation of Γt, t ∈ [0, T ), to be continued beyond some
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Figure 4.1: Merging of numerically computed grid points in the case of
the vanishing tangential velocity functional α = 0. Source: Mikula and
Ševčovič [85].

time T, which is still far away from the maximal time of existence
Tmax. These examples also showed that a suitable grid points redis-
tribution governed by a nontrivial tangential velocity functional α is
needed in order to compute the solution on its maximal time of exis-
tence.

The idea behind the construction of a suitable tangential veloc-
ity functional α is rather simple and consists in the analysis of the
quantity θ defined as follows:

θ = ln(g/L),

where g = |∂ux| is a local length and L is a total length of a curve
Γ = Img(x). The quantity θ can be viewed as the logarithm of the
relative local length g/L. Taking into account equations (2.11) and
(2.13) we have

∂tθ + kβ − 〈kβ〉Γ = ∂sα . (4.1)

By appropriate choice of ∂sα in the right hand side of (4.1) we can
therefore control behavior of θ. Equation (4.1) can be also viewed
as a kind of a constitutive relation determining redistribution of grid
points along a curve.
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4.1.1 Non-locally dependent tangential velocity func-
tional

We first analyze the case when ∂sα (and so does α) depends on other
geometric quantities k, β and g in a non-local way. The simplest pos-
sible choice of ∂sα is:

∂sα = kβ − 〈kβ〉Γ (4.2)

yielding ∂tθ = 0 in (4.1). Consequently,

g(u, t)

Lt
=
g(u, 0)

L0
for any u ∈ S1, t ∈ [0, Tmax) .

Recall that in Theorem 3.6 we proved local existence and uniqueness
of solution to the governing system of equations.

Notice that α can be uniquely computed from (4.2) under the
additional renormalization constraint: α(0, t) = 0, i.e. one point
x0 = x(0, t) is not moved in the tangential direction. In the sequel,
tangential redistribution driven by a solution α to (4.2) will be ref-
ereed to as a parametrization preserving relative local length. It has
been first discovered and utilized by Hou et al. in [56, 55] and inde-
pendently by Mikula and Ševčovič in [84, 85, 86, 87].

A general choice of α is based on the following setup:

∂sα = kβ − 〈kβ〉Γ +
(
e−θ − 1

)
ω(t), (4.3)

where ω ∈ L1
loc([0, Tmax)) is an auxiliary positive redistribution func-

tion. If we additionally suppose∫ Tmax

0

ω(τ) dτ = +∞ (4.4)

then, after insertion of (4.3) into (4.1) and solving the ODE ∂tθ =(
e−θ − 1

)
ω(t), we obtain θ(u, t)→ 0 as t→ Tmax and hence

g(u, t)

Lt
→ 1 as t→ Tmax uniformly w.r. to u ∈ S1.

In this case, redistribution of grid points along a curve becomes uni-
form as t approaches the maximal time of existence Tmax. We will
refer to the parametrization based on (4.3) to as an asymptotically
uniform parametrization. The impact of the tangential velocity func-
tional defined as in (4.2) on enhancement of redistribution of grid
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Figure 4.2: Effect of asymptotically uniform tangential redistribution ve-
locity α on enhancement of spatial grids redistribution. Source: Mikula and
Ševčovič [85].

points can be observed from two examples shown in Fig. 4.2 com-
puted by Mikula and Ševčovič in [85].

Asymptotically uniform redistribution of grid points is of a par-
ticular interest in the case when the family {Γt, t ∈ [0, T )} shrinks
to a point as t → Tmax, i.e. limt→Tmax L

t = 0. Then one can choose
ω(t) = κ2〈kβ〉Γt where κ2 > 0 is a positive constant. By (2.13),∫ t

0
ω(τ) dτ = −κ2

∫ t
0

lnLτdτ = κ2(lnL0 − lnLt)→ +∞ as t→ Tmax.
On the other hand, if the length Lt is away from zero and Tmax = +∞
one can choose ω(t) = κ1, where κ1 > 0 is a positive constant in order
to fulfill assumption (4.4).

Summarizing, in both types of grid points redistributions dis-
cussed above, a suitable choice of the tangential velocity functional
α is given by a solution to the equation:

∂sα = kβ − 〈kβ〉Γ + (L/g − 1)ω , α(0) = 0 , (4.5)

where ω = κ1 + κ2〈kβ〉Γ and κ1, κ2 ≥ 0 are given constants.

If we insert the tangential velocity functional α computed from
(4.5) into (2.9)–(2.12) and make use of the identity α∂sk = ∂s(αk)−
k∂sα then the system of governing equations can be rewritten as fol-
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lows:

∂tk = ∂2
sβ + ∂s(αk) + k〈kβ〉Γ + (1− L/g) kω , (4.6)

∂tν = β′k∂
2
sν + (α + β′ν)∂sν +∇xβ · ~T , (4.7)

∂tg = −g〈kβ〉Γ + (L− g)ω , (4.8)

∂tx = β ~N + α~T . (4.9)

It is worth to note that the strong reaction term k2β in (2.9) has
been replaced by the averaged term k〈kβ〉Γ in (4.6). A similar phe-
nomenon can be observed in (4.8). This is a very important feature
of non-local tangential velocity as it allows for construction of an ef-
ficient and stable numerical scheme.

4.1.2 Locally dependent tangential velocity func-
tional

Another possibility for grid points redistribution along evolved curves
is based on a tangential velocity functional defined locally. If we
take α = ∂sθ, i.e. ∂sα = ∂2

sθ then the constitutive equation (4.1)
reads as follows: ∂tθ + kβ − 〈kβ〉Γ = ∂2

sθ. Since this equation has a
parabolic nature one can expect that variations in θ are decreasing
during evolution and θ tends to a constant value along the curve Γ
due to the diffusion process. The advantage of the particular choice

α = ∂sθ = ∂s ln(g/L) = ∂s ln g (4.10)

has been already indirectly observed by Deckelnick in [31]. He ana-
lyzed the mean curvature flow of planar curves (i.e. β = k) by means
of a solution to the intrinsic heat equation

∂tx =
∂2
ux

|∂ux|2
, u ∈ S1, t ∈ (0, T ),

describing the evolution of the position vector x of a curve Γt =
Img(x(·, t)). By using Frenét’s formulae we obtain ∂tx = k ~N + α~T
where α = ∂s ln g = ∂s ln(g/L) = ∂sθ.

Inserting the tangential velocity functional α = ∂sθ = ∂s(ln g) into
(2.9)–(2.12) we obtain the following system of governing equations:
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∂tk = ∂2
sβ + α∂sk + k2β, (4.11)

∂tν = β′k∂
2
sν + (α + β′ν)∂sν +∇xβ · ~T , (4.12)

∂tg = −gkβ + g∂2
s (ln g), (4.13)

∂tx = β ~N + α~T . (4.14)

Notice that equation (4.13) is a nonlinear parabolic equation whereas
(4.8) is a non-local ODE for the local length g.

4.1.3 Curvature adjusted tangential velocity

Besides these uniform or asymptotically uniform redistribution meth-
ods, in the so-called crystalline curvature flow, the grid points are
distributed densely (sparsely) in those part of the curve where the
absolute value of the curvature is large (small). Although this redis-
tribution is far from being uniform, numerical computation is quite
stable. One of the reasons for such behavior is that polygonal curves
are restricted to a class of admissible facet directions. In order to ex-
tract essence of the crystalline curvature flow of polygonal curves and
generalize it to a wide class of plane curve evolution, Yazaki [124]
showed that the tangential velocity α = −∂sβ/k is implicitly involved
in the crystalline curvature flow of planar curves.

Our aim is to design the relative local length ratio and, subse-
quently, α such that redistribution takes into account the shape of
the limiting curve. In other words, how to densely (sparsely) redis-
tribute grid points on those parts of a curve where the modulus of
the curvature is large (small).

The modulus |k| of curvature will be measured by the shape func-
tion ϕ(k). As an example of a shape function one can consider
ϕ(k) ≡ 1 or ϕ(k) = |k|. Now, let us introduce a generalized rela-
tive local length adopted to the shape function ϕ as follows:

rϕ(u, t) =
g(u, t)

Lt
ϕ(k(u, t))

〈ϕ(k(·, t))〉
, u ∈ [0, 1], t ∈ [0, T ). (4.15)

Here, the bracket 〈F 〉 denotes the average of function F over the
curve Γ.

Next we explain the role of the generalized ratio rϕ. Suppose,
for a moment, that rϕ(u, t) ≡ 1 for all u at a time t. Hence, if |k|
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is above/below the average in the sense that ϕ(k) ≷ 〈ϕ(k)〉, then
g ≶ L holds, respectively. Therefore the distribution of grid points on
corresponding sub-arcs is dense/sparse, respectively.

In [109] Yazaki and Ševčovič constructed the tangential velocity
α with the property that the generalized ratio rϕ tends to unity as
t → Tmax (see also [19]). Using the expression (4.15) and following
similar ideas as in Section 4.1.1 the curvature adjusted tangential
velocity α is given by the equation:

∂s(ϕ(k)α) = f − 〈f〉
〈ϕ(k)〉

ϕ(k) + ω(t)ϕ(k)(r−1
ϕ − 1). (4.16)

where f = ϕ(k)kβ − ϕ′(k) (∂2
sβ + k2β) and ω is a redistribution func-

tion. In order to construct a unique solution α, we assume the fol-
lowing renormalization condition for α:

〈ϕ(k)α〉 = 0. (4.17)

We refer to the paper by Yazaki and Ševčovič [109] for details on
the derivation of the curvature adjusted tangential velocity. The ap-
proach can be applied to the motion of open curves (cf. Osaki, Satoh,
and Yazaki [97]) or the Hele-Shaw or combined with the boundary
element method (cf. Yazaki [125]).

Clearly, if ϕ(k) ≡ 1 we obtain the uniform (if ω = 0) or asymptot-
ically uniform tangential redistribution (if

∫ Tmax
0

ω(τ)dτ = ∞) intro-
duced in Section 4.1.1.

Suppose that the evolving curve Γt is convex. If we consider the
shape function ϕ(k) = |k| and ω(t) ≡ 0, then, with regard to (4.16)
we have ∂s(kα) = −∂2

sβ. Taking into account the renormalization
constraint 〈ϕ(k)α〉 = 0 we end up with α = −∂sβ/k. This is ex-
actly the same tangential velocity as it was derived by Yazaki in the
continuous limit of the crystalline curvature flow (see [124]).

Minimization of the length and area discrepancy and curvature
adjusted tangential redistribution

In [109] we studied an interesting question what is the optimal redis-
tribution of a finite number of vertices {x1, x2, · · · , xN} belonging to
a given smooth closed curve Γ such that the discrepancy between the
length or area of Γ and that of a polygon spanned by those vertices
is minimal. Using the Lagrange multipliers method (cf., e.g. Hamala
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Figure 4.3: Various redistributions of N = 12 grid points along the ellipse:
(left) the length discrepancy minimizing curvature adjusted redistribution
with ϕ(k) = |k|2/3, and (right) the area discrepancy minimizing curvature
adjusted redistribution with ϕ(k) = |k|1/3. Source: Ševčovič and Yazaki
[109].

and Trnovská [52, Chapter 1]) we found optimal solutions to the
discrete optimization problems:

min
X⊂Γ

(L(Γ)− L(X)), min
X⊂Γ

(A(Γ)−A(X)), (4.18)

for the minimization of the length approximation discrepancy
and area approximation discrepancy, respectively. Here, X =
{x1, x2, · · · , xN} are discrete points belonging to a given curve Γ,
L(X) and A(X) are the length and area of the polygon poly(X).
We proved that, in the limit N → ∞, the length/area discrepancy
minimizing redistribution of X = {x1, x2, · · · , xN}, is related to the
curvature adjusted redistribution discussed in previous section with
the shape functions

ϕ(k) = |k|2/3 for the length discrepancy,

ϕ(k) = |k|1/3 for the area discrepancy.

Local existence, uniqueness and continuation of solutions

Unfortunately, except of the case ϕ(k) ≡ 1 the local existence result
Theorem 3.5 from Chapter 3 cannot be applied directly because the
structural condition (3.10) is not satisfied. This is due to the fact
that the right-hand side of the equation (4.16) contains the second
derivative of β = β(k, ν, x) and, as a consequence we obtain

α ∈ C1(O 1
2
, h%(S1)) (4.19)

(see [110, Lemma 1]). Hence ∂sα entering the governing equation
for the local length (3.7) need not exist. But this drawback can be
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overcome by a simple “trick” developed in our paper [110]. Instead
of g we will consider the equation for the relative ratio rϕ. With re-
gard to the construction of the curvature adjusted tangential velocity
we obtain

∂tk = ∂2
sβ + α∂sk + k2β, (4.20)

∂tν = β′k∂
2
sν + (α + β′ν)∂sν +∇xβ.~T , (4.21)

∂trϕ = (rϕ − 1)(κ1 + κ2〈kβ〉), (4.22)

∂tx = w∂2
sx+ α∂sx+ F ~N, (4.23)

which is equivalent to the system (3.5)–(3.8) for the case when the
normal velocity is rewritten in the form:

β(k, ν, x) = w(k, ν, x)k + F (ν, x)

and ω ≡ κ1 + κ2〈kβ〉. Indeed, we can express the differential

ds = g−1du =
L〈ϕ(k)〉
ϕ(k)

rϕdu

and consequently the derivative ∂s in terms of rϕ, k and the derivative
∂u.

A solution Φ = (k, ν, rϕ, x) to the system of PDEs (4.20)–(4.23)
is subject to the initial condition Φ(·, 0) = Φ0 corresponding to the
initial curve Γ0 = Img(x0).

Similarly as in Theorem 3.5 (see Chapter 3) we define the follow-
ing scale of Banach space

Eµ = h2µ+% × h2µ+%
∗ × h1+% × (h2µ+%)2 for µ = 0, 1/2, 1.

By h2µ+%
∗ (S1) we denoted the Banach manifold h2µ+%

∗ (S1) = {ν : R→
R , ~N = (− sin ν, cos ν)T ∈ (h2µ+%(S1))2}. Here, h2µ+% is the little
Hölder space (see Chapter 3).

Assuming ϕ = ϕ(k) and β = β(k, ν, x) are at least C3 smooth
functions such that ϕ(k) > 0 and β is a 2π-periodic function in the ν
variable. Furthermore, by O 1

2
⊂ E 1

2
we will denote a bounded open

subset such that rϕ > 0 for any (k, ν, rϕ, x) ∈ O 1
2
. Following similar

techniques as in the proof of Theorem 3.5, in [110] Ševčovič and
Yazaki proved the following local existence and uniqueness result:
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Theorem 4.1 [110, Theorem 1] Assume Φ0 = (k0, ν0, rϕ0, x0) ∈ E1

where k0 is the curvature, ν0 is the tangential vector, rϕ0 > 0 is the ϕ-
adjusted relative local length of an initial regular curve Γ0 = Img(x0).
Assume ϕ(k) > 0 and β ≡ β̃(k, ν, x) + FΓ where β̃ : R2 × R × R → R
and ϕ : R→ R are C3 smooth functions of their arguments such that β̃
is a 2π-periodic function in the ν variable and minΓ0 β̃

′
k(k0, ν0, x0) > 0.

The non-local part of the normal velocity FΓ is assumed to be a C1

smooth function from a neighborhood O 1
2
⊂ E 1

2
of Φ0 into R, i.e. FΓ ∈

C1(O 1
2
,R).

Then there exists a unique solution Φ = (k, ν, rϕ, x) ∈ C([0, T ], E1)∩
C1([0, T ], E0) of the governing system of equations (4.20)–(4.23) de-
fined on some time interval [0, T ] , T > 0.

Furthermore, in [110] we showed the following global existence
and continuation result:

Theorem 4.2 [110, Theorem 2] Let {Γt, t ≥ 0}, be a family of planar
curves evolving in the normal direction with the velocity β for which
short time existence of smooth solutions is guaranteed by Theorem 4.1.
Suppose that Γt, 0 ≤ t < Tmax, is a maximal solution defined on the
maximal time interval [0, Tmax). If Tmax < +∞ then

• either ‖k‖0,Γt + ‖β‖0,Γt →∞ as t→ Tmax,

• or sup0≤t<Tmax(‖k‖0,Γt + ‖β‖0,Γt) < ∞ and, in this case,
lim inft→T−

max
minΓt β̃

′
k(k, ν, x) = 0.

Here ‖F‖0,Γ = maxΓ |F | and ‖F‖1,Γ = maxΓ (|F |+ |∂sF |) are C0 and
C1 norms of a quantity F : Γ→ R.

4.2 Flowing finite volume approximation
scheme

The aim of this part is to review numerical methods for solving the
system of equations (2.9)–(2.12). We begin with a simple case in
which we assume the normal velocity to be an affine function of
the curvature with coefficients depending on the tangent angle only.
Next we consider a slightly generalized form of the normal velocity
in which coefficients may also depend on the position vector x.
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In our computational method a solution of the evolution equation
(1.1) is represented by discrete plane points xji , i = 0, · · · , n, j =
0, · · · ,m, where index i represents space discretization and index j a
discrete time stepping. Since we only consider closed initial curves
the periodicity condition x0

0 = x0
n is required at the beginning. If we

take a uniform division of the time interval [0, T ] with a time step
τ = T/m and a uniform division of the fixed parametrization inter-
val [0, 1] with a step h = 1/n, a point xji corresponds to x(ih, jτ).
Difference equations will be given for discrete quantities kji , ν

j
i , r

j
i ,

i = 1, · · · , n, j = 1, · · · ,m representing piecewise constant approx-
imations of the curvature, tangent angle and element length for the
segment

[
xji−1, x

j
i

]
and for αji representing tangential velocity of the

flowing node xj−1
i .

Then, at the j-th discrete time level, j = 1, · · · ,m, the approxima-
tion of the curve is given by a discrete version of the position vector
reconstruction formula

xji = xj0 +
i∑
l=1

rjl (cos(νjl ), sin(νjl ))
T , i = 1, · · · , n. (4.24)

Using the Newton-Leibniz formula and constant approximation of the
quantities inside flowing control volumes, at any time t we get

αi − αi−1 = rikiβ(ki, νi)− riB − ω
(
ri −

L

n

)
.

By taking discrete time stepping, for values of the tangential velocity
αji we obtain

αji = αji−1+rj−1
i kj−1

i β(kj−1
i , νj−1

i )−rj−1
i Bj−1−ω(rj−1

i −M j−1), (4.25)

i = 1, · · · , n, with αj0 = 0 (xj0 is moving only in the normal direction)
where

M j−1 =
1

n
Lj−1, Lj−1 =

n∑
l=1

rj−1
l , Bj−1 =

1

Lj−1

n∑
l=1

rj−1
l kj−1

l β(kj−1
l , νj−1

l )

and ω = κ1 + κ2B
j−1, κ1, κ2 are redistribution parameters.

Using the similar approach as above, we obtain

dri
dt

+ riB + riω = ω
L

n
,
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where ri is the approximation of the local length g = |∂ux| at xi.
By taking a backward time difference we obtain an update for local
lengths

rji =
rj−1
i + τωM j−1

1 + τ(Bj−1 + ω)
, i = 1, · · · , n, rj0 = rjn, rjn+1 = rj1. (4.26)

Local lengths are used for approximation of intrinsic derivatives
in (2.9) – (2.12). Integrating the equation for the curvature (2.9) in
flowing control volume [xi−1, xi] we obtain

ri
dki
dt

= [∂sβ(k, ν)]xixi−1
+ [αk]xixi−1

+ ki(ri(B + ω)− ωL
n

).

Now, by replacing the time derivative by the time difference, approx-
imating k in nodal points by the average value of neighboring seg-
ments, and using the semi-implicit approach we obtain a tridiagonal
system with periodic boundary conditions imposed for new discrete
values of the curvature

ajik
j
i−1+bjik

j
i +cjik

j
i+1 = dji , i = 1, · · · , n, kj0 = kjn, k

j
n+1 = kj1. (4.27)

A similar tridiagonal system of discrete equations can be obtained for
the discrete values of the tangent angle νji . Solving tridiagonal equa-
tions for the curvature and tangent angle is fast and efficient because
we can apply the fast Thomas algorithm. The point xj−1

0 is moved in
the normal direction by βj ~N j only due to the zero tangential velocity
αj0 = 0.

Normal velocity depending on the tangent angle and the position
vector

Next we consider a more general motion of the curves with explicit
dependence of the flow on position x and suggest numerical scheme
for such a situation. We consider (1.1) with a linear dependence of β
on the curvature, i.e.

β(k, ν, x) = δ(x, ν)k + c(x, ν),

where δ(x, ν) > 0. By using Frenét’s formulae one can rewrite the
position vector equation (2.12) as an intrinsic convection-diffusion
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equation for the vector x and we get the system

∂tk = ∂2
sβ + ∂s(αk) + k

1

L

∫
Γ

kβds+ kω(1− L

g
) , (4.28)

∂tν = β′k∂
2
sν + (α + β′ν)∂sν +∇xβ · ~T , (4.29)

∂tg = −g 1

L

∫
Γ

kβds− ω(g − L) , (4.30)

∂tx = δ(x, ν)∂2
sx+ α∂sx+ ~C(x, ν) , (4.31)

where ~C(x, ν) = c(x, ν) ~N = c(x, ν)(− sin ν, cos ν)T . In comparison
to the scheme given above, two new tridiagonal systems have to be
solved at each time level in order to update the curve position vector
x.

4.3 Tangential redistribution for the mean
curvature driven flow of surfaces

In this section we present the key steps of derivation of construction
of the tangential velocity for the mean curvature flow of surfaces
driven in the normal direction by the geometric equation (1.2), i.e.
v = H + F, where H is the mean curvature and F is a given external
force.

We will consider a flow of immersed n-dimensional manifolds
{Mt, t ≥ 0} driven by (1.2). We will assume that an immersed man-
ifoldM is parametrized by a mapping

X : U ⊂ Rn → Rn+1,

where X is a differentiable immersion, i.e. its derivative X ′(u) ∈
TX(u)(M) is injective for all u ∈ U . For simplicity, we will consider
a manifold without boundary, i.e. ∂M = ∅. This assumption simpli-
fies derivation of the tangential velocity vector. A general case when
∂M 6= ∅ is discussed in a detail in the paper [102] by Remeš́ıková,
Mikula, Sarkoci and Ševčovič.

First, we recall necessary definitions and notion from differential
geometry. Let us proceed with definition of the corresponding Rie-
mannian metric, which is an n× n matrix g = (gij)i,j=1,··· ,n, where

gij = ∂uiX · ∂uiX.
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x

1T

2TN

M

Figure 4.4: A manifoldM, its unit normal vector N and tangential vectors
T 1, T 2 ∈ TX(M) at a point X ∈M.

Here, “·” stands for the Euclidean inner product in Rn+1. Let us
denote by g−1 = (gij)i,j=1,··· ,n the inverse matrix of g. Let A =
(hij)i,j=1,··· ,n, be the second fundamental form, hij being defined as:
hij = ∂2

uiuj
X · ~N, where ~N is the unit normal vector to M at the

point X. Now the mean curvature H is just the trace of the second
fundamental form, i.e.

H = trace(g−1A) = gijhij,

where we have used the Einstein convention for summation of re-
peating indices. For example, the N dimensional sphere of the radius
r > 0 has the mean curvature H = N/r.

Let β : M → Rm be a function (scalar or vector valued). The
Laplace-Beltrami operator of β is defined as

∆Mβ = gij
(
∂2
uiuj

β(X(u))− Γkij∂ukβ(X(u))
)
,

where Γkij = 1
2
gkl(∂uiglj + ∂ujgil − ∂ulgij) are the Christoffel symbols

of the second kind. For example, if β(X) = X is the position vector
then

∆MX = H ~N.

The position vector equation for time evolving family {Mt =
ImgX(·, t), t ≥ 0}, has the general form

∂tX = β ~N + αk∂ukX,
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where ∂ukX, k = 1, · · · , n, are tangent vectors (not necessarily of
the unit length) and αk, k = 1, · · · , n, are components of the tan-
gential velocity vector. The unit tangent vectors are then given by
~T k = ∂ukX/|∂ukX| (see Fig. 4.4). Similarly as in the previous section,
derivation of a suitable tangential velocity relies on the equations for
the entries gij of the Riemannian metrics g. After long but straight-
forward calculations Ševčovič in 2001 in unpublished note showed
that

∂tgij = −2βhij + αk∂ukgij + ∂uiα
kgkj + ∂ujα

kgik.

Therefore for G =
√

det g we have

∂tG = −βHG+ ∂uk(Gα
k).

This formula has been also derived by Bauer et al. [10].
Recall that for the total area A of the manifold M we have the

expression

A =

∫
M
dχn =

∫
U
Gdu,

where dχn = Gdu is the n-dimensional Hausdorff measure.
Similarly, as in the one dimensional case of evolution of curves our

aim is to control the ratioG/A of the local areaGwith respect to total
area A of the surfaceM. Using expression for the time derivative of
G we conclude

d

dt

G

A
=
G

A

(
−βH + 〈βH〉M +

1

G
∂uk(Gα

k)

)
,

where 〈βH〉M = 1
A

∫
M βHdχn is the average of βH over the manifold

M. Here, we have used the assumption that the manifoldM has no
boundary and so integration of the term 1

G
∂uk(Gα

k) over M yields
zero.

Now, if we choose the tangential velocities αk, k = 1, · · · , n, such
that

1

G
∂uk(Gα

k) = βH − 〈βH〉M (4.32)

we obtain
d

dt

G

A
= 0 and so

G(u, t)

At
=
G(u, 0)

A0

uniformly with respect to u ∈ U . Therefore it yields uniform redis-
tribution. On the other hand, if we choose the tangential velocities
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αk, k = 1, · · · , n, such that

1

G
∂uk(Gα

k) = βH − 〈βH〉M +
(A
G
− 1
)
ω, (4.33)

where ω is a non-negative function such that
∫ Tmax

0
ω(τ)dτ =∞ then

our tangential velocities yield

lim
t→Tmax

G(u, t)

At
= 1 uniformly w.r. to u ∈ U ,

resulting thus in the asymptotically uniform redistribution, which
was derived by Remeš́ıková, Mikula, Sarkoci and Ševčovič in [102].

The tangential velocity vector αk, k = 1, · · · , n, can be chosen as
a gradient of a scalar tangential velocity potential ψ such that

α = ∇Mψ, and so
1

G
∂uk(Gα

k) = divM(α) = ∆Mψ. (4.34)

This form of tangential velocity simplifies computation of α. The
uniform redistribution with scalar tangential velocity potential (4.34)
has been used in practical computations of mean curvature evolving
surfaces by Morigi in [94].

In Fig. 4.5 we present the comparison of the evolution of the ini-
tial surface with and without tangential redistribution. It was evolved
in the normal direction by the mean curvature. The left column de-
picts evolution without consideration of a tangential redistribution
whereas the right column illustrates its evolution when asymptot-
ically uniform redistribution was applied. We can observe signifi-
cantly better redistribution of discretization triangles when compared
to those obtained without redistribution. The results were obtained
by Remeš́ıková, Mikula, Sarkoci and Ševčovič in [102].
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Figure 4.5: Mean curvature driven evolution of an initial closed surface
without tangential redistribution (left) and with the asymptotically uniform
tangential redistribution (right). Source: Remeš́ıková, Mikula, Sarkoci and
Ševčovič [102].



Chapter 5
Applications of the direct
Lagrangian approach in
curvature driven flows

The purpose of this chapter is to present results dealing with appli-
cations of the direct Lagrangian approach in various applied fields.
We first review numerical results of the flowing finite volume numer-
ical scheme described in Sections 4.2 and 4.3. Then we derive the
governing equation for the evolution of curves driven by the geodesic
curvature on a given surface and we present applications to construc-
tion of closed geodesic curves on a given surface. the following sec-
tion is devoted to results of edge detection in image segmentation.
We present a model for edge detection in static images as well as a
model for tracking moving boundaries. Next we discuss theoretical
results on nonlinear stability of a triple junction of a network of plane
curves describing phase interfaces. Final sections are devoted to the
study of non-local flows with special attention to gradient flows min-
imizing the isoperimetric ratio in the relative Finsler geometry and
the inverse Wulff problem.

5.1 Computation of curvature driven evolu-
tion of planar curves with external force

In the following figures we present numerical solutions computed
by the scheme discussed in Section 4.2. Initial curves are plotted

61
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Figure 5.1: Isotropic curvature driven motion, β(k, ν) = εk+F,with ε = 1,
F = 10, without (left) and with (right) uniform tangential redistribution of
grid points. Source: Mikula and Ševčovič [86].

with a thick line and the numerical solution is given by solid lines
with points representing the motion of grid points during the curve
evolution. In Fig. 5.1 we compare computations with and without
tangential redistribution for a large driving force F . As an initial
curve we chose x1(u) = cos(2πu), x2(u) = 2 sin(2πu)− 1.99 sin3(2πu),
u ∈ [0, 1]. Without redistribution, the computations are collapsing
soon because of the degeneracy in local element lengths in parts of a
curve with high curvature leading to a merging of the corresponding
grid points. Using the redistribution the evolution can be success-
fully handled. We used τ = 0.00001, 400 discrete grid points and we
plotted every 150th time step.

In Fig. 5.2 we present experiments with a three-fold anisotropy
starting with unit circle. We used τ = 0.001, 300 grid points and we
plotted every 50th time step (left) and every 750th time step (right).
In all experiments we chose redistribution parameters κ1 = κ2 = 10.

5.2 Flows of curves on a surface driven by
the geodesic curvature

The purpose of this section is to analytically and numerically inves-
tigate a flow of closed curves on a given graph surface M driven
by the geodesic curvature Kg. We show how such a flow can be re-
duced to a flow of vertically projected planar curves governed by a
solution of a fully nonlinear system of parabolic differential equa-
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Figure 5.2: Anisotropic curvature driven motion of the initial unit circle
including uniform tangential redistribution of grid points; β(k, ν) = γ(ν)k+
F, with γ(ν) = 1− 7

9 cos(3ν), F = 0 (left) and γ(ν) = 1− 7
9 cos(3ν), F = −1

(right). Source: Mikula and Ševčovič [86].

tions. We present various computational examples of evolution of
surface curves driven by the geodesic curvature are presented in this
part. The normal velocity V of the evolving family of surface curves
{Gt, t ≥ 0}, is proportional to the geodesic curvature Kg of Gt, i.e.

V = δKg, (5.1)

where δ = δ(X, ~N ) > 0 is a smooth positive coefficient describing
anisotropy depending on the position X and the orientation of the
unit inward normal vector ~N to the curve on a surface.

The idea how to analyze and compute numerically such a flow
is based on the so-called direct approach method applied to a flow
of vertically projected family of planar curves. Vertical projection of
surface curves on a simple surface M into the plane R2. It allows
for reducing the problem to the analysis of evolution of planar curves
Γt : S1 → R2, t ≥ 0 driven by the normal velocity v given as a
nonlinear function of the position vector x, tangent angle ν and as an
affine function of the curvature k of Γt, i.e.

v = β(x, ν, k) ≡= a(x, ν)k + c(x, ν), (5.2)

where a(x, ν) > 0, c(x, ν) are bounded smooth coefficients.
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5.2.1 Planar projection of the flow on a graph sur-
face

Throughout this section we will always assume that the surfaceM =
{(x, z)) ∈ R3, z = φ(x), x ∈ Ω} is a smooth graph of a function
φ : Ω ⊂ R2 → R defined in a domain Ω ⊂ R2. Hereafter, the symbol
(x, z) stands for a vector (x1, x2, z) ∈ R3, where x = (x1, x2) ∈ R2. In
such a case any smooth closed curve G on the surfaceM can be then
represented by its vertical projection to the plane, i.e. G = {(x, z) ∈
R3, x ∈ Γ, z = φ(x)} where Γ is a closed planar curve in R2.

In [87, 88] Mikula and Ševčovič showed, that for a curve G =
{(x, φ(x)) ∈ R3, x ∈ Γ} on a surface M = {(x1, x2, φ(x1, x2)) ∈
R3, (x1, x2) ∈ Ω} the geodesic curvature Kg is given by

Kg =
1(

1 + (∇φ · ~T )2
) 3

2

((
1 + |∇φ|2

) 1
2 k +

~T T∇2φ ~T

(1 + |∇φ|2)
1
2

∇φ · ~N

)
(5.3)

(see [87]). Moreover, the unit inward normal vector ~N ⊥ Tx(M) to
a surface curve G ⊂M relative toM can be expressed as

~N =

(
(1 + (∇φ · ~T )2) ~N − (∇φ.~T )(∇φ · ~N)~T , ∇φ · ~N

)
(

(1 + |∇φ|2)(1 + (∇φ.~T )2)
) 1

2

(see also [87]). Hence for the normal velocity V of Gt =
{(x, φ(x)), x ∈ Γt} we have

V = ∂t(x, φ(x)) · ~N = ( ~N,∇φ · ~N).β ~N =

(
1 + |∇φ|2

1 + (∇φ · ~T )2

) 1
2

β,

where β is the normal velocity of the vertically projected planar curve
Γt having the unit inward normal ~N and tangent vector ~T . Following
the so-called direct approach discussed in Chapter 2 (see also [31,
34, 35, 56, 82, 84, 85, 86, 87, 88]) the evolution of planar curves
Γt, t ≥ 0, can be described by a solution x = x(·, t) ∈ R2 to the
position vector equation ∂tx = β ~N + α~T where β and α are normal
and tangential velocities of Γt, respectively. Assuming the family of
surface curves Gt satisfies (5.1) it has been shown in [87] that the
geometric equation v = β(k, ν, x) for the normal velocity v of the
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vertically projected planar curve Γt can be written in the following
form:

v = β(k, ν, x) ≡ a(x, ν) k − b(x, ν)∇φ(x) · ~N, (5.4)

where a = a(x, ν) > 0 and b = b(x, ν) are smooth functions given by

a(x, ν) =
δ

1 + (∇φ · ~T )2
, b(x, ν) = −a(x, ν)

~T T∇2φ ~T

1 + |∇φ|2
, (5.5)

where δ(X, ~N ) > 0, X = (x, φ(x)), φ = φ(x), k is the curvature of Γt,

and ~N = (− sin ν, cos ν)T and ~T = (cos ν, sin ν)T are the unit inward
normal and tangent vectors to a curve Γt.

We can also consider a more general flow of curves on a given
surface driven by the normal velocity

V = Kg + F , (5.6)

where F is the normal component of a given external force ~G, i.e.
F = ~G· ~N . The external vector field ~G is assumed to be perpendicular
to the plane R2 and it may depend on the vertical coordinate z = φ(x)
only, i.e.

~G(x) = −(0, 0, γ),

where γ = γ(z) = γ(φ(x)) is a given scalar ”gravity” functional.
Assuming the family of surface curves Gt satisfies (5.6) it has been

shown in [87] that the geometric equation v = β(k, ν, x) for the nor-
mal velocity v of the vertically projected planar curve Γt can be writ-
ten in the following form:

v = β(k, ν, x) ≡ a(x, ν) k − b(x, ν)∇φ(x) · ~N,

where a = a(x, ν) > 0 and b = b(x, ν) are smooth functions given by

a(x, ν) =
1

1 + (∇φ · ~T )2
, b(x, ν) = a(x, ν)

(
γ(φ)−

~T T∇2φ ~T

1 + (∇φ · ~T )2
.

)
,

(5.7)
In order to compute the evolution of surface curves driven by the

geodesic curvature and external force we can use the numerical ap-
proximation scheme developed in Chapter 4 for the flow of vertically
projected planar curves driven by the normal velocity given as in
(5.4).
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Figure 5.3: (Left) a geodesic flow V = Kg on a surface with two humps
having different heights, (middle, right) a geodesic flow on a surface with
two sufficiently high humps. The evolving family of surface curves ap-
proaches a closed geodesic as t→∞. Source: Mikula and Ševčovič [88].

The next couple of examples illustrate a geodesic flow V = Kg on
a surface with two humps. In Fig. 5.3 (left) we show an example of
an evolving family of surface curves shrinking to a point in finite time.
In this example the behavior of evolution of surface curve is similar
to that of planar curves for which Grayson’s theorem holds. On the
other hand, in Fig. 5.3 (middle, right) we present the case when the
surface has two sufficiently high humps preventing evolved curve to
pass through them. As it can be seen from Fig. 5.3 (middle, right) the
evolving family of surface curves approaches a closed geodesic curve
Ḡ as t→∞.

The initial curve with large variations in the curvature is evolved
according to the normal velocity V = Kg+F where the external force
F = ~G · ~N is the normal projection of ~G = −(0, 0, γ) (see Fig. 5.4).
In the numerical experiment we considered a strong external force
coefficient γ = 30. The evolving family of surface curves approaches
a stationary curve Γ̄ lying in the bottom of the sharp narrow valley.
In the next section we will show how this flow can be applied to the
edge detection problem.

5.2.2 Stability of stationary curves

In this section we focus our attention on the analysis of closed sta-
tionary surface curves. We present sufficient conditions for their dy-
namic stability. A stationary curve is a surface curve Γ̄ satisfying
Kg +F = 0. Since there is a one-to-one correspondence between the
flow of curves on a given surface and the flow of vertically projected
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Figure 5.4: A geodesic flow on a flat surface with a sharp narrow valley.
Source: Mikula and Ševčovič [88].

planar curves we will be concerned with stationary planar curves sat-
isfying β(k, ν, x) = 0, where β is given by (5.4). Linearized stability
of stationary curves including, in particular, those arising from verti-
cal projections of curves on surfaces has been investigated by Mikula
and Ševčovič. We present the main result on linearized stability and
show how the linearized stability criterion can be verified on concrete
examples.

Definition 5.1 A closed smooth planar curve Γ̄ = Img(x̄) is called
a stationary curve with respect to the normal velocity β iff β̄ ≡
β(x̄, k̄, ν̄) = 0 on Γ̄ where x̄, k̄ and ν̄ are the position vector, curvature
and tangential angle of the curve Γ̄.

Before stating the main result we need to introduce the following
weight function w : [0, 1] → R, which plays an important role in the
stability criterion. Let us define the function w as follows:

w(u) =
ḡ

β̄′k
exp

(∫ u

0

β̄′ν
β̄′k
ḡ du

)
. (5.8)

It has been shown in [88, Proposition 3.2] that the weight func-
tion w is 1-periodic in the u-variable provided that the normal veloc-
ity β has one of the following forms:
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a) β(x, k) = a(x)k+ c(x) where a(x) > 0, c(x) are C1 smooth func-
tions;

b) β(k, ν, x) = a(φ(x))k − b(φ(x))∇φ · ~N where a(φ) > 0, b(φ) are
C1 smooth functions and φ(x) is C2 smooth;

c) β(k, ν, x) = a(x, ν)k− b(x, ν)∇φ · ~N where a, b are defined as in
(5.5) and φ(x) is a C2 smooth function.

The main result on linearized stability can be stated as follows:

Theorem 5.2 [88, Theorem 3.1, Corollary 3.2] t A stationary curve Γ̄
is linearly stable if supΓ̄Q < 0 and it is linearly unstable if

∫ 1

0
Qw du >

0 where Q = β̄′kk̄
2 +∇xβ̄ · ~̄N and w is the weight defined as in (5.8).

In the examples shown in Fig. 5.5 we present numerical results
of simulations of a surface flow driven by the geodesic curvature
and gravitational like external force, V = Kg + F , on a wave-let
surface given by the graph of the function φ(x) = f(|x|) where
f(r) = sin(r)/r and γ = 2. In the first example shown in Fig. 5.5
(left) we started from the initial surface curve having large varia-
tions in the geodesic curvature. The evolving family converges to the
stable stationary curve Γ̄ = {x, |x| = r̄} with the second smallest sta-
ble radius. Vertical projections of evolving surface curves are shown
in Fig. 5.5 (right).

5.3 Applications in the theory of image seg-
mentation

5.3.1 Edge detection in static images

A similar equation to (1.1) arises from the theory of image segmen-
tation in which detection of object boundaries occurring in the ana-
lyzed image plays an important role. A given black and white image
can be represented by its intensity function I : R2 → [0, 255]. The aim
is to detect edges of the image, i.e. closed planar curves on which the
gradient ∇I is large (see [62]). The method of the so-called active
contour models is to construct an evolving family of plane curves
converging to an edge (see [63]).



Applications of curvature driven flows 69

Figure 5.5: A surface flow on a wavelet like surface (left) and its vertical
projection to the plane (right). (Top) Surface curves converge to the stable
stationary circular curve Γ̄ = {x, |x| = r̄} with the smallest radius. Starting
from a different initial curve they converge to the stationary circle with the
second smallest radius (bottom). Source: Mikula and Ševčovič [88].



70 Applications of curvature driven flows

Figure 5.6: A ”dumb-bell” image (left), the corresponding function φ (mid-
dle) and and corresponding vector field −∇φ(x) (right). Source: Mikula
and Ševčovič [87].

One can construct a family of curves evolving by the normal ve-
locity v = β(k, ν, x) of the form

β(k, ν, x) = δ(x, ν)k + c(x, ν),

where c(x, ν) is a driving force and δ(x, ν) > 0 is a smoothing coeffi-
cient. These functions depend on the position vector x as well as the
orientation angle ν of a curve. Evolution starts from an initial curve,
which is a suitable approximation of the edge and then it converges
to the edge. If c > 0 then the driving force shrinks the curve whereas
the impact of c is reversed in the case c < 0. Let us consider an aux-
iliary function φ(x) = h(|∇I(x)|) where h is a smooth edge detector
function like, e.g. h(s) = 1/(1 + s2). The gradient −∇φ(x) has an
important geometric property: it points towards regions where the
norm of the gradient ∇I is large (see Fig. 5.6 right). Let us there-
fore take c(x, ν) = −b(φ(x))∇φ(x) · ~N and δ(x, ν) = a(φ(x)) where
a, b > 0 are given smooth functions. Now, if an initial curve belongs
to a neighborhood of an edge of the image and it is evolved according
to the geometric equation

v = β(k, ν, x) ≡ a(φ(x))k − b(φ(x))∇φ · ~N

then it is driven towards this edge. In the context of level set meth-
ods, edge detection techniques based on this idea were first discussed
by Caselles et al. and Malladi et al. in [25, 75] (see also [26, 27, 64]).

We apply our computational method to the image segmentation
problem. First, numerical experiment is shown in Fig. 5.7. We look
for an edge in a 2D slice of a real 3D echocardiography, which was
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Figure 5.7: An initial ellipse is inserted into the 2D slice of a prefiltered
3D echocardiography (left), the slice together with the limiting curve rep-
resenting the edge (right). Source: Mikula and Ševčovič [87]. The testing
data set (the image function I) is a courtesy of Prof. Claudio Lamberti,
DEIS, University of Bologna.

prefiltered by the method of [105]. We have inserted an initial ellipse
into the slice close to an expected edge (Fig. 5.7 left). Then it was
evolved according to the normal velocity described above using the
time stepping τ = 0.0001 and non-local redistribution strategy from
Chapter 4 with parameters κ1 = 20, κ2 = 1 until the limiting curve
has been formed (400 time steps). The final curve representing the
edge in the slice can be seen in Fig. 5.7 right.

Next we present results for the image segmentation problem com-
puted by means of a geodesic flow with external force discussed in
the previous section. We consider an artificial dumb-bell image from
Fig. 5.6. If we take φ(x) = 1/(1 + |∇I(x)|2) then the surface M
defined as a graph of φ has a sharp narrow valley corresponding to
points of the image in which the gradient |∇I(x)| is very large rep-
resenting an edge in the image. In contrast to the previous example
shown in Fig. 5.7 we will make use of the flow of curves on a surface
M driven by the geodesic curvature and the strong ”gravitational-
like” external force F . According to the previous section such sur-
face flow can be represented by a family of vertically projected plane
curves driven by the normal velocity

v = a(x, ν)k − b(x, ν)∇φ(x) · ~N,
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Figure 5.8: A geodesic flow on a flat surface with a sharp narrow valley
(left) and its vertical projection to the plane with density plot of the image
intensity function I(x) (right). Source: Mikula and Ševčovič [87].

where coefficients a, b are defined as in (5.5) with the strong external
force coefficient γ = 100. The results of computation are presented
in Fig. 5.8.

In [109] Yazaki and Ševčovič (see also Beneš et al. [19]) ap-
plied the curvature adjusted tangential velocity to the edge detection
problem. In Fig. 5.9 and 5.10 we show results of edge detection, es-
pecially in Fig. 5.10 the curvature adjusted tangential redistribution
was very useful due to sharp corners in the segmented image, even if
the number of points is not enough.

5.3.2 Tracking moving boundaries

In this section we describe a model for tracking boundaries in a se-
quence of moving images. Similarly as in the previous section the
model is based on curvature driven flow with an external force de-
pending on the position vector x.

Parametric active contours have been used extensively in com-
puter vision for different tasks like segmentation and tracking. How-
ever, all parametric contours are known to suffer from the problem
of frequent bunching and spacing out of curve points locally during
the curve evolution. In this part, we discuss the mathematical basis
for selecting such a suitable tangential component for stabilization.
We demonstrate the usefulness of the proposed choice of a tangen-
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Figure 5.9: (left) indicates the original bitmap image faded shadow
“Venus” (middle) indicates evolving curves starting from circle with radius
1.5, and the final segmented curve (right). Source: Ševčovič and Yazaki
[109].

Figure 5.10: (left) indicates the original bitmap image “ya” (it is the Chi-
nese character for arrow) evolving curves starting from circle with radius 2,
and the final curve (right). Source: Ševčovič and Yazaki [109].
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Figure 5.11: Illustration of curve degeneration. (Left) the initial curve in
red, (right) bunching of points (in red) starts due to target motion leading
to a loop formation. Tracking results for the same sequence as in Fig. 5.11
using a nontrivial tangential redistribution. Source: Srikrishnan, Chaud-
huri, Dutta Roy and Ševčovič [119].

tial velocity method with a number of experiments. The results in
this section can be found in the recent papers by Srikrishnan et al.
[118, 119].

The force at each point on the curve can be resolved into two
components: along the local tangent and normal denoted by α and
β, respectively. This is written as:

∂x

∂t
= β ~N + α~T . (5.9)

In this application, the normal velocity β has the form: β = µk+f(x)
where f is a bounded function depending on the position of a
curve point x. For the purpose of tracking we use the function
f(x) = log

(
ProbB(I(x))
ProbT (I(x))

)
and we smoothly cut-off this function if ei-
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ther ProbB(I(x)) or ProbB(I(x)) are less than a prescribed tolerance.
Here, ProbB(I(x)) stands for the probability that the point x belongs
to a background of the image represented by the image intensity
function I whereas ProbT (I(x)) represents the probability that the
point x belongs to a target in the image to be tracked. Both probabil-
ities can be calculated from the image histogram (see [118, 119] for
details).

In this field of application of a curvature driven flow of planar
curves representing tracked boundaries in moving images it is very
important to propose a suitable tangential redistribution of numer-
ically computed grid points. Let us demonstrate the importance
of tangential velocity by the following motivational example. In
Fig. 5.11, we show two frames from a tracking sequence of a hand.
Without any tangential velocity (i.e. α = 0) one can observe forma-
tion of small loops in the right picture, which is the very next frame
to the initial left one. These loops blow up and the curve becomes
unstable within the next few frames.

In [119] we proposed a suitable tangential velocity functional α
capable of preventing evolved family of curves (image contours) from
formation such undesirable loops like in Fig. 5.11 (right-top). Using
a tangential velocity satisfying

∂α

∂u
= K − g + gkβ,

where K = L(Γ) −
∫

Γ
kβ ds we are able to significantly improve the

results of tracking boundaries in moving images. This tangential ve-
locity is a variant of asymptotically uniform redistribution discussed
in Chapter 4. Indeed, it can rewritten as follows:

∂sα = kβ − 1− L

g
(〈kβ〉 − 1).

If we compare tracking results in Fig. 5.11 (bottom) and those from
Fig. 5.11 (top) we can conclude that the presence of a nontrivial
suitably chosen tangential velocity α significantly improved tracking
results.
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Figure 5.12: Triple junctions in Cu - Fe sulfide.

5.4 Evolution of a network of curves, triple
junction stability

The motion of curves under the curvature flow has been widely stud-
ied in the past (see e.g. [40, 50] and references mentioned in Chap-
ters 1 and 2. However, less is known about the evolution of networks
under the curvature flow [22, 58]. In this case, the arcs in the net-
work evolve in the normal direction with a speed proportional to the
curvature of the arcs. At intersections with an outer boundary and
at triple junctions boundary conditions have to hold. At the outer
boundary one can prescribe the position (see [68, 76]), or the an-
gle with the outer boundary [22, 58]. At the triple junction Young’s
law, a force balance, leads to angle conditions. An example of the
stationary triple junction in Cu - Fe sulfide is shown in Fig. 5.12.

In this section we review results on existence and uniqueness
of classical solutions to the moving triple junction problem and we
present a result on nonlinear stability of stationary triple junction.
We are interested in the stability of stationary solutions to the curva-
ture flow with a triple junction when we prescribe the natural angle
condition of 90◦ at the outer boundary. For this case a linear stabil-
ity criterion has been derived by Ikota and Yanagida [58] (see also
[59]). In [42] we rigorously proved that this criterion also leads to
nonlinear stability.

We now specify the problem in detail. Let Ω be a bounded domain
in R2 with C3-boundary ∂Ω. We search families of curves Γ1

t , Γ2
t , and

Γ3
t which are parametrized by time t and which are contained in Ω.
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Figure 5.13: Evolution of network of curves Γit → Γi∗ and triple junction
position p(t)→ p∗ for t→∞. Source: Garcke, Kohsaka and Ševčovič [42].

The three curves are supposed to meet at a triple junction p(t) ∈ Ω at
their one end point and at the other end point they are required to
intersect with ∂Ω, see Fig. 5.13. We require for i = 1, 2, 3

δivi = γiki on Γit ,
3∑
i=1

γiT i = 0 at p(t), (5.10)

Γit⊥∂Ω at Γit ∩ ∂Ω.

Here, vi and ki are the normal velocity and curvature of Γit, respec-
tively. The constants βi and γi are given physical parameters and T i

are unit tangents to the curve which are chosen such that they point
away from the triple junction.

In the following we assume strict inequalities and an argument
as in Bronsard and Reitich [22] gives that the angles θi between the
tangents T j and T k fulfill

sin θ1

γ1
=

sin θ2

γ2
=

sin θ3

γ3

with 0 < θi < π (i = 1, 2, 3) and θ1 + θ2 + θ3 = 2π.
The flow of triple junction curves is a gradient flow for the total

length energy functional

E(Γ) =
3∑
i=1

γiL(Γi) ,
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Figure 5.14: Description of the local parametrization of the curve Γi meet-
ing Γj and Γk at the triple junction point p. Source: Garcke, Kohsaka and
Ševčovič [42].

where Γ =
3⋃
i=1

Γi and L(Γi) is the length of Γi.

Existence of solutions to the evolution problem (5.10) has been
shown by Bronsard and Reitich [22]. In our approach of proving full
nonlinear stability of triple junction we however needed higher regu-
larity of solutions. In [42] Garcke, Kohsaka and Ševčovič proved the
existence of classical solutions via optimal regularity theory on Cβ

spaces due to Lunardi [73]. In order to state the main result on exis-
tence we have to introduce a suitable parametrization of the evolving
family on network curves in tubular neighborhood of the stationary
triple junction. The parametrization ρi defined over a time indepen-
dent domain I i = [0, L(Γi∗] corresponds to a distance of Γit from Γi∗
and µi are shifts of the triple junction position p = p(t) from its sta-
tionary position p∗ for i = 1, 2, 3. The parametrization is depicted in
Fig. 5.14.

Theorem 5.3 [42, Theorem 2.3] Let α ∈ (0, 1) and let us assume that
ρi0 ∈ C2+α(I i) and µi0 (i = 1, 2, 3) with sufficiently small ‖ρi0‖C2+α(Ii)

and |µi0| fulfill the compatibility conditions. Then there exists a

T0 = T0

(
1/‖ρ0‖C2+α

)
> 0

such that the problem with (ρi(·, 0), µi(0)) = (ρi0, µ
i
0) (i = 1, 2, 3) has

a unique solution (ρ, µ) such that ρi ∈ C2+α,1(I i × [0, T0)) and µi ∈
C1[0, T0].

Our main result on nonlinear stability of the triple junction now
reads as follows:
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Theorem 5.4 [42, Theorems 7.1 and 7.3]
The stationary triple junction position p∗ and the stationary facets

Γi∗, i = 1, 2, 3, are stable if one of the following conditions is satisfied:

a) either all h1
∗, h

2
∗, h

3
∗ > 0 are positive,

b) or, at most one of them is non-positive, and

γ1(1 + l1h1
∗)h

2
∗h

3
∗ + γ2(1 + l2h2

∗)h
1
∗h

3
∗ + γ3(1 + l3h3

∗)h
1
∗h

2
∗ > 0 .

Here, hi∗, i = 1, 2, 3, is the curvature of the outer boundary ∂Ω at contact
points x∗i ∈ ∂Ω of the stationary facets Γi∗ with length li∗.

More precisely, under the aforementioned assumptions there exist
constants C, ω, δ > 0 such that

3∑
i=1

‖ρi(·, t)‖H2 ≤ Ce−ωt
3∑
i=1

‖κi(·, 0)‖L2

for any t ≥ 0 and
∑3

i=1 ‖κi(·, 0)‖L2 < δ. Moreover,

3∑
i=1

‖ρi(·, t)‖C1+α ≤ Ce−ωt
3∑
i=1

‖ρi(·, 0)‖C2+α

for any t ≥ 0 and
∑3

i=1 ‖ρi(·, 0)‖C2+α < δ.

5.5 Nonlocal geometric flows and varia-
tional problems

5.5.1 Geometric flows with constraints

In Section 1.1.5 we discussed the role of the curvature driven flows
with the normal velocity non-locally dependent on the entire curve.
As a first example we mentioned the area preserving flow investi-
gated by Gage in [41]. In the context of volume preserving mod-
ification of the Allen-Cahn system of equations it was investigated
by Rubinstein and Sternberg in [103] and Beneš et al. [20] for the
anisotropic case.

The normal velocity for the area preserving flow is given by

β = k − 2π

L
.
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Figure 5.15: Evolution of the initial curve by the area-preserving flow (left)
and the total length-preserving flow. Source: Ševčovič and Yazaki [110].

Indeed, using the area equation (2.14) we obtain

d

dt
A = −

∫
Γ

βds =

∫
Γ

k − 2π

L
ds = 2π − 2π

L
L = 0

and so the enclosed area is preserved. The area preserving flow is
length decreasing, i.e. d

dt
L ≤ 0 so it preserves the enclosed area but

it decreases the total length (see Ševčovič and Yazaki [110, Section
5.1]). In the example depicted in Fig. 5.15 (left) we show evolution
of a dumb-bell initial curve driven in the normal direction by the area
preserving flow. The asymptotic profile is circle enclosing the same
area as the initial curve.

The area preserving flow can be considered as the gradient flow
for the length subject to area constraint, i.e.

min
Γ
L(Γ)

s.t. A(Γ) = A(Γ0). (5.11)

The second non-local constrained geometric flow is related to the
total length preservation. Following the same idea as before and
using the equation for the total length evolution (2.13) one can show
that the geometric flow evolving curves with the normal velocity

β = k − E
2π

where E =

∫
Γ

k2ds

preserves their total length L(Γt) = L(Γ0). The second example
shown in Fig. 5.15 (right) depicts evolution of the same initial curve
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driven by the length preserving flow. The asymptotic profile is again
a circle having the same length as the initial curve.

An interesting property of the length preserving flow is the
fact that it increases the enclosed area. By using the arc-length
parametrization Ševčovič and Yazaki [110]) proved that d

dt
A ≥ 0.

The total length preserving flow of convex curves was also investi-
gated recently by Mu and Zhu in [74]. However, in their analysis
they employed the Gauss parametrization allowing only for descrip-
tion of evolution of convex curves.

Similarly, as in the case of the area preserving flow, the length pre-
serving flow can be viewed as the gradient flow for the area subject
to length constraint, i.e.

max
Γ

A(Γ)

s.t. L(Γ) = L(Γ0). (5.12)

In fact, it can be considered as a dual nonlinear optimization problem
to (5.11) (cf. [52]).

5.5.2 Gradient flows for the isoperimetric ratio in
the Euclidean and Finsler geometry

Gradient flow for isoperimetric ratio in the Euclidean geometry

In this part we focus our attention to the gradient for the isoperimet-
ric ratio for Jordan curves. The isoperimetric ratio can defined as
follows:

Π(Γ) =
L(Γ)2

4πA(Γ)
.

It is well known that the Π ≥ 1 and equality Π = 1 is attained by cir-
cles only. It can be shown that the gradient flow of curves minimizing
the isoperimetric ratio has the normal velocity of the following form:

β = k − L

2A

(cf. [61] and [110]). Such a flow was first investigated by Jiang
and Pan in [61]. Similarly as Mu and Zhu in [74], they employed
the Gauss parametrization for evolution of convex curves and so re-
sults of [61] can be applied to convex curves. In [110] Ševčovič and
Yazaki investigated qualitative properties of the gradient flow for the
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Figure 5.16: Evolution of a thin dumb-bell initial curve by the total length-
preserving flow (left). Evolution of the same initial curve driven by the
isoperimetric ratio gradient flow. Source: Ševčovič and Yazaki [110].

isoperimetric ratio. We showed that some of their results (e.g. area
increasing property) can be directly generalized to the case of evo-
lution of Jordan curves by using the arc-length parametrization. We
proved the following result:

Theorem 5.5 [110, Proposition 1] A flow of planar embedded closed
curves driven in the normal direction by the velocity β = k − L

2A
is

a gradient flow minimizing the isoperimetric ratio Π = L2/(4πA). It
is a convexity-preserving flow. It is the enclosed area increasing flow.
Finally, it represents the total length decreasing flow for convex curves.

The gradient flow for the isoperimetric ratio can be used to find
the minimizer of the problem

max
Γ

L(Γ)2

4πA(Γ)
.

Clearly, the solution to (5.13) is a circle.
In Fig. 5.16 (right) we show the evolution of a very thin dumb-bell

initial curve by the isoperimetric gradient flow. The limiting curve is
again a circle. It is a smaller circle when compared to the limiting
circle corresponding to the length preserving flow, which is shown in
Fig. 5.16 (left). Due to the application of the curvature adjusted tan-
gential velocity we obtained a fine and accurate resolution of parts
of the evolved curve having large modulus of the curvature and we
could compute its evolution preserving the enclosed area over suffi-
ciently large time interval until it became convex. The limiting curve
is again a circle but neither its enclosed area nor the total length are
related to those of the initial curve.
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Gradient flow for isoperimetric ratio in the relative Finsler geom-
etry

A natural generalization of the classical Euclidean geometry is the
so-called relative Finsler geometry. Notice that in the classical Eu-
clidean geometry all distances or lengths are isotropic, i.e. they are
independent on orientation in the space. In the relative Finsler ge-
ometry we may prescribe certain directions and measure distances in
different directions differently. The key concept in the relative Finsler
geometry is played by the so-called Wulff shape. The Wulff shape is
the intersection of all hyperplanes whose distance from the origin de-
pends on their orientation. In the plane R2 the Wulff shape can be
defined as the set

Wσ =
⋂

ν∈[0,2π]

{
x ∈ R2, −x · ~N ≤ σ(ν)

}
,

where σ(ν) is the so-called anisotropy function depending on the an-
gle ν. It is assumed to be a 2π-periodic function. The boundary of
the Wulff shape can be expressed as follows:

∂Wσ =
{
x ∈ R2, x = −σ(ν) ~N + σ′(ν)~T , ν ∈ [0, 2π]

}
,

where ~N = (− sin ν, cos ν)T , ~T = (cos ν, sin ν)T . As a consequence
the curvature of the boundary of the Wulff shape is given by k =
[σ(ν)+σ′′(ν)]−1 on ∂Wσ. If we introduce the notion of the anisotropic
curvature

kσ := [σ(ν) + σ′′(ν)]k

then kσ ≡ 1 on ∂Wσ. In Fig. 5.18 we present typical examples of
Wulff shapes corresponding to m-fold anisotropy functions σ for m =
3, 4, 5, 6.

In material science the typical anisotropy is hexagonal. Neverthe-
less, other types of anisotropies can be observed in material science.
For instance, in Fig. 5.17 we show results of preparation of (111)
facet of plumbum (lead) equilibrated on copper (cf. [120]).

The surface energy associated with the anisotropy function σ can
be defined as the weighted integral

Lσ(Γ) =

∫
Γ

σ(ν) ds.
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Figure 5.17: A three-fold anisotropy function can be found as a shape of
the (111) facet of Pb particles, prepared and equilibrated on Cu(111) under
ultrahigh vacuum conditions. Source: Surnev et al. [120].

Figure 5.18: Wulff shapes corresponding to the anisotropy function σ(ν) =
1+ε cos(mν) and ε = 0.99/(m2−1) for m = 3, 4, 5, 6. Source: Ševčovič and
Yazaki [114].

Notice that, for σ ≡ 1 the Wulff shape is just the unit disc in the plane
and Lσ(Γ) = L(Γ) is the Euclidean length of Γ.

In 1901 crystallographer G. Wulff stated his famous theorem:
“The minimum surface energy for a given volume of a polyhedron will
be achieved if the distances of its faces from one given point are pro-
portional to their capillary constants” (cf. [123]). It can be rephrased
as follows: Given an anisotropy function σ, what is the minimizing
Jordan curve Γ for the surface energy Lσ(Γ) for a given area A(Γ)?
In [123] Wulff gave the answer to this question. The minimizer is
just the boundary ∂Wσ of the Wulff shape or any of its homothetic
images. Moreover, he proved the following isoperimetric inequality
in the relative Finsler geometry:

Πσ(Γ) :=
Lσ(Γ)2

4|Wσ|A(Γ)
≥ 1 (5.13)

and the equality Πσ(Γ) = 1 is attained for any curve Γ homothetically
similar to the boundary of the Wulff shape. Here, |Wσ| = A(∂Wσ) is
the area of the Wulff shape Wσ. It can be expressed in terms of the
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anisotropy function σ as follows:

|Wσ| =
1

2

∫ 2π

0

|σ(ν)|2 − |σ′(ν)|2dν (5.14)

(cf. [114]).
The anisoperimetric inequality (5.13) has been generalized by

Ševčovič and Yazaki in [114]. Following the method of Lagrange
multipliers (cf., e.g. Hamala and Trnovská [52, Chapter 1]) we
proved the following mixed anisoperimetric inequality:

Theorem 5.6 [114, Theorem 2] Let Γ be a C2 smooth Jordan curve in
the plane. Then

Lσ(Γ)Lµ(Γ)

A(Γ)
≥ Kσ,µ, (5.15)

where Kσ,µ = 2
√
|Wσ||Wµ| + Lσ(∂Wµ). The equality in (5.15) holds

if and only if the curve Γ is homothetically similar to the boundary
∂Wσ̃ of a Wulff shape corresponding to the mixed anisotropy function
σ̃ =

√
|Wµ|σ+

√
|Wσ|µ. In particular, if σ = µ then Kσ,σ = 4|Wσ| and

the anisoperimetric inequality (5.13) holds true.

Furthermore, in [114] we showed that the gradient flow minimiz-
ing the anisoperimetric ratio (5.13) is driven by the normal velocity
given by:

β = kσ −
Lσ
2A

.

There are several interesting facts about this non-local geometric
flow distinguishing it from the isoperimetric ratio gradient flow in
the isotropic Euclidean geometry. In summary, we have shown the
following result. The proof of the temporal length increasing and
area decreasing property differing it thus from the isoperimetric ra-
tio flow is based on the mixed anisoperimetric inequality stated in
Theorem 5.6.

The evolution of the initial dumb-bell curve driven by the gradient
flow minimizing anisoperimetric ratio with respect to the three fold
anisotropy function σ is shown in Fig. 5.19. The asymptotic profile is
a curve homothetically similar to the boundary ∂Wσ of the underlying
Wulff shape.

The gradient flow for the isoperimetric ratio in the relative Finsler
geometry can be used in order to find the minimizer of the problem

min
Γ

Lσ(Γ)2

4|Wσ|A(Γ)
.
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Figure 5.19: Evolution of a curve starting from the initial dumb-bell curves
with a three fold anisotropy σ. Source: Ševčovič and Yazaki [114].

According to Wulff’s theorem, the solution to (5.13) is a curve ho-
mothetically similar to the boundary ∂Wσ of the underlying Wulff
shape.

Theorem 5.7 [114, Theorem 4] If σ ≡ 1 then the isoperimetric ra-
tio gradient flow with the normal velocity β = k − L/(2A) is area
non-decreasing and length non-increasing flow of smooth Jordan curves
Γt, t ∈ [0, Tmax) in the plane provided that Γ0 is a convex curve.

Assume the anisotropy function σ is not constant and such that σ +
σ′′ > 0. Let Γ0 be an initial curve, which is homothetically similar
to the boundary ∂Wσ̄ of a Wulff shape with the modified anisotropy
density function σ̄ = aσ+ b where a, b are constants, a, b > 0. Then, for
the anisoperimetric ratio gradient flow Γt, t ∈ [0, Tmax), evolving in the
normal direction by the velocity β = kσ − Lσ

2A
, we have d

dt
L(Γt) > 0 at

t = 0. If, moreover, a/b =
√
π/
√
|Wσ| then d

dt
A(Γt) < 0 at t = 0.

5.6 Inverse Wulff problem

In the previous section we investigated the gradient flow for the fol-
lowing minimization problem: given the anisotropy function σ find
the minimizer - a Jordan curve Γ such that

min
Γ

Lσ(Γ)2

4|Wσ|A(Γ)
. (5.16)
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The purpose of this section is to review recent advances on the
inverse Wulff problem. In a series of papers [111, 112, 121], Ševčovič
and Trnovská investigated the inverse Wulff problem formulated as
follows: given a plane Jordan curve Γ, find the optimal anisotropy
function σ minimizing the anisoperimetric ratio for Γ, i.e.

min
σ

Lσ(Γ)2

4|Wσ|A(Γ)
(5.17)

under the constraint that the Wulff shape Wσ is convex, i.e. k > 0
and so σ + σ′′ ≥ 0 and σ ≥ 0.

Knowledge of the anisotropy function σ plays an essential role in
many applied problems. In particular, it enters the crystal growth
models based on solutions of the Allen-Cahn type of nonlinear
parabolic partial differential equation (c.f. [18, 11] and other refer-
ences therein). In [11] Bellettini and Paolini derived the Allen-Cahn
parabolic partial differential equation for the gradient flow for the
anisotropic Ginzburg-Landau free energy

E(u) =

∫
Ω

ε

2
Φ(∇u)2 +

1

ε
f(u)dx,

where Φ is the Finsler metric function related to the anisotropy func-
tion σ through the relation: Φ( ~N) = σ(ν) where ~N = (− sin ν, cos ν)T .
Here, the function u ∈ [−1, 1] stands for the order parameter char-
acterizing two phases (u = ±1) of a material. The function f is
a double-well potential that gives rise to a phase separation and
ε � 1 is a small parameter representing thickness of the interface
(cf. [18, 11]).

Inverse Wulff problem as a non-convex variational problem

Due to the homogeneity of the anisoperimetric ratio Πσ with respect
to scaling of σ, the inverse Wulff problem can be reformulated as
follows: given a plane Jordan curve Γ, find the optimal anisotropy
function σ(ν) minimizing the anisoperimetric ratio for Γ, i.e.

min
σ

1

2

∫ 2π

0

|σ′(ν)|2 − |σ(ν)|2dν

s.t. Lσ(Γ) = 1, σ ≥ 0, σ + σ′′ ≥ 0. (5.18)

In [111] (see also [112, 121]) Ševčovič and Trnovská proposed
the method on how to solve the non-convex optimization problem
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Figure 5.20: (Left) Jordan curve corresponding to the boundary of a den-
drite, (right) the spectrum of moduli |ck|, k ≥ 1. Source: Ševčovič and
Trnovská [112].

(5.18) by means of its reduction to a semidefinite programming prob-
lem for Fourier coefficients of the unknown anisotropy function σ.

Fourier series decomposition and Fourier spectrum of a curve

Let σ : R → R be a 2π-periodic function, σ ∈ W 2,2
per(0, 2π). It can be

represented by its complex Fourier series

σ(ν) =
∞∑

k=−∞

σke
ikν , where σk =

1

2π

∫ 2π

0

e−ikνσ(ν)dν (5.19)

are complex Fourier coefficients. Since σ(ν) is assumed to be a real
function we have σ−k = σ̄k for any k ∈ Z and σ0 ∈ R. Notice that for
σ ∈ W 2,2

per(0, 2π) we have σ(ν) + σ′′(ν) =
∑∞

k=−∞(1 − k2)σke
ikν in the

norm of the Lebesgue space L2(0, 2π) = W 0,2
per(0, 2π).

The objective function in (5.18) can be expressed in terms of the
Fourier coefficients as follows:

−|Wσ| =
1

2

∫ 2π

0

|σ′(ν)|2 − |σ(ν)|2dν = π

∞∑
k=−∞

(k2 − 1)|σk|2. (5.20)

Similarly, we can express the interface energy Lσ(Γ):

Lσ(Γ) =

∫
Γ

σ(ν)ds =
∞∑

k=−∞

σk

∫
Γ

eikνds =
∞∑

k=−∞

c̄kσk ≡ cTσ, (5.21)
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where the complex coefficients

ck =

∫
Γ

e−ikνds, k ∈ Z,

form the so-called Fourier length spectrum of the curve Γ introduced
by Ševčovič and Trnovská in [111]. In Fig. 5.20 we show a dendrite-
like Jordan curve and its Fourier length spectrum. We can observe
that ninth mode c9 is dominant for this curve. In [111] we proved
the following theorem:

Theorem 5.8 [111, Propositions 4.1 and 4.2] Let Γ be a C1 smooth
curve in the plane. Then the complex Fourier length spectrum {cp, p ∈
Z} satisfies:

1. c0 = L(Γ) > 0 and c̄p = c−p. If Γ is a closed (Jordan) curve then
c±1 = 0.

2. For any N ∈ N, the Toeplitz circulant matrix R =
Toep(c0, c1, . . . , cN−1), i. e. Rpq = cp−q, is a positive semidefinite 1

complex Hermitian matrix.

3. |ck| ≤ c0 for any k ∈ Z.

4. If, in addition, c1 = 0 then |c2k|2 + |c2k+1|2 ≤ c2
0 for any k ≤

N/2− 1, and
N−1∑
p=2

|cp|2

p2 − 1
≤ c2

0

2

(
1− 1

N

)
.

In [79] McLean and Woardeman derived a useful criterion for
non-negativity of a partial finite Fourier series sum. This criterion
is a consequence of the classical Riesz-Fejer factorization theorem it
reads as follows:

Theorem 5.9 [79, Proposition 2.3] Let σ0 ∈ R, σk = σ̄−k ∈ C for
k = 1, · · · , N − 1. Then the finite Fourier series expansion σ(ν) =∑N−1

k=−N+1 σke
ikν is a non-negative function σ(ν) ≥ 0 for ν ∈ R, if

and only if there exists a complex Hermitian matrix F such that F
is positive semidefinite (F � 0) and

∑N
p=k+1 Fp,p−k = σk for each

k = 0, 1, · · · , N − 1.
1A Hermitian matrix F is positive semidefinite (F � 0) iff x∗Fx ≥ 0 for all

vectors x, where x∗ = x̄T .
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Semidefinite representation of the inverse Wulff problem

The non-convex optimization problem (5.18) can be approximated
by a finite Fourier series expansion of the anisotropy function σ,
i.e. σ(ν) ≈ σN(ν) =

∑N−1
k=−N+1 σke

ikν . Taking into account the
criterion for positiveness of partial Fourier series Theorem 5.9 and
making use of realification of the problem for complex vector σ =
(σ0, σ1, · · · , σN−1)T ∈ CN , x = [<(σ);=(σ)] ∈ R2N then (5.18) can be
formulated as the non-convex semidefinite optimization problem:

min
x

xTP0x

s.t. Ax = b,
N∑

p=k+1

Fp,p−k = xRk + ixIk, k = 1, · · · , N − 1, (5.22)

N∑
p=k+1

Gp,p−k = (1− k2)(xRk + ixIk), k = 1, · · · , N − 1,

F,G � 0.

Here, P0 is a symmetric real matrix representing the indefinite
quadratic form

∑N−1
k=−N+1(k2 − 1)|σk|2 and A is a 1 × 2N matrix rep-

resenting the constraint cTσ = 1.

It is well known that non-convex quadratic optimization programs
are NP hard in general. However, there is a systematic way how to
deal with such problems, which is based on the so-called semidefinite
relaxation (cf. Boyd and Vanderberghe [21]). The idea is rather sim-
ple and consists in replacing the quadratic objective function xTP0x
by the trace trace(P0X) where X = xxT and subsequent relaxing
this non-convex constraint X = xxT and AxxT = bxT by a convex
semidefinite constraintX � xxT and enhanced constraint AX = bxT .
In [111] we showed that the so-called enhanced semidefinite relax-
ation of (5.22) can be represented by the following convex semidefi-
nite optimization program:
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min
x,X

trace(P0X)

s.t. Ax = b, AX = bxT , X � xxT ,
N∑

p=k+1

Fp,p−k = xRk + ixIk, k = 1, · · · , N − 1, (5.23)

N∑
p=k+1

Gp,p−k = (1− k2)(xRk + ixIk), k = 1, · · · , N − 1,

F,G � 0.

Moreover, we rigorously proved that (5.22) and its relaxation (5.23)
yield the same optimum value and so they are equivalent. The key
role in the proof of equivalence is played by the structural condition:

P0 + V TA+ ATV � 0

for some matrix V (cf. [111, 112, 121]). With help of Theorem 5.8
we proved that the aforementioned condition is satisfied and so the
problems (5.22) and (5.23) yield the same optimum value. Concern-
ing the limit N →∞ we showed the following result:

Theorem 5.10 [111, Theorem 6.1] Let σN ∈ K be a minimizer to
optimization problem (5.22) in the dimension N ∈ N. Then 1 ≤
limN→∞ΠσN (Γ) = infσ∈KΠσ(Γ). Here, K is the cone K = {σ ∈
W 2,2
per(0, 2π) | σ(ν) ≥ 0, σ(ν)+σ′′(ν) ≥ 0, for a.e. ν ∈ [0, 2π]}. Moreover,

σ̃N → σ as N →∞ in the norm of the Sobolev space W 1,2
per(0, 2π).

To solve problem (5.23) we used CVX, a package for specifying
and solving convex programs [49, 48] and semidefinite programming
solver due to J. Sturm [108]. Numerical results of construction of the
optimal anisotropy function σ are shown in Fig. 5.21 and Fig. 5.22.
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Figure 5.21: Nonconvex polygonal curves (left) and their corresponding
optimal Wulff shapes and Frank diagrams (right). Source: Ševčovič and
Trnovská [111].
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Figure 5.22: (Left) the curve representing a boundary of a snowflake,
(middle) the optimal anisotropy function σ, (right) the Wulff shape and
Frank diagram. Source: Ševčovič and Trnovská [111].



Chapter 6
Synopsis of the selected papers

The last chapter contains nine selected papers of the author written
in collaboration with Karol Mikula, Shigetoshi Yazaki, Harald Garcke,
Yoshihito Kohsaka and Mária Trnovská.1

6.1 Evolution of plane curves driven by a nonlinear
function of curvature and anisotropy

In the joint paper with Karol Mikula2 included in this section we stud-
ied anisotropic flows with the normal velocity nonlinearly depending
on the curvature and satisfying a geometric equation v = β(k, ν),
where v is the normal velocity and k and ν are the curvature and
tangential angle of a plane curve Γ. We followed the direct approach
and we analyze the so-called intrinsic heat equation governing the
motion of plane curves obeying such a geometric equation. The in-
trinsic heat equation is modified to include an appropriate nontrivial
tangential velocity functional α. We showed how the presence of a
nontrivial tangential velocity can prevent numerical solutions from
forming various instabilities. From an analytical point of view we
presented some new results on short time existence of a regular fam-
ily of evolving curves in the degenerate case when β(k, ν) = γ(ν)km,
0 < m ≤ 2, and the governing system of equations includes a non-

1The full versions of the papers can be downloaded from:
www.iam.fmph.uniba.sk/institute/sevcovic/drsc

2K.Mikula and D. Ševčovič: Evolution of plane curves driven by a nonlinear
function of curvature and anisotropy, SIAM Journal on Applied Mathematics, 61(5)
(2001), 1473-1501.
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trivial tangential velocity functional. In this paper we proved Theo-
rem 3.6 ([85, Theorems 5.6 and 6.3]) on local existence, uniqueness
and continuation of solutions to the anisotropic geometric flow.

6.2 A direct method for solving an anisotropic mean
curvature flow of plane curves with an external
force

The purpose of this section written jointly with Karol Mikula3 was to
propose and analyze a new method for solving the evolution of plane
curves satisfying the geometric equation v = β(x, k, ν) where v is the
normal velocity, k and ν are the curvature and tangential angle of
a plane curve Γ ⊂ R2 at the point x ∈ Γ is proposed. We derived
a governing system of partial differential equations for the curva-
ture, tangential angle, local length and position vector of an evolving
family of plane curves and prove local in time existence of a classi-
cal solution. These equations include a nontrivial tangential velocity
functional governing a uniform redistribution of grid points and thus
preventing numerically computed solutions from forming various in-
stabilities. We discretized the governing system of equations in order
to find a numerical solution for 2D anisotropic interface motions and
image segmentation problems. In this paper we proved Theorem 3.5
on local existence, uniqueness and continuation of classical solutions
to geometric flows with normal velocity depending on the curvature,
tangent angle and position vector (cf. [86, Theorem 3.1]).

6.3 Evolution of plane curves with a curvature ad-
justed tangential velocity

We studied evolution of a closed embedded plane curve with the nor-
mal velocity depending on the curvature, the orientation and the po-
sition of the curve. Together with Shigetoshi Yazaki4 we proposed a
new method of tangential redistribution of points by curvature ad-
justed control in the tangential motion of evolving curves. The tan-

3K. Mikula and D. Ševčovič: A direct method for solving an anisotropic mean
curvature flow of plane curves with an external force, Math. Methods in the Appl.
Sci., 27 (2004), 1545-1565.

4D. Ševčovič and S.Yazaki: Evolution of plane curves with a curvature adjusted
tangential velocity, Japan J. Indust. Appl. Math., 28(3) (2011), 413-442.
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gential velocity may not only distribute grid points uniformly along
the curve but also produce a suitable concentration and/or disper-
sion depending on the curvature. Our study is based on solutions to
the governing system of nonlinear parabolic equations for the posi-
tion vector, tangent angle and curvature of a curve. We furthermore
presented a semi-implicit numerical discretization scheme based on
the flowing finite volume method. Several numerical examples il-
lustrating capability of the new tangential redistribution method are
also presented in this paper.

6.4 Computational and qualitative aspects of motion
of plane curves with a curvature adjusted tangen-
tial velocity

In this section we present the joint paper with Shigetoshi Yazaki.5 We
investigated a time dependent family of plane closed Jordan curves
evolving in the normal direction with a velocity which is assumed to
be a function of the curvature, tangential angle and position vector
of a curve. We followed the direct approach and analyzed the system
of governing PDEs for relevant geometric quantities. We focused on a
class of the so-called curvature adjusted tangential velocities for com-
putation of the curvature driven flow of plane closed curves. Such a
curvature adjusted tangential velocity depends on the modulus of
the curvature and its curve average. Using the theory of abstract
parabolic equations we proved local existence, uniqueness and con-
tinuation of classical solutions to the system of governing equations.
We furthermore analyzed geometric flows for which normal veloc-
ity may depend on global curve quantities like the length, enclosed
area or total elastic energy of a curve. We also proposed a stable
numerical approximation scheme based on the flowing finite volume
method. Several computational examples of various non-local geo-
metric flows are also presented in this paper. In this paper we proved
Theorems 4.1 and 4.2 and local existence, uniqueness and limiting
behavior of solution to the system of equations describing the curva-
ture adjusted tangential velocity driven flow (cf. [110, Theorem 1]
and [110, Theorem 2]).

5D. Ševčovič and S.Yazaki: Computational and qualitative aspects of motion of
plane curves with a curvature adjusted tangential velocity, Mathematical Methods
in the Applied Sciences, 35(15) (2012), 1784-1798.
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6.5 Computational and qualitative aspects of evolu-
tion of curves driven by curvature and external
force

In this section written jointly with Karol Mikula6 we proposed a direct
method for solving the evolution of plane curves satisfying the geo-
metric equation v = β(x, k, ν) where v is the normal velocity, k and ν
are the curvature and tangential angle of a plane curve Γ ⊂ R2 at a
point x ∈ Γ. We derived and analyzed the governing system of partial
differential equations for the curvature, tangential angle, local length
and position vector of an evolving family of plane curves. The gov-
erning equations include a nontrivial tangential velocity functional
yielding the uniform redistribution of grid points along the evolv-
ing family of curves preventing thus numerically computed solutions
from forming various instabilities. We also proposed a full space-time
discretization of the governing system of equations and study its ex-
perimental order of convergence. Several computational examples of
the evolution of plane curves driven by curvature and external force
as well as the geodesic curvatures driven evolution of curves on var-
ious complex surfaces are presented in this paper.

6.6 Evolution of curves on a surface driven by the
geodesic curvature and external force

The purpose of this section was to study a flow of closed curves on
a given graph surface driven by the geodesic curvature and exter-
nal force. It is a joint work with Karol Mikula.7 Using the vertical
projection of surface curves to the plane we show how the geodesic
curvature driven flow can be reduced to a solution of a fully nonlin-
ear system of parabolic differential equations. We showed that the
flow of surface curves is gradient like, i.e. there exists a Lyapunov
functional non-increasing along trajectories. Special attention is put
on the analysis of closed stationary surface curves. We presented suf-
ficient conditions for their dynamic stability. Several computational

6K. Mikula and D. Ševčovič: Computational and qualitative aspects of evolution
of curves driven by curvature and external force, Computing and Visualization in
Science, 6 (2004), 211-225.

7K. Mikula and D. Ševčovič: Evolution of curves on a surface driven by the
geodesic curvature and external force, Applicable Analysis, 85(4) (2006), 345-362.
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examples of evolution of surface curves driven by the geodesic cur-
vature and external force on various surfaces are presented in this
paper. We also discussed a link between the geodesic flow and the
edge detection problem arising from the image segmentation theory.
We showed Theorem 5.2 on stability of stationary curves (cf. [88,
Theorem 3.1, Corollary 3.2]).

6.7 Nonlinear stability of stationary solutions for cur-
vature flow with triple junction

This section contains the joint paper with Harald Garcke and Yoshi-
hito Kohsaka. 8 We analyzed the motion of a network of three planar
curves with a speed proportional to the curvature of the arcs, having
perpendicular intersections with the outer boundary and a common
intersection at a triple junction. As a main result we showed that a
linear stability criterion due to Ikota and Yanagida is also sufficient
for nonlinear stability. We also proved local and global existence
of classical smooth solutions as well as various energy estimates.
We proved exponential stabilization of an evolving network starting
from the vicinity of a linearly stable stationary network. In Theo-
rems 5.3 and 5.4 we established local existence of classical solutions
and proved the nonlinear stability of a stationary triple junction. (cf.
[42, Theorem 2.3] and [42, Theorems 7.1 and 7.3]).

6.8 On a gradient flow of plane curves minimizing the
anisoperimetric ratio

In this section we present the joint paper with Shigetoshi Yazaki9 in
which we studied the gradient flow for the isoperimetric ratio in the
relative Finsler geometry characterized by a given anisotropy func-
tion. We showed that for such a flow the normal velocity is a function
of the anisotropic curvature and it also depends on the total interfa-
cial energy and enclosed area of the curve. In Theorem 5.7, in con-

8H. Garcke, Y. Kohsaka and D. Ševčovič: Nonlinear stability of stationary so-
lutions for curvature flow with triple junction, Hokkaido Mathematical Journal,
38(4) (2009), 721-769.

9D. Ševčovič and S.Yazaki: On a gradient flow of plane curves minimizing the
anisoperimetric ratio, IAENG International Journal of Applied Mathematics, 43(3)
(2013), 160-171.
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trast to the gradient flow for the isoperimetric ratio, we showed exis-
tence of initial curves for which the enclosed area is decreasing with
respect to time. In Theorem 5.6 we derived a mixed anisoperimetric
inequality for the product of total interfacial energies corresponding
to different anisotropy functions.

6.9 Solution to the inverse Wulff problem by means of
the enhanced semidefinite relaxation method

In this section writen jointly with Mária Trnovská10 we investigated
the inverse Wulff problem which can be interpreted as a dual prob-
lem to minimization of the isoperimetric ratio in the relative Finsler
geometry. We proposed a novel method of resolving the optimal
anisotropy function. The idea is to construct the optimal anisotropy
function as a solution to the inverse Wulff problem, i. e. as a min-
imizer for the anisoperimetric ratio for a given Jordan curve in the
plane. It leads to a non-convex quadratic optimization problem with
linear matrix inequalities. In order to solve it we proposed the so-
called enhanced semidefinite relaxation method which is based on
a solution to a convex semidefinite problem obtained by a semidefi-
nite relaxation of the original problem augmented by quadratic-linear
constraints. We showed that the sequence of finite dimensional ap-
proximations of the optimal anisoperimetric ratio converges to the
optimal anisoperimetric ratio which is a solution to the inverse Wulff
problem. Several computational examples, including those corre-
sponding to boundaries of real snowflakes and discussion on the rate
of convergence of numerical method are also presented in this paper.
In this paper we furthermore introduced the Fourier spectrum of a
curve. In Theorem 5.8 we proved some useful properties of the spec-
trum (cf. [111, Propositions 4.1 and 4.2]). In Theorem 5.10 we also
showed convergence of the discrete approximations to the solution
of the inverse Wulff problem (cf. [111, Theorem 6.1]).

10D. Ševčovič and M. Trnovská: Solution to the inverse Wulff problem by means
of the enhanced semidefinite relaxation method, Journal of Inverse and III-posed
Problems, 23(3) (2015), 263-285.



Conclusions

In this survey paper we investigated the direct Lagrangian method
for solving the mean curvature flow of curves and surfaces. We
showed how this geometric flow can be analyzed from qualitative
and numerical point of view. We provided several results on local
in time existence, uniqueness and continuation of classical solutions
to the governing system of fully nonlinear parabolic equation de-
scribing evolution of the curvature, position vector and other rele-
vant geometric quantities. We furthermore presented several results
concerning the stability of stationary curves. Special attention was
put on the construction of a stable numerical scheme for computing
various mean curvature driven flows. We emphasized the role of a
suitably chosen tangential velocity, which enhances stability and ac-
curacy of the numerical scheme based on the flowing finite volume
method. Various applications arising from phase interface dynamics,
edge detection, nonlocal geometric flows, nonlinear variational and
optimization problems were presented in this paper.
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[18] M. Beneš, Diffuse-interface treatment of the anisotropic mean-
curvature flow, Applications of Mathematics 48 (2003), 437–
453.
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[85] K. Mikula, and D. Ševčovič, Evolution of plane curves driven by
a nonlinear function of curvature and anisotropy, SIAM Journal
on Applied Mathematics 61(5) (2001), 1473–1501.
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[90] K. Mikula, and D. Ševčovič, Tangentially stabilized Lagrangian
algorithm for elastic curve evolution driven by intrinsic Laplacian
of curvature. In: Proceedings of Algoritmy 2005, 17th Confer-
ence on Scientific Computing, Vysoke Tatry, Podbanske, Slo-
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