Limiting behavior of global attractors for singularly perturbed beam equations with strong damping

Daniel Ševčovič

Abstract. The limiting behavior of global attractors $\mathcal{A}_{\varepsilon}$ for singularly perturbed beam equations

$$
\varepsilon^{2} \frac{\partial^{2} u}{\partial t^{2}}+\varepsilon \delta \frac{\partial u}{\partial t}+A \frac{\partial u}{\partial t}+\alpha A u+g\left(\|u\|_{1 / 4}^{2}\right) A^{1 / 2} u=0
$$

is investigated. It is shown that for any neighborhood \mathcal{U} of \mathcal{A}_{0} the set $\mathcal{A}_{\varepsilon}$ is included in \mathcal{U} for ε small.

Keywords: strongly damped beam equation, compact attractor, upper semicontinuity of global attractors
Classification: 35B40, 35Q20

1. Introduction.

Consider the following problems
$(1.1)_{\varepsilon}$

$$
\left\{\begin{array}{l}
\varepsilon^{2} \frac{\partial^{2} u}{\partial t^{2}}+\varepsilon \delta \frac{\partial u}{\partial t}+A \frac{\partial u}{\partial t}+\alpha A u+g\left(\|u\|_{1 / 4}^{2}\right) A^{1 / 2} u=0 \\
u(0)=u_{0} \\
\frac{\partial u}{\partial t}(0)=v_{0}
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial t}+\alpha u+g\left(\|u\|_{1 / 4}^{2}\right) A^{-1 / 2} u=0 \tag{1.1}\\
u(0)=u_{0}
\end{array}\right.
$$

where g is an increased C^{1} function, $\varepsilon>0$ is a small parameter, $\alpha<0$ and δ is a real unrestricted on the sign. Here A is a sectorial operator in $\mathcal{L}_{2}(0, l)$ defined by a differential operator $\partial^{4} / \partial x^{4}$ and the boundary conditions corresponding either to hinged ends, when

$$
\begin{equation*}
u(x)=u_{x x}(x)=0 \quad \text { at } x=0, l \tag{1.2}
\end{equation*}
$$

or to clamped ends, when

$$
\begin{equation*}
u(x)=u_{x}(x)=0 \quad \text { at } x=0, l . \tag{1.2}
\end{equation*}
$$

Let $\{S(t) ; t \geq 0\}$ be a semidynamical system in a Banach space \mathcal{X} (for definition, see, for example, [H, Chapter 4]). A set $J \subseteq \mathcal{X}$ is called invariant if $S(t) J=J$ for all $t \geq 0$. An invariant set $\mathcal{U} \subseteq \mathcal{X}$ is called a global compact attractor for the semidynamical system $S(t)$ if it is a compact set in \mathcal{X} and $\lim _{t \rightarrow \infty} \operatorname{dist}(S(t) B, \mathcal{U})$ $=0$ for any bounded set $B \subseteq \mathcal{X}$, where

$$
\operatorname{dist}(\mathcal{A}, \mathcal{B})=\sup _{x \in \mathcal{A}} \inf _{y \in \mathcal{B}}\|x-y\|
$$

It is shown (Theorem 3.1) that, for small ε, there is a compact global attractor $\mathcal{A}_{\varepsilon} \subseteq W^{2,2}(0, l) \times \mathcal{L}_{2}(0, l)$ for a semidynamical system generated by (1.1) $)_{\varepsilon}$. For $\varepsilon=0$, the problem $(1.1)_{0}$ also has a compact attractor which can be naturally embedded into compact set $\mathcal{A}_{0} \subseteq W^{2,2} \times \mathcal{L}_{2}(0, l)$.

Let us note that under the assumptions $g \geq 0$ and $\delta \geq 0$, the dynamics of $(1.1)_{\varepsilon}, \varepsilon \geq 0$, is simple-every trajectory approaches a zero equilibrium state (see Remark 3.2). On the other hand, if $g(0)<0$ is sufficiently small, then the attractor $\mathcal{A}_{\varepsilon}, \varepsilon \geq 0$, contains $2 n-1$ distinct equilibrium states (Remark 3.1) for some $n \in \mathbb{N}$. In this case the attractor $\mathcal{A}_{\varepsilon}$ is a union of unstable manifolds for equilibrium states (see, for example, [BV, Theorem 10.1]).

The purpose of this paper is to obtain some relationships between the attractors $\mathcal{A}_{\varepsilon}$ and \mathcal{A}_{0} for small ε. It is given in terms of upper semicontinuity of \mathcal{A}_{0} at $\varepsilon=0$ with respect to the sets $\left\{\mathcal{A}_{\varepsilon} ; \varepsilon>0\right\}$.

In this paper, the following hypotheses are needed:

$$
\begin{equation*}
g \in C^{1}\left(\mathbb{R}^{+}, \mathbb{R}\right) ; g^{\prime}(r)>0 \text { for } r \geq 0 \text { and } \int_{0}^{\infty} g(s) d s>-\infty \tag{H1}
\end{equation*}
$$

$$
\begin{equation*}
\alpha>0, \delta \in \mathbb{R} \tag{H2}
\end{equation*}
$$

We can now state our main result.
Theorem 1.1. Suppose that the hypotheses (H1)-(H2) are satisfied. Then the attractor \mathcal{A}_{0} is upper semicontinuous at zero with respect to the sets $\mathcal{A}_{\varepsilon} ; \varepsilon>0$, i.e.

$$
\lim _{\varepsilon \longrightarrow 0^{+}} \operatorname{dist}\left(\mathcal{A}_{\varepsilon}, \mathcal{A}_{0}\right)=0
$$

In other words, for any neighborhood \mathcal{U} of \mathcal{A}_{0}, the set $\mathcal{A}_{\varepsilon}$ is included in \mathcal{U} for ε small.

As an example for $(1.1)_{\varepsilon}$ one can consider a problem of a transverse motion, at a small strain, in the $x-y$ plane, of a viscoelastic beam in a viscous medium whose resistance is proportional to the velocity. The ends of the beam are fixed at the points $x=0$ and $x=l+d$, where d is a load (positive or negative) of the beam
and a stress-free state of the beam occupies the interval $[0, l]$. Shear deformations are neglected in this model. Then the equation of the motion in y-direction is

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial t^{2}}+\delta \cdot \frac{\partial u}{\partial t}+\frac{\xi I}{\varrho} \cdot A \frac{\partial u}{\partial t}+\frac{E I}{\varrho} A u+\left(\frac{E S d}{l \varrho}+\frac{E S}{2 l \varrho} \cdot \int_{0}^{l} u_{x}^{2} d x\right) A^{1 / 2} u=0 \tag{1.3}
\end{equation*}
$$

where E is the Young's modulus, S the cross-sectional area, ξ the effective viscosity, I the cross-sectional second moment of area, ϱ the mass per unit length and δ the coefficient of external damping. For details see $[\mathrm{F}],[\mathrm{B} 1],[\mathrm{B} 2]$ and references therein.

Put $\varepsilon=\frac{\varrho}{\xi I}>0$. Then the equation (1.1) $)_{\varepsilon}$ follows from (1.3) by a suitably rescaling the time. The limit $\varepsilon \longrightarrow 0^{+}$corresponds to the case in which the effective viscosity tends to $+\infty$.

In recent years, many authors have studied the attractors for a singularly perturbed hyperbolic equation

$$
\begin{equation*}
\varepsilon^{2} \frac{\partial^{2} u}{\partial t^{2}}+\frac{\partial u}{\partial t}-\Delta u=f(u) \tag{1.4}
\end{equation*}
$$

See, for example, [GT], [ChL] and other references in [HR1] and [HR2]. Hale and Rougel have shown that the attractors of $(1.4)_{\varepsilon}$ converge in the Hausdorff topology towards the one corresponding to $\varepsilon=0$

$$
\begin{equation*}
\frac{\partial u}{\partial t}-\Delta u=f(u) \tag{1.4}
\end{equation*}
$$

Clearly, the main difference between $(1.1)_{\varepsilon}-(1.1)_{0}$ and $(1.4)_{\varepsilon}-(1.4)_{0}$ is that $(1.4)_{0}$ is the quasilinear parabolic equation with an unbounded linear operator $-\Delta$, while the problem $(1.1)_{0}$ is the quasilinear differential equation in a Hilbert space with a bounded operator $\alpha \cdot I d$.

The paper is organized as follows. Definitions and notations are recalled in Section 2. Following the style of Henry's lecture notes [H, Chapter 3, 4], one can obtain a local and global existence of solutions of $(1.1)_{\varepsilon}$. Section 3 deals with the existence and uniform boundedness of attractors $\mathcal{A}_{\varepsilon}$. Section 4 is devoted to the singular equation $(1.1)_{0}$. The proof of the existence of \mathcal{A}_{0} is given. In Section 5 we prove Theorem 1.1.

2. Preliminaries.

Let $X=L_{2}(0, l)$ be a real Hilbert space equipped with its usual scalar product (\cdot, \cdot) and norm $\|\cdot\|$. Define $A: X \longrightarrow X ; A u=\partial^{4} u / \partial x^{4}$ for each $u \in C_{B}^{\infty}(0, l)$, where

$$
C_{B}^{\infty}(0, l)=\left\{\Phi \in C^{\infty}(0, l) ; \Phi \text { satisfies b.c. } B\right\}
$$

for $B=H$ or $B=C$. Let A be the self-adjoint closure in X of its restriction to $C_{B}^{\infty}(0, l)$. It is well known that A is a sectorial operator in X (see [H, p. 19]). Therefore the fractional powers A^{β} can be defined. Let X^{β} be a Hilbert space
consisting of the domain of fractional power A^{β} with the graph norm, i.e. $\|u\|_{\beta}=$ $\left\|A^{\beta} u\right\|$ for all $u \in X^{\beta}$. Let us note that $X^{\beta} \hookrightarrow W^{4 \beta, 2}(0, l)$ for $\beta \geq 0$. We also have $\|u\|_{\beta} \leq \lambda_{1}^{\beta-\sigma}\|u\|_{\sigma}$ for any $0 \leq \beta \leq \sigma$ and $u \in X^{\sigma}$. Recall that A has a compact resolvent A^{-1}. Therefore the imbedding $X^{\sigma} \hookrightarrow \hookrightarrow X^{\beta}$ is compact, whenever $0 \leq \beta<\sigma$.

Let $\Phi_{n}, j \in \mathbb{N}$, denote the orthonormal basis of X consisting of eigenvectors of the operators A :

$$
A \Phi_{n}=\lambda_{n} \Phi_{n} ; \quad 0<\lambda_{1}<\lambda_{2}<\ldots ; \lambda_{n} \longrightarrow+\infty \text { as } n \longrightarrow+\infty .
$$

Denote by \mathbb{P}_{m} the projector in X onto the space spanned by $\left\{\Phi_{1}, \ldots, \Phi_{m}\right\}$. Clearly,

$$
\left\|\mathbb{P}_{m} u\right\|_{\beta} \leq \lambda_{m}^{\beta-\sigma}\left\|\mathbb{P}_{m} u\right\|_{\sigma} \leq \lambda_{m}^{\beta-\sigma}\|u\|_{\sigma} \text { for each } u \in X^{\sigma} \text { and } \beta, \sigma \geq 0 .
$$

Let $S(t)$ be a semidynamical system in a Banach space \mathcal{X}.
A set B dissipates a set J if there exists $T=T(J)>0$ such that $t \geq T$ implies $S(t) J \subseteq B$. A semidynamical system $S(t)$ is called bounded dissipative if there exists a bounded set B which dissipates all bounded sets.

The omega-limit set is defined by

$$
\left.\Omega(B)=\bigcap_{t \geq 0} \operatorname{cl}\left(\bigcup_{s \geq t} S(s) B\right) \quad \text { (the closure is taken in } \mathcal{X}\right) .
$$

In this paper, the time derivatives will be denoted by

$$
\frac{\partial}{\partial t}(\cdot)=(\cdot)^{\prime} .
$$

In order to obtain a local and global existence we rewrite (1.1) $)_{\varepsilon}$ as a first order ordinary differential equation in the Hilbert space $\mathcal{X}=X^{1 / 2} \times X$. This is to do by letting $v=u^{\prime}$. Then we can rewrite (1.1) $)_{\varepsilon}$ as

$$
\begin{equation*}
\frac{d}{d t} \phi(t)+\mathcal{L}_{\varepsilon} \phi(t)+\mathcal{F}_{\varepsilon}(\phi(t))=0 ; \quad \phi(0)=\phi_{0} \tag{2.1}
\end{equation*}
$$

where

$$
\begin{aligned}
\phi(t)= & {[u(t), v(t)] ; \quad \mathcal{L}_{\varepsilon}[u, v]=\left[-v, \varepsilon^{-2} A(\alpha u+v)+\varepsilon^{-1} \delta v\right] } \\
& \text { and } \quad \mathcal{F}_{\varepsilon}([u, v])=\left[0,-\varepsilon^{-2} g\left(\|u\|_{1 / 4}^{2}\right) A^{1 / 2} u\right] .
\end{aligned}
$$

It is known $[\mathrm{M} 1$, Theorem 1.1] that the operator $\mathcal{L}([u, v])=[-v, A(\alpha u+v)]$ is sectorial in $X^{1 / 2} \times X$. Then Theorem 1.3.2 of $[\mathrm{H}]$ demonstrates that the operator $\mathcal{L}_{\varepsilon}$ is sectorial in \mathcal{X}. The domain of $\mathcal{L}_{\varepsilon}$ is

$$
D\left(\mathcal{L}_{\varepsilon}\right)=\left\{[u, v] \in X^{1 / 2} \times X^{1 / 2} ; \alpha u+v \in D(A)\right\} .
$$

From now on we restrict ε_{0} by

$$
\begin{equation*}
\lambda_{1}-2 \cdot \varepsilon_{0}|\delta|>0 \tag{H3}
\end{equation*}
$$

Since $\operatorname{Re} \sigma(A) \geq \lambda_{1}$, then, by looking at the spectrum $\sigma\left(\mathcal{L}_{\varepsilon}\right)$, we see that

$$
\begin{equation*}
\operatorname{Re} \sigma\left(\mathcal{L}_{\varepsilon}\right)>\frac{\alpha}{2} \text { for each } \varepsilon \in\left(0, \varepsilon_{0}\right] \tag{2.2}
\end{equation*}
$$

Since $\mathcal{L}_{\varepsilon}$ is the sectorial operator, then $-\mathcal{L}_{\varepsilon}$ generates an analytic semigroup $\exp \left(-\mathcal{L}_{\varepsilon}\right)$. Let $\omega \in(0, \alpha / 2)$. Due to the estimate (2.2), it follows that there is $M(\varepsilon)>0$ such that

$$
\begin{equation*}
\left\|\exp \left(-\mathcal{L}_{\varepsilon} t\right)\right\| \mathcal{X} \leq M(\varepsilon) \cdot e^{-\omega t} \quad \text { for each } t \geq 0 \tag{2.3}
\end{equation*}
$$

According to $[\mathrm{H}$, Theorems 3.3.3, 3.3.4, 3.4.1 and 3.5.2], the local existence, uniqueness, continuous dependence on initial conditions and continuation of solutions od (2.1) immediately follow. More precisely, for each $\Phi_{0} \in \mathcal{X}$ there exists $T=T\left(\Phi_{0}\right)>0$ and a unique function $\Phi=\Phi\left(t, \Phi_{0}\right)$ such that

$$
\Phi \in C\left(\left[0, t_{1}\right): \mathcal{X}\right) \cap C_{1}\left(\left(t_{0}, t_{1}\right): \mathcal{X}\right) \quad \text { for each } \quad 0<t_{0}<t_{1}<T
$$

$\Phi(0)=\Phi_{0}, \Phi(t) \in D(L)$ for each $t \in(0, T)$ and $\Phi(t)$ is the solution of (2.1) on the interval of existence $(0, T)$.

If we take the scalar product in X of $(1.1)_{\varepsilon}$ with u^{\prime}, we conclude that

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t}\left\{\alpha\|u\|_{1 / 2}^{2}+\varepsilon^{2}\left\|u^{\prime}\right\|^{2}+\mathcal{G}\left(\|u\|_{1 / 4}^{2}\right)\right\}+\left\|u^{\prime}\right\|_{1 / 2}^{2}+\varepsilon \delta\left\|u^{\prime}\right\|^{2}=0 \tag{2.4}
\end{equation*}
$$

where \mathcal{G} is the primitive of g, i.e.

$$
\mathcal{G}(r)=\int_{0}^{r} g(s) d s \quad \text { for } \quad r \geq 0
$$

Thanks to (H1) we infer the existence of $C_{0}>0$ such that

$$
\begin{equation*}
g(r) \cdot r \geq \int_{0}^{r} g(s) d s \geq-C_{0} \quad \text { for each } r \geq 0 \tag{2.5}
\end{equation*}
$$

From (2.4) we observe that

$$
\begin{gather*}
\int_{0}^{r}\left\|u^{\prime}(s)\right\|_{1 / 2}^{2} d s+\varepsilon^{2}\left\|u^{\prime}(t)\right\|^{2}+\alpha \cdot\|u(t)\|_{1 / 2}^{2} \leq \\
\leq \varepsilon^{2}\left\|u^{\prime}(0)\right\|^{2}+\alpha \cdot\|u(0)\|_{1 / 2}^{2}+\mathcal{G}\left(\|u(0)\|_{1 / 4}^{2}\right)+C_{0} \tag{2.6}\\
\text { for each } t \geq 0
\end{gather*}
$$

Thus the solutions of $(1.1)_{\varepsilon}$ and (2.1) exist globally on \mathbb{R}^{+}. Hence the initial value problem (2.1) generates a semidynamical system $\left\{S_{\varepsilon}(t) ; t \geq 0\right\}$ in \mathcal{X}, where $S_{\varepsilon}(t) \Phi(0)=\Phi_{\varepsilon}(t, \Phi(0))$ for $t \geq 0$.

Since there are many estimates in this paper, we will let $C_{0}, C_{1}, C_{2}, \ldots$ be generic positive constants always assumed to be independent of ε.

3. The existence and uniform regularity of global attractors.

Lemma 3.1. The semidynamical system S_{ε} is bounded dissipative in \mathcal{X}. More precisely, there exists a constant $C_{1}>0$ such that for any $\varepsilon \in(0, \varepsilon]$ and any bounded set $B \subseteq X^{1 / 2} \times X$ there is $T(\varepsilon, B)>0$ with the property

$$
\begin{gathered}
t \geq T(\varepsilon, B) \text { implies } \\
\varepsilon^{2}\|v\|^{2}+\alpha\|u\|_{1 / 2}^{2} \leq C_{1} \text { for each }(u, v) \in S_{\varepsilon}(t) B .
\end{gathered}
$$

Proof: Define a functional $V_{\varepsilon}: \mathcal{X} \longrightarrow \mathbb{R}$ by

$$
V_{\varepsilon}(\Phi, \Psi)=\frac{1}{2}\left\{\alpha\|\Phi\|_{1 / 2}^{2}+\varepsilon^{2}\|\Psi\|^{2}+\mathcal{G}\left(\|\Phi\|_{1 / 4}^{2}\right)\right\}+b \varepsilon^{2}(\Phi, \Psi)
$$

where b is a positive real satisfying

$$
0<b<\min \left\{\alpha, \frac{\sqrt{\alpha \lambda_{1}}}{2 \varepsilon_{0}} ;\left(\lambda_{1}-\varepsilon_{0}|\delta|\right)\left(\frac{\lambda_{1}}{\alpha}+\varepsilon_{0}^{2}+\frac{\varepsilon_{0}^{2} \delta^{2}}{\alpha \lambda_{1}}\right)^{-1}\right\} .
$$

From (2.4) we obtain

$$
\begin{gathered}
\frac{d}{d t} V_{\varepsilon}\left(u_{\varepsilon}, u_{\varepsilon}^{\prime}\right)=-\left\|u_{\varepsilon}^{\prime}\right\|_{1 / 2}^{2}-\varepsilon \delta\left\|u_{\varepsilon}^{\prime}\right\|^{2}+b \varepsilon^{2}\left\|u_{\varepsilon}^{\prime}\right\|^{2}-b \cdot\left(A u_{\varepsilon}^{\prime}, u_{\varepsilon}\right)- \\
-b \alpha \cdot\left(A u_{\varepsilon}, u_{\varepsilon}\right)-b \varepsilon \delta \cdot\left(u_{\varepsilon}^{\prime}, u_{\varepsilon}\right)-b \cdot g\left(\left\|u_{\varepsilon}\right\|_{1 / 4}^{2}\right) \cdot\left\|u_{\varepsilon}\right\|_{1 / 4}^{2} \leq \\
\leq-\left\|u_{\varepsilon}^{\prime}\right\|_{1 / 2}^{2}-\left(\varepsilon \delta-b \varepsilon^{2}\right) \cdot\left\|u_{\varepsilon}^{\prime}\right\|^{2}-b \alpha \cdot\left\|u_{\varepsilon}\right\|_{1 / 2}^{2}-b \cdot\left(A^{1 / 2} u_{\varepsilon}^{\prime}, A^{1 / 2} u_{\varepsilon}\right)- \\
-b \varepsilon \delta \cdot\left(u_{\varepsilon}^{\prime}, u_{\varepsilon}\right)+b C_{0} .
\end{gathered}
$$

Then we deduce from the Young's inequality

$$
|(\Phi, \Psi)| \leq\left(r^{2}\|\Phi\|^{2}+r^{-2}\|\Psi\|^{2}\right) / 2
$$

that

$$
\begin{aligned}
& \frac{d}{d t} V_{\varepsilon}\left(u_{\varepsilon}, u_{\varepsilon}^{\prime}\right) \leq-\left\|u_{\varepsilon}^{\prime}\right\|_{1 / 2}^{2}-\left(\varepsilon \delta-b \varepsilon^{2}\right) \cdot\left\|u_{\varepsilon}^{\prime}\right\|^{2}-b \alpha \cdot\left\|u_{\varepsilon}\right\|_{1 / 2}^{2}+b C_{0}+ \\
& \quad+b \cdot\left(r^{2}\left\|u_{\varepsilon}^{\prime}\right\|_{1 / 2}^{2}+r^{-2}\left\|u_{\varepsilon}\right\|_{1 / 2}^{2}\right) / 2+b \varepsilon|\delta| \cdot\left(s^{2}\left\|u_{\varepsilon}^{\prime}\right\|^{2}+s^{-2}\left\|u_{\varepsilon}\right\|^{2}\right) / 2 .
\end{aligned}
$$

Put $r^{2}=2 / \alpha$ and $s^{2}=\frac{2 \varepsilon|\delta|}{\alpha \cdot \lambda_{1}}$. Then

$$
\begin{aligned}
& \frac{d}{d t} V_{\varepsilon}\left(u_{\varepsilon}, u_{\varepsilon}^{\prime}\right) \leq-\left(1-\frac{b}{\alpha}\right) \cdot\left\|u_{\varepsilon}^{\prime}\right\|_{1 / 2}^{2}-\left(\varepsilon \delta-b \varepsilon^{2}-b \frac{\varepsilon^{2} \delta^{2}}{\alpha \cdot \lambda_{1}}\right) \cdot\left\|u_{\varepsilon}^{\prime}\right\|^{2}- \\
& -b(\alpha-\alpha / 4-\alpha / 4) \cdot\left\|u_{\varepsilon}\right\|_{1 / 2}^{2}+b C_{0} \leq \\
& \leq-\left(\lambda_{1}\left(1-\frac{b}{\alpha}\right)+\varepsilon \delta-b \varepsilon^{2}-b \frac{\varepsilon^{2} \delta^{2}}{\alpha \cdot \lambda_{1}}\right) \cdot\left\|u_{\varepsilon}^{\prime}\right\|^{2}-b \cdot \frac{\alpha}{2} \cdot\left\|u_{\varepsilon}\right\|_{1 / 2}^{2}+b C_{0} .
\end{aligned}
$$

Since $b \cdot\left(\frac{\lambda_{1}}{\alpha}+\varepsilon_{0}^{2}+\frac{\varepsilon_{0}^{2} \delta^{2}}{\alpha \lambda_{1}}\right)<\lambda_{1}-\varepsilon_{0}|\delta|$ and $b<\alpha$, one can easily show that there are constants $C_{2}, C_{3}>0$ such that

$$
\begin{equation*}
\frac{d}{d t} V_{\varepsilon}\left(u_{\varepsilon}, u_{\varepsilon}^{\prime}\right) \leq-C_{2}\left(\left\|u_{\varepsilon}^{\prime}\right\|^{2}+\left\|u_{\varepsilon}\right\|_{1 / 2}^{2}\right)+C_{3} \tag{3.1}
\end{equation*}
$$

Let us introduce a function

$$
y_{\varepsilon}(t)=V_{\varepsilon}\left(u_{\varepsilon}(t), u_{\varepsilon}^{\prime}(t)\right)+C_{3}
$$

Thanks to the inequality

$$
b \varepsilon^{2}\left(u_{\varepsilon}^{\prime}, u_{\varepsilon}\right) \leq \frac{\varepsilon^{2}}{2} \cdot\left\|u_{\varepsilon}^{\prime}\right\|^{2}+\frac{\varepsilon^{2} b^{2}}{2 \cdot \lambda_{1}} \cdot\left\|u_{\varepsilon}\right\|_{1 / 2}^{2}
$$

we have

$$
0 \leq y_{\varepsilon}(t) \leq \alpha \cdot\left\|u_{\varepsilon}(t)\right\|_{1 / 2}^{2}+\varepsilon^{2}\left\|u_{\varepsilon}^{\prime}(t)\right\|^{2}+\frac{1}{2} \mathcal{G}\left(\left\|u_{\varepsilon}(t)\right\|_{1 / 4}^{2}\right)+C_{3}
$$

Since g increases on \mathbb{R}^{+}, there exists an increasing function $\vartheta \in C^{1}\left(\mathbb{R}^{+}, \mathbb{R}^{+}\right)$such that

$$
0 \leq y_{\varepsilon}(t) \leq \vartheta\left(\left\|u_{\varepsilon}(t)\right\|_{1 / 2}^{2}+\left\|u_{\varepsilon}^{\prime}(t)\right\|^{2}\right)
$$

and $\vartheta^{\prime}(r) \geq \sigma>0$ for each $r \geq 0$.
Then we can rewrite (3.1) as an ordinary differential inequality

$$
\frac{d}{d t} y_{\varepsilon} \leq-C_{2} \vartheta^{-1}\left(y_{\varepsilon}\right)+C_{3}
$$

An obvious contradiction argument gives us either $0 \leq y_{\varepsilon}(t) \leq \vartheta\left(C_{3} / C_{2}\right)$ for each $t \geq 0$ or there is $T\left(\varepsilon, y_{\varepsilon}(0)\right)>0$ such that $0 \leq y_{\varepsilon}(t) \leq \vartheta\left(C_{3} / C_{2}\right)+1$ for each $t \geq T\left(\varepsilon, y_{\varepsilon}(0)\right)$. Due to the assumption on b, it follows that

$$
y_{\varepsilon}(t) \geq \frac{1}{4}\left(\alpha\left\|u_{\varepsilon}(t)\right\|_{1 / 2}^{2}+\varepsilon^{2}\left\|u_{\varepsilon}^{\prime}(t)\right\|^{2}\right)+C_{3}-C_{0} / 2
$$

Thus Lemma 3.1 is proved.
Consider a solution w_{ε} of the following linear strongly damped evolution equation

$$
\varepsilon^{2} w_{\varepsilon}^{\prime \prime}+A w_{\varepsilon}^{\prime}+\alpha \cdot A w_{\varepsilon}+\varepsilon \delta \cdot w_{\varepsilon}^{\prime}+h_{\varepsilon}=0
$$

where

$$
\begin{equation*}
h_{\varepsilon} \in \mathcal{L}_{p}\left(\mathbb{R}^{+} ; X\right) \quad \text { for } p=2 \text { or } p=\infty \tag{3.2}
\end{equation*}
$$

Lemma 3.2. Assume $p=2$ or $p=\infty$. Then there are constants $C_{4}, C_{5}, a>0$ such that

$$
\begin{gathered}
\varepsilon^{2}\left\|\mathbb{P}_{m} w_{\varepsilon}^{\prime}(t)\right\|_{1 / 2}^{2}+\alpha \cdot\left\|\mathbb{P}_{m} w_{\varepsilon}(t)\right\|_{1}^{2} \leq \\
\leq C_{4}\left(\varepsilon^{2}\left\|\mathbb{P}_{m} w_{\varepsilon}^{\prime}(0)\right\|_{1 / 2}^{2}+\alpha \cdot\left\|\mathbb{P}_{m} w_{\varepsilon}(0)\right\|_{1}^{2}\right) \cdot e^{-2 a t}+C_{5}\left\|h_{\varepsilon}\right\|_{\mathcal{L}_{p}\left(\mathbb{R}^{+} ; X\right)}^{2} \\
\text { for each } t \geq 0 ; \varepsilon \in\left(0, \varepsilon_{0}\right] \text { and } m \in \mathbb{N}
\end{gathered}
$$

Proof: Put $y(t)=\mathbb{P}_{m} w_{\varepsilon}(t)$. Clearly, $y(t), y^{\prime}(t) \in D(A)$ for each $t \geq 0$. Let us introduce a substitution

$$
z=y^{\prime}+a \cdot y
$$

where a is a positive real satisfying

$$
0<a<\min \left\{\frac{\alpha}{2} ; \frac{\lambda_{1}-2|\delta| \varepsilon_{0}}{4 \varepsilon_{0}^{2}} ; \frac{\alpha \lambda_{1}}{4 \varepsilon_{0}}\left(\frac{\varepsilon_{0} \alpha}{2}+|\delta|\right)^{-1}\right\} .
$$

Then

$$
\begin{equation*}
\varepsilon^{2} z^{\prime}+\left(A-a \varepsilon^{2}+\delta \varepsilon\right) z+\left((\alpha-a) A+a^{2} \varepsilon^{2}-a \delta \varepsilon\right) y+\mathbb{P}_{m} h_{\varepsilon}=0 \tag{3.3}
\end{equation*}
$$

Take the scalar product in X of (3.3) with $A z$ to obtain

$$
\begin{gathered}
\frac{1}{2} \frac{d}{d t}\left\{\varepsilon^{2}\|z\|_{1 / 2}^{2}+(\alpha-a)\|y\|_{1}^{2}+\left(a^{2} \varepsilon^{2}-a \delta \varepsilon\right)\|y\|_{1 / 2}^{2}\right\}+ \\
+\|z\|_{1}^{2}+\left(\delta \varepsilon-a \varepsilon^{2}\right)\|z\|_{1 / 2}^{2}+a \cdot\left\{(\alpha-a)\|y\|_{1}^{2}+\left(a^{2} \varepsilon^{2}-a \delta \varepsilon\right)\|y\|_{1 / 2}^{2}\right\}= \\
=-\left(\mathbb{P}_{m} h_{\varepsilon}, A z\right) \leq \frac{1}{2} \cdot\left\|\mathbb{P}_{m} h_{\varepsilon}\right\|^{2}+\frac{1}{2} \cdot\|z\|_{1}^{2} .
\end{gathered}
$$

From the assumption $a<\frac{\lambda_{1}-2|\delta| \varepsilon_{0}}{4 \varepsilon_{0}^{2}}$ we have

$$
\theta^{\prime}(t)+2 a \theta(t) \leq\left\|h_{\varepsilon}(t)\right\|^{2} \quad \text { for } t \geq 0
$$

where

$$
\theta(t)=\varepsilon^{2}\|z\|_{1 / 2}^{2}+(\alpha-a)\|y\|_{1}^{2}+\left(a^{2} \varepsilon^{2}-a \delta \varepsilon\right)\|y\|_{1 / 2}^{2} .
$$

Therefore

$$
\begin{aligned}
\theta(t) \leq & \theta(0) \cdot e^{-2 a t}+\int_{0}^{t} e^{-2 a(t-s)}\left\|h_{\varepsilon}(s)\right\|^{2} d s \leq \\
& \leq \theta(0) \cdot e^{-2 a t}+C_{5}^{\prime}\left\|h_{\varepsilon}\right\|_{\mathcal{L}_{p}\left(\mathbb{R}^{+} ; X\right)}^{2} .
\end{aligned}
$$

Since $a<\frac{\alpha}{2}$ and $\frac{a \varepsilon_{0}}{\lambda_{1}}\left(\frac{\varepsilon_{0} \alpha}{2}+|\delta|\right)<\frac{\alpha}{4}$, then

$$
\begin{gathered}
(\alpha-a)\|y\|_{1}^{2}+\left(a^{2} \varepsilon^{2}-a \delta \varepsilon\right)\|y\|_{1 / 2}^{2} \geq \\
\geq \frac{\alpha}{2} \cdot\|y\|_{1}^{2}-a \varepsilon_{0}\left(\frac{\varepsilon_{0} \alpha}{2}+|\delta|\right) \cdot\|y\|_{1 / 2}^{2} \geq \frac{\alpha}{4} \cdot\|y\|_{1}^{2} .
\end{gathered}
$$

Then one can easily show that there are $C_{4}, C_{5}>0$ such that

$$
\begin{gathered}
\varepsilon^{2}\left\|y^{\prime}(t)\right\|_{1 / 2}^{2}+\alpha \cdot\|y(t)\|_{1}^{2} \leq \\
\leq C_{4}\left(\varepsilon^{2}\left\|y^{\prime}(0)\right\|_{1 / 2}^{2}+\alpha \cdot\|y(0)\|_{1}^{2}\right) \cdot e^{-2 a t}+C_{5}\left\|h_{\varepsilon}\right\|_{\mathcal{L}_{p}(\mathbb{R}+; X)}^{2}
\end{gathered}
$$

as claimed.
The solution of (2.1) is given by the variation of constants by the formula

$$
\begin{gathered}
S_{\varepsilon}(t) \Phi_{0}=\exp \left(-\mathcal{L}_{\varepsilon} t\right) \Phi_{0}+\mathcal{U}_{\varepsilon}(t) \Phi_{0} \\
\text { where } \mathcal{U}_{\varepsilon}(t) \Phi_{0}=\int_{0}^{t} \exp \left(-\mathcal{L}_{\varepsilon}(t-s)\right)\left[0,-\varepsilon^{-2} g\left(\left\|u_{\varepsilon}(s)\right\|_{1 / 4}^{2}\right) A^{1 / 2} u_{\varepsilon}(s)\right] d s
\end{gathered}
$$

$\operatorname{Put}\left[w_{\varepsilon}(t), w_{\varepsilon}^{\prime}(t)\right]=\mathcal{U}_{\varepsilon}(t)\left[u_{0}, v_{0}\right]$. Clearly, w_{ε} is a solution of the linear strongly damped evolution equation

$$
\begin{gathered}
\varepsilon^{2} w_{\varepsilon}^{\prime \prime}(t)+A w_{\varepsilon}^{\prime}(t)+\alpha A w_{\varepsilon}(t)+\varepsilon \delta w_{\varepsilon}^{\prime}(t)+h_{\varepsilon}(t)=0 \\
w_{\varepsilon}^{\prime}(0)=w_{\varepsilon}(0)=0
\end{gathered}
$$

where $h_{\varepsilon}(t)=g\left(\left\|u_{\varepsilon}(t)\right\|_{1 / 4}^{2}\right) A^{1 / 2} u_{\varepsilon}(t)$ and u_{ε} is a solution of (1.1) satisfying the initial conditions

$$
u_{\varepsilon}(0)=u_{0}, \quad u_{\varepsilon}^{\prime}(0)=v_{0} .
$$

Lemma 3.3. Let $\varepsilon \in\left(0, \varepsilon_{0}\right]$ be fixed. Then the set $K_{\varepsilon}=\bigcup_{t \geq 0} \mathcal{U}_{\varepsilon}(t) B$ is bounded in $X^{1} \times X^{1 / 2}$ for any bounded set $B \subseteq X^{1 / 2} \times X$.
Proof: Let B be a bounded set in $X^{1 / 2} \times X$, i.e. there is $M_{1}>0$ such that

$$
\varepsilon^{2}\|v\|^{2}+\alpha\|u\|_{1 / 2}^{2}+\mathcal{G}\left(\|u\|_{1 / 4}^{2}\right) \leq M_{1} \text { for each }(u, v) \in B
$$

Let $\left(u_{0}, v_{0}\right) \in B$ and u_{ε} be a solution of (1.1) $)_{\varepsilon}$ which satisfies the initial data $u_{\varepsilon}(0)=u_{0}, u_{\varepsilon}^{\prime}(0)=v_{0}$. From (2.6) we have

$$
\varepsilon^{2}\left\|u_{\varepsilon}^{\prime}(t)\right\|^{2}+\alpha\|u(t)\|_{1 / 2}^{2} \leq M_{1}+C_{0}=M_{1}^{\prime} \quad \text { for each } t \geq 0
$$

Therefore there exists $M_{2}>0$ such that

$$
\left\|h_{\varepsilon}\right\|_{\mathcal{L}_{\infty}\left(\mathbb{R}^{+} ; X\right)}^{2} \leq M_{2} .
$$

Thanks to Lemma 3.2 (with $p=\infty$) we have

$$
\varepsilon^{2}\left\|\mathbb{P}_{m} w_{\varepsilon}^{\prime}(t)\right\|_{1 / 2}^{2}+\alpha \cdot\left\|\mathbb{P}_{m} w_{\varepsilon}(t)\right\|_{1}^{2} \leq C_{5} M_{2} \quad \text { for each } t \geq 0 \text { and } m \in \mathbb{N} .
$$

Letting $m \longrightarrow \infty$, we conclude that

$$
\varepsilon^{2}\left\|w_{\varepsilon}^{\prime}(t)\right\|_{1 / 2}^{2}+\alpha \cdot\left\|w_{\varepsilon}(t)\right\|_{1}^{2} \leq C_{5} M_{2}=M_{3} \quad \text { for each } t \geq 0 .
$$

Then the arbitrariness of $\left(u_{0}, v_{0}\right) \in B$ implies the assertion of Lemma 3.3.

Theorem 3.1. Let $\varepsilon \in\left(0, \varepsilon_{0}\right]$ be fixed. Then there exists a compact global attractor $\mathcal{A}_{\varepsilon}$ for S_{ε}. Moreover, $\mathcal{A}_{\varepsilon}$ is bounded in $X^{1} \times X^{1 / 2}$.

Proof: In order to exploit the general results of [GT], we have to show that S_{ε} is bounded dissipative and for any bounded set $B \subseteq X^{1 / 2} \times X$ there is a compact set K_{ε}^{B} which attracts B, i.e.

$$
\lim _{t \rightarrow \infty} \operatorname{dist}\left(S_{\varepsilon}(t) B, K_{\varepsilon}^{B}\right)=0 .
$$

Clearly, by Lemma 3.1, S_{ε} is bounded dissipative, i.e. there exists a bounded set B_{ε} which dissipates all bounded sets of $X^{1 / 2} \times X$.

Let B be any bounded set in $X^{1 / 2} \times X$. From Lemma 3.3 we have that

$$
K_{\varepsilon}^{B}=\bigcup_{t \geq 0} \mathcal{U}_{\varepsilon}(t) B \quad \text { is bounded in } X^{1} \times X^{1 / 2} .
$$

Therefore K_{ε}^{B} is compact in $X^{1 / 2} \times X$. Since

$$
\begin{gathered}
\operatorname{dist}\left(S_{\varepsilon}(t) B, K_{\varepsilon}^{B}\right) \leq \sup _{\Phi \in B}\left\|\exp \left(-\mathcal{L}_{\varepsilon} t\right) \Phi\right\|_{\mathcal{X}} \leq M(\varepsilon) \exp (-\omega t) \cdot \sup _{\Phi \in B}\|\Phi\|_{\mathcal{X}} \\
\text { where } \omega \in\left(0, \frac{\alpha}{2}\right),
\end{gathered}
$$

then

$$
\lim _{t \rightarrow \infty} \operatorname{dist}\left(S_{\varepsilon}(t) B, K_{\varepsilon}^{B}\right)=0 .
$$

According to [GT, Proposition 3.1] $\mathcal{A}_{\varepsilon}=\Omega\left(B_{\varepsilon}\right)$ is a compact global attractor for S_{ε}. Furthermore, since $\Omega\left(B_{\varepsilon}\right)$ is the bounded and invariant set then we see that

$$
\operatorname{dist}\left(\Omega\left(B_{\varepsilon}\right), K_{\varepsilon}^{\Omega\left(B_{\varepsilon}\right)}\right)=0
$$

Thus $\mathcal{A}_{\varepsilon}=\Omega\left(B_{\varepsilon}\right) \subseteq K_{\varepsilon}^{\Omega\left(B_{\varepsilon}\right)}$. Hence $\mathcal{A}_{\varepsilon}$ is bounded in $X^{1} \times X^{1 / 2}$.
Remark 3.1. In the general case (under the hypotheses H1-H3) the attractor $\mathcal{A}_{\varepsilon}, \varepsilon>0$, does not reduce to a single point. Indeed, one can consider the case in which

$$
-\alpha \sqrt{\lambda_{n+1}}<g(0) \leq-\alpha \sqrt{\lambda_{n}}
$$

where $0<\lambda_{1}<\lambda_{2}<\ldots$ are eigenvalues of A and $\Phi_{k}, k \geq 1$, are corresponding orthonormal eigenvectors. Since we assume

$$
\int_{0}^{\infty} g(s) d s>-\infty \quad \text { and } g \text { is an increasing function, }
$$

the domain of g^{-1} (the inverse function of g) contains a subinterval $[g(0), 0)$. Hence

$$
w_{k}^{ \pm}=\left[\pm\left(g^{-1}\left(-\alpha \cdot\left(\lambda_{k}\right)^{1 / 2}\right) / \lambda_{k}^{1 / 2}\right)^{1 / 2} \cdot \Phi_{k}, 0\right] \quad k=1,2, \ldots, n
$$

are non-zero equilibrium states for (2.1), $\varepsilon>0$, which are contained in $\mathcal{A}_{\varepsilon}$.

Remark 3.2. If we restrict g, δ by $\delta>-\lambda_{1}$ and $g(s)=\beta+k \cdot s$, where $k>0$ and $\beta>-\alpha \sqrt{\lambda_{1}}$ then it is known ([B2, Theorem 6]) that every solution of $(1.1)_{\varepsilon}, \varepsilon>0$, and its time derivative decay to zero, as $t \longrightarrow+\infty$. Due to (4.1) it follows that every solution of $(1.1)_{0}$ also decays to zero. Hence, under the above assumption on δ and g, the dynamics of (2.1), $\varepsilon>0$ is very simple-each trajectory approaches a zero equilibrium state.

From the invariance property of $\mathcal{A}_{\varepsilon}$ and Lemma 3.1, we infer the following

Corollary 3.1.

$$
\varepsilon^{2}\|v\|^{2}+\alpha \cdot\|u\|_{1 / 2}^{2} \leq C_{1} \quad \text { for each } \quad \varepsilon \in\left(0, \varepsilon_{0}\right] \text { and }(u, v) \in \mathcal{A}_{\varepsilon} .
$$

The following lemma gives us the uniform estimate of $X^{1} \times X^{1 / 2}-$ norm of $\mathcal{A}_{\varepsilon}$, for $\varepsilon \in\left(0, \varepsilon_{0}\right]$.
Lemma 3.4. There is $C_{6}>0$ such that

$$
\begin{aligned}
& \varepsilon^{2}\left\|u_{\varepsilon}^{\prime \prime}(t)\right\|_{1 / 2}^{2}+\left\|u_{\varepsilon}^{\prime}(t)\right\|_{1}^{2}+\left\|u_{\varepsilon}(t)\right\|_{1}^{2} \leq C_{6} \\
& \text { for each } \varepsilon \in\left(0, \varepsilon_{0}\right], t \in \mathbb{R} \text { and any orbit } \\
& \qquad\left\{\left(u_{\varepsilon}(t), u_{\varepsilon}^{\prime}(t)\right) ; t \in \mathbb{R}\right\} \subseteq \mathcal{A}_{\varepsilon} .
\end{aligned}
$$

Proof: Let $m \in \mathbb{N}$ be an arbitrary integer. We take the projection \mathbb{P}_{m} of $(1.1)_{\varepsilon}$ to obtain

$$
\varepsilon^{2} \mathbb{P}_{m} u_{\varepsilon}^{\prime \prime}+\varepsilon \delta \mathbb{P}_{m} u_{\varepsilon}^{\prime}+A \mathbb{P}_{m} u_{\varepsilon}^{\prime}+\alpha A \mathbb{P}_{m} u_{\varepsilon}+g\left(\left\|u_{\varepsilon}\right\|_{1 / 4}^{2}\right) A^{1 / 2} \mathbb{P}_{m} u_{\varepsilon}=0
$$

Put $w_{\varepsilon}(t)=\mathbb{P}_{m} u_{\varepsilon}^{\prime}(t)$. Then w_{ε} satisfies the linear strongly damped equation

$$
\varepsilon^{2} w_{\varepsilon}^{\prime \prime}+\varepsilon \delta w_{\varepsilon}^{\prime}+A w_{\varepsilon}^{\prime}+\alpha A w_{\varepsilon}+h_{\varepsilon}=0
$$

where

$$
\begin{gathered}
\left.h_{\varepsilon}(t)=2 g^{\prime}\left(\left\|u_{\varepsilon}(t)\right\|_{1 / 4}^{2}\right) \cdot\left(A^{1 / 2} u_{\varepsilon}^{\prime}(t)\right), u_{\varepsilon}(t)\right) A^{1 / 2} \mathbb{P}_{m} u_{\varepsilon}(t)+ \\
+g\left(\left\|u_{\varepsilon}(t)\right\|_{1 / 4}^{2}\right) A^{1 / 2} \mathbb{P}_{m} u_{\varepsilon}^{\prime}(t)
\end{gathered}
$$

From Corollary 3.1 and (2.6) we infer the existence of $C_{7}>0$ such that

$$
\left\|h_{\varepsilon}\right\|_{\mathcal{L}_{2}\left(\mathbb{R}^{+} ; X\right)}^{2} \leq C_{7} \quad \text { for each } \quad \varepsilon \in\left(0, \varepsilon_{0}\right] .
$$

Obviously, we can choose C_{7} to be independent of ε and $m \in \mathbb{N}$.
Recall that $\mathbb{P}_{m} w_{\varepsilon}=w_{\varepsilon}$. Then by Lemma 3.2, we have

$$
\begin{gathered}
\varepsilon^{2}\left\|w_{\varepsilon}^{\prime}(t)\right\|_{1 / 2}^{2}+\alpha \cdot\left\|w_{\varepsilon}(t)\right\|_{1}^{2} \leq \\
\leq C_{4}\left(\varepsilon^{2}\left\|w_{\varepsilon}^{\prime}(0)\right\|_{1 / 2}^{2}+\alpha \cdot\left\|w_{\varepsilon}(0)\right\|_{1}^{2}\right) \cdot e^{-2 a t}+C_{5} \cdot C_{7} .
\end{gathered}
$$

Clearly,

$$
\left\|w_{\varepsilon}(0)\right\|_{1}^{2}=\left\|\mathbb{P}_{m} u_{\varepsilon}^{\prime}(0)\right\|_{1}^{2} \leq \lambda_{m}^{2} \cdot\left\|u_{\varepsilon}^{\prime}(0)\right\|^{2}
$$

and

$$
\begin{gathered}
\left\|w_{\varepsilon}^{\prime}(0)\right\|_{1 / 2}=\left\|\mathbb{P}_{m} u_{\varepsilon}^{\prime \prime}(0)\right\|_{1 / 2}= \\
=\varepsilon^{-2}\left\|\mathbb{P}_{m}\left(\varepsilon \delta u_{\varepsilon}^{\prime}(0)+A u_{\varepsilon}^{\prime}(0)+\alpha A u_{\varepsilon}(0)+g\left(\left\|u_{\varepsilon}(0)\right\|_{1 / 4}^{2}\right) A^{1 / 2} u_{\varepsilon}(0)\right)\right\|_{1 / 2} \leq \\
\leq \varepsilon^{-2}\left\{\lambda_{m}^{3 / 2}\left\|u_{\varepsilon}^{\prime}(0)\right\|+\alpha \cdot \lambda_{m}\left\|u_{\varepsilon}(0)\right\|_{1 / 2}+\varepsilon|\delta| \lambda_{m}^{1 / 2}\left\|u_{\varepsilon}^{\prime}(0)\right\|+\right. \\
\left.+\lambda_{m}^{1 / 2}\left|g\left(\left\|u_{\varepsilon}(0)\right\|_{1 / 4}^{2}\right)\right| \cdot\left\|u_{\varepsilon}(0)\right\|_{1 / 2}\right\}
\end{gathered}
$$

Therefore there exists $M(m)>0$ and an increasing function $\rho: \mathbb{R}^{+} \longrightarrow \mathbb{R}^{+}$, which is independent of ε, such that

$$
\begin{gather*}
\varepsilon^{2}\left\|w_{\varepsilon}^{\prime}(t)\right\|_{1 / 2}^{2}+\alpha \cdot\left\|w_{\varepsilon}(t)\right\|_{1}^{2} \leq \tag{3.4}\\
\leq \varepsilon^{-4} \cdot M(m) \cdot \rho\left(\varepsilon^{2}\left\|u_{\varepsilon}^{\prime}(0)\right\|^{2}+\alpha \cdot\left\|u_{\varepsilon}(0)\right\|_{1 / 2}^{2}\right) \cdot e^{-2 a t}+C_{5} \cdot C_{7}
\end{gather*}
$$

Let $T \geq 0$. We set $\left(\bar{u}_{\varepsilon}(t), \bar{u}_{\varepsilon}^{\prime}(t)\right)=\left(u_{\varepsilon}(t-T), u_{\varepsilon}^{\prime}(t-T)\right)$ for each $t \in \mathbb{R}$. Using the invariance property of $\mathcal{A}_{\varepsilon}$, we have

$$
\left(\left(\bar{u}_{\varepsilon}(t), \bar{u}_{\varepsilon}^{\prime}(t)\right) ; t \in \mathbb{R}\right) \subseteq \mathcal{A}_{\varepsilon}
$$

Then, from (3.4), we obtain

$$
\begin{gathered}
\varepsilon^{2}\left\|\mathbb{P}_{m} u_{\varepsilon}^{\prime \prime}(t)\right\|_{1 / 2}^{2}+\alpha \cdot\left\|\mathbb{P}_{m} u_{\varepsilon}^{\prime}(t)\right\|_{1}^{2}= \\
=\varepsilon^{2}\left\|\mathbb{P}_{m} \bar{u}_{\varepsilon}^{\prime \prime}(t+T)\right\|_{1 / 2}^{2}+\alpha \cdot\left\|\mathbb{P}_{m} \bar{u}_{\varepsilon}^{\prime}(t+T)\right\|_{1}^{2} \leq \\
\leq \varepsilon^{-4} M(m) \rho\left(\varepsilon^{2}\left\|\bar{u}_{\varepsilon}^{\prime}(0)\right\|^{2}+\alpha \cdot\left\|\bar{u}_{\varepsilon}(0)\right\|_{1 / 2}^{2}\right) \cdot e^{-2 a(t+T)}+C_{5} \cdot C_{7} \leq \\
\leq \varepsilon^{-4} \cdot M(m) \cdot \rho\left(C_{1}\right) \cdot e^{-2 a(t+T)}+C_{5} \cdot C_{7}
\end{gathered}
$$

Then, by letting $T \longrightarrow \infty$, we obtain

$$
\varepsilon^{2}\left\|\mathbb{P}_{m} u_{\varepsilon}^{\prime \prime}(t)\right\|_{1 / 2}^{2}+\alpha \cdot\left\|\mathbb{P}_{m} u_{\varepsilon}^{\prime}(t)\right\|_{1}^{2} \leq 1+C_{5} \cdot C_{7}
$$

Since $m \in \mathbb{N}$ was an arbitrary integer then

$$
\varepsilon^{2}\left\|u_{\varepsilon}^{\prime \prime}(t)\right\|_{1 / 2}^{2}+\alpha \cdot\left\|u_{\varepsilon}^{\prime}(t)\right\|_{1}^{2} \leq 1+C_{5} \cdot C_{7} \quad \text { for each } t \in \mathbb{R}
$$

According to the equation $(1.1)_{\varepsilon}$ we have

$$
\begin{gathered}
\alpha \cdot\left\|u_{\varepsilon}(t)\right\|_{1} \leq\left\|u_{\varepsilon}^{\prime}(t)\right\|_{1}+\varepsilon^{2}\left\|u_{\varepsilon}^{\prime \prime}(t)\right\|+\varepsilon|\delta| \cdot\left\|u_{\varepsilon}^{\prime}(t)\right\|+ \\
+\left|g\left(\left\|u_{\varepsilon}(t)\right\|_{1 / 4}^{2}\right)\right| \cdot\left\|u_{\varepsilon}(t)\right\|_{1 / 2}
\end{gathered}
$$

Then, with regard to Corollary 3.1 , one can easily find the constant $C_{6}>0$, as claimed.
4. Existence of a global attractor for the equation (1.1) ${ }_{0}$.

We now turn our attention to the limiting equation $(1.1)_{0}$.

$$
A u^{\prime}+\alpha A u+g\left(\|u\|_{1 / 4}^{2}\right) A^{1 / 2} u=0
$$

which is equivalent $(0 \in \rho(A))$ to the differential equation in $X^{1 / 2}$

$$
u^{\prime}+\alpha u+g\left(\|u\|_{1 / 4}^{2}\right) A^{-1 / 2} u=0 .
$$

According to the assumption on g, a local existence uniqueness and continuation of solutions of $(1.1)_{0}$ immediately follow from the theory of semilinear abstract evolution equations. See, for example, [H, Theorem 3.3.3, 3.3.4, 3.4.1 and 3.5.2].

We first give some a priori estimates of solutions of $(1.1)_{0}$. Take the scalar product in $X^{1 / 2}$ with u to obtain

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t}\|u(t)\|_{1 / 2}^{2}+\alpha \cdot\|u(t)\|_{1 / 2}^{2}+g\left(\|u(t)\|_{1 / 4}^{2}\right) \cdot\|u(t)\|_{1 / 4}^{2}=0 \tag{4.1}
\end{equation*}
$$

Thanks to (2.5) we have

$$
\begin{equation*}
\|u(t)\|_{1 / 2}^{2} \leq e^{-2 \alpha t}\|u(0)\|_{1 / 2}^{2}+\frac{C_{0}}{\alpha} \cdot\left(1-e^{-2 \alpha t}\right) . \tag{4.2}
\end{equation*}
$$

Hence the solution $u(t)$ exists on \mathbb{R}^{+}. We set $S_{0}(t) u_{0}=u(t)$, where $u(t)$ is a solution of (1.1) $)_{0}$ with $u(0)=u_{0}$. Then, from (4.2), we have that S_{0} is the bounded dissipative semidynamical system in $X^{1 / 2}$. Recall that the variation of constants formula gives

$$
S_{0}(t) u_{0}=e^{-\alpha t} u_{0}+\mathcal{U}_{0}(t) u_{0}
$$

where

$$
\mathcal{U}_{0}(t) u_{0}=\int_{0}^{t} e^{-\alpha(t-s)} g\left(\|u(s)\|_{1 / 4}^{2}\right) A^{-1 / 2} u(s) d s
$$

From (4.2) one can show that

$$
\bigcup_{t \geq 0} \mathcal{U}_{0}(t) B \text { is bounded in } X^{1},
$$

whenever B is bounded in $X^{1 / 2}$.
Again, by [GT, Proposition 3.1], there exists a compact global attractor $\tilde{\mathcal{A}}_{0}$ for S_{0} which is bounded in X^{1}.

Finally, the attractor $\tilde{\mathcal{A}}_{0}$ can be naturally embedded into a compact set \mathcal{A}_{0} in $X^{1 / 2} \times X$. The set \mathcal{A}_{0} is defined by

$$
\mathcal{A}_{0}=\left\{(\Phi, \Psi) \in X^{1 / 2} \times X ; \Phi \in \tilde{\mathcal{A}}_{0} \text { and } \Psi=-\alpha \Phi-g\left(\|\Phi\|_{1 / 4}^{2}\right) A^{-1 / 2} \Phi\right\} .
$$

Obviously, \mathcal{A}_{0} is bounded in $X^{1} \times X^{1 / 2}$.
5. Upper semicontinuity of attractors $\mathcal{A}_{\varepsilon}$ at $\varepsilon=0$.

Recall that we are going to prove the property

$$
\lim _{\varepsilon \longrightarrow 0^{+}} \operatorname{dist}\left(\mathcal{A}_{\varepsilon}, \mathcal{A}_{0}\right)=0
$$

In Lemma 3.4, we have shown that there exists $C_{6}>0$ such that

$$
\begin{equation*}
\varepsilon^{2}\left\|u_{\varepsilon}^{\prime \prime}(t)\right\|_{1 / 2}^{2}+\left\|u_{\varepsilon}^{\prime}(t)\right\|_{1}^{2}+\left\|u_{\varepsilon}(t)\right\|_{1}^{2} \leq C_{6} \tag{5.1}
\end{equation*}
$$ for each $\varepsilon \in\left(0, \varepsilon_{0}\right], t \in \mathbb{R}$ and any orbit

$$
\left\{\left(u_{\varepsilon}(t), u_{\varepsilon}^{\prime}(t)\right) ; t \in \mathbb{R}\right\} \subseteq \mathcal{A}_{\varepsilon}
$$

Concerning the attractor \mathcal{A}_{0}, we have shown that there is $C_{7}>0$ with the property

$$
\left\|u_{0}^{\prime}(t)\right\|_{1 / 2}^{2}+\left\|u_{0}(t)\right\|_{1}^{2} \leq C_{7}
$$

for any orbit

$$
\left\{\left(u_{0}(t), u_{0}^{\prime}(t)\right) ; t \in \mathbb{R}\right\} \subseteq \mathcal{A}_{0}
$$

The idea of the proof is essentially the same as of [HR1]. Let us consider a sequence $\varepsilon_{n} \longrightarrow 0^{+}$and an orbit

$$
\left\{\left(u_{n}(t), u_{n}^{\prime}(t)\right) ; t \in \mathbb{R}\right\} \subseteq \mathcal{A}_{\varepsilon_{n}}
$$

Since the set $\bigcup_{t \in \mathbb{R}} \bigcup_{n \in \mathbb{N}} u_{n}(t)$ is bounded in X^{1} and

$$
\left\|u_{n}^{\prime}(t)\right\| \leq C_{6} \quad \text { for each } n \in \mathbb{N} \text { and } t \in \mathbb{R}
$$

By the Ascoli-Arzelào's theorem we may thus extract a subsequence $\left\{u_{n_{1}}\right\}$ of $\left\{u_{n}\right\}$ which converges to \bar{u} in the space $C\left(\langle-1,1\rangle ; X^{1 / 2}\right)$. Again, there is a subsequence $\left\{u_{n_{2}}\right\}$ which converges to \bar{u} in $C\left(\langle-2,2\rangle ; X^{1 / 2}\right)$. Thanks to the Cantor's diagonalization process, there is a subsequence $\left\{u_{n_{k}}\right\}$ of $\left\{u_{n}\right\}$ such that $u_{n_{k}} \longrightarrow \bar{u}$ in $C\left(J ; X^{1 / 2}\right)$ for any compact interval $J \subseteq \mathbb{R}$. Since

$$
\sup _{n \in \mathbb{N}} \sup _{t \in \mathbb{R}}\left\|u_{n}(t)\right\|_{1 / 2}^{2}<+\infty
$$

then

$$
\sup _{t \in \mathbb{R}}\|\bar{u}(t)\|_{1 / 2}^{2}<+\infty
$$

On the one hand $\frac{\partial u_{n_{k}}}{\partial t} \longrightarrow \frac{\partial \bar{u}}{\partial t}$ in $\mathcal{D}^{\prime}\left(I ; X^{1 / 2}\right)$
(in the sense of distributions) for any bounded open interval $I \subseteq \mathbb{R}$.
On the other hand

$$
\begin{aligned}
u_{n_{k}}^{\prime}(t)=-A^{-1} & \left\{\varepsilon_{n_{k}}^{2} \cdot u_{n_{k}}^{\prime \prime}(t)+\varepsilon_{n_{k}} \delta \cdot u_{n_{k}}^{\prime}(t)\right\}-\alpha \cdot u_{n_{k}}(t)- \\
- & g\left(\left\|u_{n_{k}}(t)\right\|_{1 / 4}^{2}\right) A^{-1 / 2} u_{n_{k}}(t)
\end{aligned}
$$

From (5.1) we observe that

$$
\begin{gathered}
\varepsilon_{n_{k}}^{2}\left\|u_{n_{k}}^{\prime \prime}(t)\right\|_{1 / 2} \longrightarrow 0 \text { and } \varepsilon_{n_{k}}|\delta| \cdot\left\|u_{n_{k}}^{\prime}(t)\right\| \longrightarrow 0 \\
\text { as } \varepsilon_{n_{k}} \longrightarrow 0^{+}
\end{gathered}
$$

Therefore

$$
\frac{\partial \bar{u}}{\partial t}=-\alpha \bar{u}-g\left(\|\bar{u}\|_{1 / 4}^{2}\right) A^{-1 / 2} \bar{u}
$$

Hence $\bar{u}(t)$ is the solution of $(1.1)_{0}$ which exists and is bounded on \mathbb{R}. Therefore

$$
\left\{\left(\bar{u}(t), \bar{u}^{\prime}(t)\right) ; t \in \mathbb{R}\right\} \subseteq \mathcal{A}_{0}
$$

Since $\left(u_{n_{k}}(\cdot), u_{n_{k}}^{\prime}(\cdot)\right) \longrightarrow\left(\bar{u}(\cdot), \bar{u}^{\prime}(\cdot)\right)$ in $C\left(J ; X^{1 / 2}\right)$ for any compact interval $J \in \mathbb{R}$ then we have

$$
\left(u_{n_{k}}(0), u_{n_{k}}^{\prime}(0)\right) \longrightarrow\left(\bar{u}(0), \bar{u}^{\prime}(0)\right) \in \mathcal{A}_{0} \quad \text { in } \quad X^{1 / 2} \times X
$$

It means that

$$
\lim _{\varepsilon \longrightarrow 0^{+}} \operatorname{dist}\left(\mathcal{A}_{\varepsilon}, \mathcal{A}_{0}\right)=0
$$

Indeed, suppose to the contrary that there exists $\varepsilon_{n} \longrightarrow 0^{+}, \sigma>0$ and a sequence $\left(u_{n 0}, u_{n 0}^{\prime}\right) \in \mathcal{A}_{\varepsilon_{n}}$ such that

$$
\operatorname{dist}\left(\left(u_{n 0}, u_{n 0}^{\prime}\right), \mathcal{A}_{0}\right) \geq \sigma
$$

Obviously, there are orbits $\left\{\left(u_{\varepsilon_{n}}(t), u_{\varepsilon_{n}}^{\prime}(t)\right) ; t \in \mathbb{R}\right\} \subseteq \mathcal{A}_{\varepsilon_{n}}$, for $n \in \mathbb{N}$, such that $u_{\varepsilon_{n}}(0)=u_{n 0}$ and $u_{\varepsilon_{n}}^{\prime}(0)=u_{n 0}^{\prime}$. Then there exists a subsequence $\varepsilon_{n_{k}}$ with the property

$$
\left(u_{n_{k}}(0), u_{n_{k}}^{\prime}(0)\right) \longrightarrow\left(\bar{u}(0), \bar{u}^{\prime}(0)\right) \in \mathcal{A}_{0}
$$

a contradiction. Hence Theorem 1.1 is proved.

References

[BV] Babin A.B., Vishik M.N., Attraktory evolucionnych uravnenij s častnymi proizvodnymi i ocenki ich razmernosti (in Russian), Uspechi mat. nauk 38 (1983), 133-185.
[B1] Ball J.M., Initial-boundary value problems for an extensible beam, J. Math. Anal. Appl. 42 (1973), 61-96.
[B2] Ball J.M., Stability theory for an extensible beam, J. of Diff. Equations 14 (1973), 399-418.
[ChL] Chow S.-N., Lu K., Invariant manifolds for flows in Banach spaces, J. of Diff. Equations 74 (1988), 285-317.
[F] Fitzgibbon W.E., Strongly damped quasilinear evolution equations, J. of Math. Anal. Appl. 79 (1981), 536-550.
[GT] Ghidaglia J.M., Temam R., Attractors for damped nonlinear hyperbolic equations, J. de Math. Pures et Appl. 79 (1987), 273-319.
[H] Henry D., Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Math. 840, Springer Verlag.
[HR1] Hale J.K., Rougel G., Upper semicontinuity of an attractor for a singularly perturbed hyperbolic equations, J. of Diff. Equations 73 (1988), 197-215.
[HR2] Hale J.K., Rougel G., Lower semicontinuity of an attractor for a singularly perturbed hyperbolic equations, Journal of Dynamics and Diff. Equations 2 (1990), 16-69.
[M1] Massat P., Limiting behavior for strongly damped nonlinear wave equations, J. of Diff. Equations 48 (1983), 334-349.
[M2] Massat P., Attractivity properties of α-contractions, J. of Diff. Equations 48 (1983), 326333.

Department of Mathematical Analysis, Comenius University, Mlynská dolina, 84215 Bratislava, Czechoslovakia
(Received June 26, 1990, revised October 16, 1990)

