Limiting behavior of global attractors for singularly perturbed beam equations with strong damping

Daniel Ševčovič

Abstract. The limiting behavior of global attractors \mathcal{A}_ε for singularly perturbed beam equations

$$\varepsilon^2 \frac{\partial^2 u}{\partial t^2} + \varepsilon \delta \frac{\partial u}{\partial t} + A \frac{\partial u}{\partial t} + \alpha A u + g(||u||_{1/4}^2) A^{1/2} u = 0$$

is investigated. It is shown that for any neighborhood \mathcal{U} of \mathcal{A}_0 the set $\mathcal{A}_{\varepsilon}$ is included in \mathcal{U} for ε small.

Keywords: strongly damped beam equation, compact attractor, upper semicontinuity of global attractors

 $Classification:\ 35B40,\ 35Q20$

1. Introduction.

Consider the following problems

$$(1.1)_{\varepsilon} \qquad \begin{cases} \varepsilon^2 \frac{\partial^2 u}{\partial t^2} + \varepsilon \delta \frac{\partial u}{\partial t} + A \frac{\partial u}{\partial t} + \alpha A u + g(||u||_{1/4}^2) A^{1/2} u = 0\\ u(0) = u_0\\ \frac{\partial u}{\partial t}(0) = v_0 \end{cases}$$

 and

(1.1)₀
$$\begin{cases} \frac{\partial u}{\partial t} + \alpha u + g(||u||_{1/4}^2)A^{-1/2}u = 0\\ u(0) = u_0 \end{cases}$$

where g is an increased C^1 function, $\varepsilon > 0$ is a small parameter, $\alpha < 0$ and δ is a real unrestricted on the sign. Here A is a sectorial operator in $\mathcal{L}_2(0, l)$ defined by a differential operator $\partial^4/\partial x^4$ and the boundary conditions corresponding either to hinged ends, when

$$(1.2)_H$$
 $u(x) = u_{xx}(x) = 0$ at $x = 0, l$

or to clamped ends, when

$$(1.2)_C$$
 $u(x) = u_x(x) = 0$ at $x = 0, l.$

D. Sevčovič

Let $\{S(t); t \ge 0\}$ be a semidynamical system in a Banach space \mathcal{X} (for definition, see, for example, [H, Chapter 4]). A set $J \subseteq \mathcal{X}$ is called *invariant* if S(t)J = J for all $t \ge 0$. An invariant set $\mathcal{U} \subseteq \mathcal{X}$ is called a global compact attractor for the semidynamical system S(t) if it is a compact set in \mathcal{X} and $\lim_{t\to\infty} \text{dist} (S(t)B, \mathcal{U}) = 0$ for any bounded set $B \subseteq \mathcal{X}$, where

dist
$$(\mathcal{A}, \mathcal{B}) = \sup_{x \in \mathcal{A}} \inf_{y \in \mathcal{B}} ||x - y||.$$

It is shown (Theorem 3.1) that, for small ε , there is a compact global attractor $\mathcal{A}_{\varepsilon} \subseteq W^{2,2}(0,l) \times \mathcal{L}_2(0,l)$ for a semidynamical system generated by $(1.1)_{\varepsilon}$. For $\varepsilon = 0$, the problem $(1.1)_0$ also has a compact attractor which can be naturally embedded into compact set $\mathcal{A}_0 \subseteq W^{2,2} \times \mathcal{L}_2(0,l)$.

Let us note that under the assumptions $g \ge 0$ and $\delta \ge 0$, the dynamics of $(1.1)_{\varepsilon}, \varepsilon \ge 0$, is simple—every trajectory approaches a zero equilibrium state (see Remark 3.2). On the other hand, if g(0) < 0 is sufficiently small, then the attractor $\mathcal{A}_{\varepsilon}, \varepsilon \ge 0$, contains 2n-1 distinct equilibrium states (Remark 3.1) for some $n \in \mathbb{N}$. In this case the attractor $\mathcal{A}_{\varepsilon}$ is a union of unstable manifolds for equilibrium states (see, for example, [BV, Theorem 10.1]).

The purpose of this paper is to obtain some relationships between the attractors $\mathcal{A}_{\varepsilon}$ and \mathcal{A}_{0} for small ε . It is given in terms of upper semicontinuity of \mathcal{A}_{0} at $\varepsilon = 0$ with respect to the sets $\{\mathcal{A}_{\varepsilon}; \varepsilon > 0\}$.

In this paper, the following hypotheses are needed:

(H1)
$$g \in C^1(\mathbb{R}^+, \mathbb{R}); g'(r) > 0 \text{ for } r \ge 0 \text{ and } \int_0^\infty g(s) \, ds > -\infty$$

$$(H2) \qquad \qquad \alpha > 0, \delta \in \mathbb{R}$$

We can now state our main result.

Theorem 1.1. Suppose that the hypotheses (H1)-(H2) are satisfied. Then the attractor \mathcal{A}_0 is upper semicontinuous at zero with respect to the sets $\mathcal{A}_{\varepsilon}$; $\varepsilon > 0$, i.e.

$$\lim_{\varepsilon \longrightarrow 0^+} \operatorname{dist} \left(\mathcal{A}_{\varepsilon}, \mathcal{A}_0 \right) = 0.$$

In other words, for any neighborhood \mathcal{U} of \mathcal{A}_0 , the set $\mathcal{A}_{\varepsilon}$ is included in \mathcal{U} for ε small.

As an example for $(1.1)_{\varepsilon}$ one can consider a problem of a transverse motion, at a small strain, in the x - y plane, of a viscoelastic beam in a viscous medium whose resistance is proportional to the velocity. The ends of the beam are fixed at the points x = 0 and x = l + d, where d is a load (positive or negative) of the beam and a stress-free state of the beam occupies the interval [0, l]. Shear deformations are neglected in this model. Then the equation of the motion in y-direction is

$$(1.3) \quad \frac{\partial^2 u}{\partial t^2} + \delta \cdot \frac{\partial u}{\partial t} + \frac{\xi I}{\varrho} \cdot A \frac{\partial u}{\partial t} + \frac{EI}{\varrho} A u + \left(\frac{ESd}{l\varrho} + \frac{ES}{2l\varrho} \cdot \int_0^l u_x^2 \, dx\right) A^{1/2} u = 0$$

where E is the Young's modulus, S the cross-sectional area, ξ the effective viscosity, I the cross-sectional second moment of area, ρ the mass per unit length and δ the coefficient of external damping. For details see [F], [B1], [B2] and references therein.

Put $\varepsilon = \frac{\rho}{\xi I} > 0$. Then the equation $(1.1)_{\varepsilon}$ follows from (1.3) by a suitably rescaling the time. The limit $\varepsilon \longrightarrow 0^+$ corresponds to the case in which the effective viscosity tends to $+\infty$.

In recent years, many authors have studied the attractors for a singularly perturbed hyperbolic equation

(1.4)
$$_{\varepsilon}$$
 $\varepsilon^2 \frac{\partial^2 u}{\partial t^2} + \frac{\partial u}{\partial t} - \Delta u = f(u).$

See, for example, [GT], [ChL] and other references in [HR1] and [HR2]. Hale and Rougel have shown that the attractors of $(1.4)_{\varepsilon}$ converge in the Hausdorff topology towards the one corresponding to $\varepsilon = 0$

$$(1.4)_0 \qquad \qquad \frac{\partial u}{\partial t} - \Delta u = f(u).$$

Clearly, the main difference between $(1.1)_{\varepsilon}$ - $(1.1)_0$ and $(1.4)_{\varepsilon}$ - $(1.4)_0$ is that $(1.4)_0$ is the quasilinear parabolic equation with an unbounded linear operator $-\Delta$, while the problem $(1.1)_0$ is the quasilinear differential equation in a Hilbert space with a bounded operator $\alpha \cdot Id$.

The paper is organized as follows. Definitions and notations are recalled in Section 2. Following the style of Henry's lecture notes [H, Chapter 3, 4], one can obtain a local and global existence of solutions of $(1.1)_{\varepsilon}$. Section 3 deals with the existence and uniform boundedness of attractors $\mathcal{A}_{\varepsilon}$. Section 4 is devoted to the singular equation $(1.1)_0$. The proof of the existence of \mathcal{A}_0 is given. In Section 5 we prove Theorem 1.1.

2. Preliminaries.

Let $X = L_2(0, l)$ be a real Hilbert space equipped with its usual scalar product (\cdot, \cdot) and norm $\|\cdot\|$. Define $A : X \longrightarrow X$; $Au = \partial^4 u / \partial x^4$ for each $u \in C_B^{\infty}(0, l)$, where

$$C_B^{\infty}(0,l) = \{ \Phi \in C^{\infty}(0,l); \ \Phi \text{ satisfies b.c. } B \}$$

,

for B = H or B = C. Let A be the self-adjoint closure in X of its restriction to $C_B^{\infty}(0, l)$. It is well known that A is a sectorial operator in X (see [H, p. 19]). Therefore the fractional powers A^{β} can be defined. Let X^{β} be a Hilbert space consisting of the domain of fractional power A^{β} with the graph norm, i.e. $||u||_{\beta} = ||A^{\beta}u||$ for all $u \in X^{\beta}$. Let us note that $X^{\beta} \hookrightarrow W^{4\beta,2}(0,l)$ for $\beta \ge 0$. We also have $||u||_{\beta} \le \lambda_1^{\beta-\sigma} ||u||_{\sigma}$ for any $0 \le \beta \le \sigma$ and $u \in X^{\sigma}$. Recall that A has a compact resolvent A^{-1} . Therefore the imbedding $X^{\sigma} \hookrightarrow X^{\beta}$ is compact, whenever $0 \le \beta < \sigma$.

Let $\Phi_n, j \in \mathbb{N}$, denote the orthonormal basis of X consisting of eigenvectors of the operators A:

$$A\Phi_n = \lambda_n \Phi_n; \quad 0 < \lambda_1 < \lambda_2 < \dots; \ \lambda_n \longrightarrow +\infty \text{ as } n \longrightarrow +\infty.$$

Denote by \mathbb{P}_m the projector in X onto the space spanned by $\{\Phi_1, \ldots, \Phi_m\}$. Clearly,

$$\|\mathbb{P}_m u\|_{\beta} \leq \lambda_m^{\beta-\sigma} \|\mathbb{P}_m u\|_{\sigma} \leq \lambda_m^{\beta-\sigma} \|u\|_{\sigma} \text{ for each } u \in X^{\sigma} \text{ and } \beta, \sigma \geq 0.$$

Let S(t) be a semidynamical system in a Banach space \mathcal{X} .

A set B dissipates a set J if there exists T = T(J) > 0 such that $t \ge T$ implies $S(t)J \subseteq B$. A semidynamical system S(t) is called *bounded dissipative* if there exists a bounded set B which dissipates all bounded sets.

The *omega-limit set* is defined by

$$\Omega(B) = \bigcap_{t \geq 0} \ \operatorname{cl} (\bigcup_{s \geq t} \ S(s)B) \quad (\text{the closure is taken in } \mathcal{X}).$$

In this paper, the time derivatives will be denoted by

$$\frac{\partial}{\partial t} (\cdot) = (\cdot)'$$

In order to obtain a local and global existence we rewrite $(1.1)_{\varepsilon}$ as a first order ordinary differential equation in the Hilbert space $\mathcal{X} = X^{1/2} \times X$. This is to do by letting v = u'. Then we can rewrite $(1.1)_{\varepsilon}$ as

(2.1)
$$\frac{d}{dt}\phi(t) + \mathcal{L}_{\varepsilon}\phi(t) + \mathcal{F}_{\varepsilon}(\phi(t)) = 0; \quad \phi(0) = \phi_0$$

where

$$\begin{split} \phi (t) &= [u(t), v(t)]; \quad \mathcal{L}_{\varepsilon}[u, v] = [-v, \varepsilon^{-2}A(\alpha u + v) + \varepsilon^{-1}\delta v] \\ \text{and} \quad \mathcal{F}_{\varepsilon}([u, v]) = [0, -\varepsilon^{-2}g(||u||_{1/4}^2)A^{1/2}u]. \end{split}$$

It is known [M1, Theorem 1.1] that the operator $\mathcal{L}([u,v]) = [-v, A(\alpha u + v)]$ is sectorial in $X^{1/2} \times X$. Then Theorem 1.3.2 of [H] demonstrates that the operator $\mathcal{L}_{\varepsilon}$ is sectorial in \mathcal{X} . The domain of $\mathcal{L}_{\varepsilon}$ is

$$D(\mathcal{L}_{\varepsilon}) = \{ [u, v] \in X^{1/2} \times X^{1/2}; \ \alpha u + v \in D(A) \}.$$

From now on we restrict ε_0 by

(H3)
$$\lambda_1 - 2 \cdot \varepsilon_0 |\delta| > 0.$$

Since Re $\sigma(A) \geq \lambda_1$, then, by looking at the spectrum $\sigma(\mathcal{L}_{\varepsilon})$, we see that

Since $\mathcal{L}_{\varepsilon}$ is the sectorial operator, then $-\mathcal{L}_{\varepsilon}$ generates an analytic semigroup $\exp(-\mathcal{L}_{\varepsilon})$. Let $\omega \in (0, \alpha/2)$. Due to the estimate (2.2), it follows that there is $M(\varepsilon) > 0$ such that

(2.3)
$$\|\exp(-\mathcal{L}_{\varepsilon}t)\|_{\mathcal{X}} \le M(\varepsilon) \cdot e^{-\omega t}$$
 for each $t \ge 0$.

According to [H, Theorems 3.3.3, 3.3.4, 3.4.1 and 3.5.2], the local existence, uniqueness, continuous dependence on initial conditions and continuation of solutions od (2.1) immediately follow. More precisely, for each $\Phi_0 \in \mathcal{X}$ there exists $T = T(\Phi_0) > 0$ and a unique function $\Phi = \Phi(t, \Phi_0)$ such that

$$\Phi \in C([0,t_1):\mathcal{X}) \cap C_1((t_0,t_1):\mathcal{X}) \quad \text{for each} \quad 0 < t_0 < t_1 < T,$$

 $\Phi(0) = \Phi_0, \Phi(t) \in D(L)$ for each $t \in (0, T)$ and $\Phi(t)$ is the solution of (2.1) on the interval of existence (0, T).

If we take the scalar product in X of $(1.1)_{\varepsilon}$ with u', we conclude that

(2.4)
$$\frac{1}{2}\frac{d}{dt}\left\{\alpha\|u\|_{1/2}^2 + \varepsilon^2\|u'\|^2 + \mathcal{G}(\|u\|_{1/4}^2)\right\} + \|u'\|_{1/2}^2 + \varepsilon\delta\|u'\|^2 = 0$$

where \mathcal{G} is the primitive of g, i.e.

$$\mathcal{G}(r) = \int_0^r g(s) \, ds \qquad \text{for } r \ge 0.$$

Thanks to (H1) we infer the existence of $C_0 > 0$ such that

(2.5)
$$g(r) \cdot r \ge \int_0^r g(s) \, ds \ge -C_0 \qquad \text{for each } r \ge 0$$

From (2.4) we observe that

(2.6)
$$\int_{0}^{r} \|u'(s)\|_{1/2}^{2} ds + \varepsilon^{2} \|u'(t)\|^{2} + \alpha \cdot \|u(t)\|_{1/2}^{2} \leq \varepsilon^{2} \|u'(0)\|^{2} + \alpha \cdot \|u(0)\|_{1/2}^{2} + \mathcal{G}(\|u(0)\|_{1/4}^{2}) + C_{0}$$
for each $t \geq 0$.

Thus the solutions of $(1.1)_{\varepsilon}$ and (2.1) exist globally on \mathbb{R}^+ . Hence the initial value problem (2.1) generates a semidynamical system $\{S_{\varepsilon}(t); t \geq 0\}$ in \mathcal{X} , where $S_{\varepsilon}(t)\Phi(0) = \Phi_{\varepsilon}(t, \Phi(0))$ for $t \geq 0$.

Since there are many estimates in this paper, we will let C_0, C_1, C_2, \ldots be generic positive constants always assumed to be independent of ε .

3. The existence and uniform regularity of global attractors.

Lemma 3.1. The semidynamical system S_{ε} is bounded dissipative in \mathcal{X} . More precisely, there exists a constant $C_1 > 0$ such that for any $\varepsilon \in (0, \varepsilon]$ and any bounded set $B \subseteq X^{1/2} \times X$ there is $T(\varepsilon, B) > 0$ with the property

$$t \ge T(\varepsilon, B)$$
 implies
 $\varepsilon^2 ||v||^2 + \alpha ||u||_{1/2}^2 \le C_1$ for each $(u, v) \in S_{\varepsilon}(t)B$

PROOF: Define a functional $V_{\varepsilon} : \mathcal{X} \longrightarrow \mathbb{R}$ by

$$V_{\varepsilon}(\Phi, \Psi) = \frac{1}{2} \left\{ \alpha \|\Phi\|_{1/2}^{2} + \varepsilon^{2} \|\Psi\|^{2} + \mathcal{G}(\|\Phi\|_{1/4}^{2}) \right\} + b\varepsilon^{2}(\Phi, \Psi)$$

where b is a positive real satisfying

$$0 < b < \min\left\{\alpha, \frac{\sqrt{\alpha\lambda_1}}{2\varepsilon_0}; \left(\lambda_1 - \varepsilon_0|\delta|\right) \left(\frac{\lambda_1}{\alpha} + \varepsilon_0^2 + \frac{\varepsilon_0^2\delta^2}{\alpha\lambda_1}\right)^{-1}\right\}$$

From (2.4) we obtain

$$\begin{aligned} \frac{d}{dt} V_{\varepsilon}(u_{\varepsilon}, u_{\varepsilon}^{'}) &= -\|u_{\varepsilon}^{'}\|_{1/2}^{2} - \varepsilon\delta\|u_{\varepsilon}^{'}\|^{2} + b\varepsilon^{2}\|u_{\varepsilon}^{'}\|^{2} - b \cdot (Au_{\varepsilon}^{'}, u_{\varepsilon}) - \\ &-b\alpha \cdot (Au_{\varepsilon}, u_{\varepsilon}) - b\varepsilon\delta \cdot (u_{\varepsilon}^{'}, u_{\varepsilon}) - b \cdot g(\|u_{\varepsilon}\|_{1/4}^{2}) \cdot \|u_{\varepsilon}\|_{1/4}^{2} \leq \\ &\leq -\|u_{\varepsilon}^{'}\|_{1/2}^{2} - (\varepsilon\delta - b\varepsilon^{2}) \cdot \|u_{\varepsilon}^{'}\|^{2} - b\alpha \cdot \|u_{\varepsilon}\|_{1/2}^{2} - b \cdot (A^{1/2}u_{\varepsilon}^{'}, A^{1/2}u_{\varepsilon}) - \\ &-b\varepsilon\delta \cdot (u_{\varepsilon}^{'}, u_{\varepsilon}) + bC_{0}. \end{aligned}$$

Then we deduce from the Young's inequality

$$|(\Phi, \Psi)| \le (r^2 ||\Phi||^2 + r^{-2} ||\Psi||^2)/2$$

 $_{\mathrm{that}}$

$$\frac{d}{dt} V_{\varepsilon}(u_{\varepsilon}, u_{\varepsilon}') \leq -\|u_{\varepsilon}'\|_{1/2}^{2} - (\varepsilon\delta - b\varepsilon^{2}) \cdot \|u_{\varepsilon}'\|^{2} - b\alpha \cdot \|u_{\varepsilon}\|_{1/2}^{2} + bC_{0} + b \cdot (r^{2} \|u_{\varepsilon}'\|_{1/2}^{2} + r^{-2} \|u_{\varepsilon}\|_{1/2}^{2})/2 + b\varepsilon |\delta| \cdot (s^{2} \|u_{\varepsilon}'\|^{2} + s^{-2} \|u_{\varepsilon}\|^{2})/2.$$

Put $r^2 = 2/\alpha$ and $s^2 = \frac{2\varepsilon|\delta|}{\alpha \cdot \lambda_1}$. Then

$$\frac{d}{dt} V_{\varepsilon}(u_{\varepsilon}, u_{\varepsilon}^{'}) \leq -(1 - \frac{b}{\alpha}) \cdot \|u_{\varepsilon}^{'}\|_{1/2}^{2} - (\varepsilon\delta - b\varepsilon^{2} - b\frac{\varepsilon^{2}\delta^{2}}{\alpha \cdot \lambda_{1}}) \cdot \|u_{\varepsilon}^{'}\|_{1/2}^{2} - b(\alpha - \alpha/4 - \alpha/4) \cdot \|u_{\varepsilon}\|_{1/2}^{2} + bC_{0} \leq \leq -\left(\lambda_{1}(1 - \frac{b}{\alpha}) + \varepsilon\delta - b\varepsilon^{2} - b\frac{\varepsilon^{2}\delta^{2}}{\alpha \cdot \lambda_{1}}\right) \cdot \|u_{\varepsilon}^{'}\|_{1/2}^{2} - b \cdot \frac{\alpha}{2} \cdot \|u_{\varepsilon}\|_{1/2}^{2} + bC_{0}$$

Since $b \cdot \left(\frac{\lambda_1}{\alpha} + \varepsilon_0^2 + \frac{\varepsilon_0^2 \delta^2}{\alpha \lambda_1}\right) < \lambda_1 - \varepsilon_0 |\delta|$ and $b < \alpha$, one can easily show that there are constants $C_2, C_3 > 0$ such that

(3.1)
$$\frac{d}{dt} V_{\varepsilon}(u_{\varepsilon}, u_{\varepsilon}') \leq -C_2(||u_{\varepsilon}'||^2 + ||u_{\varepsilon}||_{1/2}^2) + C_3.$$

Let us introduce a function

$$y_{\varepsilon}(t) = V_{\varepsilon}(u_{\varepsilon}(t), u_{\varepsilon}'(t)) + C_3$$

Thanks to the inequality

$$b\varepsilon^{2}(u_{\varepsilon}^{'},u_{\varepsilon}) \leq \frac{\varepsilon^{2}}{2} \cdot \|u_{\varepsilon}^{'}\|^{2} + \frac{\varepsilon^{2}b^{2}}{2 \cdot \lambda_{1}} \cdot \|u_{\varepsilon}\|_{1/2}^{2}$$

we have

$$0 \le y_{\varepsilon}(t) \le \alpha \cdot \|u_{\varepsilon}(t)\|_{1/2}^{2} + \varepsilon^{2} \|u_{\varepsilon}'(t)\|^{2} + \frac{1}{2}\mathcal{G}(\|u_{\varepsilon}(t)\|_{1/4}^{2}) + C_{3}$$

Since g increases on \mathbb{R}^+ , there exists an increasing function $\vartheta \in C^1(\mathbb{R}^+, \mathbb{R}^+)$ such that

$$0 \le y_{\varepsilon}(t) \le \vartheta(\|u_{\varepsilon}(t)\|_{1/2}^2 + \|u_{\varepsilon}'(t)\|^2)$$

and $\vartheta'(r) \ge \sigma > 0$ for each $r \ge 0$.

Then we can rewrite (3.1) as an ordinary differential inequality

$$\frac{d}{dt}y_{\varepsilon} \le -C_2\vartheta^{-1}(y_{\varepsilon}) + C_3$$

An obvious contradiction argument gives us either $0 \leq y_{\varepsilon}(t) \leq \vartheta(C_3/C_2)$ for each $t \geq 0$ or there is $T(\varepsilon, y_{\varepsilon}(0)) > 0$ such that $0 \leq y_{\varepsilon}(t) \leq \vartheta(C_3/C_2) + 1$ for each $t \geq T(\varepsilon, y_{\varepsilon}(0))$. Due to the assumption on b, it follows that

$$y_{\varepsilon}(t) \geq \frac{1}{4} (\alpha \|u_{\varepsilon}(t)\|_{1/2}^{2} + \varepsilon^{2} \|u_{\varepsilon}'(t)\|^{2}) + C_{3} - C_{0}/2.$$

Thus Lemma 3.1 is proved.

Consider a solution w_{ε} of the following linear strongly damped evolution equation

$$\varepsilon^2 w_{\varepsilon}^{''} + A w_{\varepsilon}^{'} + \alpha \cdot A w_{\varepsilon} + \varepsilon \delta \cdot w_{\varepsilon}^{'} + h_{\varepsilon} = 0$$

where

(3.2)
$$h_{\varepsilon} \in \mathcal{L}_p(\mathbb{R}^+; X) \quad \text{for } p = 2 \text{ or } p = \infty$$

Lemma 3.2. Assume p = 2 or $p = \infty$. Then there are constants $C_4, C_5, a > 0$ such that

$$\varepsilon^{2} \|\mathbb{P}_{m} w_{\varepsilon}^{'}(t)\|_{1/2}^{2} + \alpha \cdot \|\mathbb{P}_{m} w_{\varepsilon}(t)\|_{1}^{2} \leq \\ \leq C_{4}(\varepsilon^{2} \|\mathbb{P}_{m} w_{\varepsilon}^{'}(0)\|_{1/2}^{2} + \alpha \cdot \|\mathbb{P}_{m} w_{\varepsilon}(0)\|_{1}^{2}) \cdot e^{-2at} + C_{5} \|h_{\varepsilon}\|_{\mathcal{L}_{p}(\mathbb{R}^{+};X)}^{2} \\ \text{for each } t \geq 0; \ \varepsilon \in (0,\varepsilon_{0}] \text{ and } m \in \mathbb{N}.$$

PROOF: Put $y(t) = \mathbb{P}_m w_{\varepsilon}(t)$. Clearly, $y(t), y'(t) \in D(A)$ for each $t \ge 0$. Let us introduce a substitution

$$z = y' + a \cdot y$$

where a is a positive real satisfying

$$0 < a < \min\left\{\frac{\alpha}{2}; \frac{\lambda_1 - 2|\delta|\varepsilon_0}{4\varepsilon_0^2}; \frac{\alpha\lambda_1}{4\varepsilon_0} \left(\frac{\varepsilon_0\alpha}{2} + |\delta|\right)^{-1}\right\}.$$

Then

(3.3)
$$\varepsilon^2 z' + (A - a\varepsilon^2 + \delta\varepsilon)z + ((\alpha - a)A + a^2\varepsilon^2 - a\delta\varepsilon)y + \mathbb{P}_m h_\varepsilon = 0$$

Take the scalar product in X of (3.3) with Az to obtain

$$\frac{1}{2}\frac{d}{dt}\left\{\varepsilon^{2}||z||_{1/2}^{2} + (\alpha - a)||y||_{1}^{2} + (a^{2}\varepsilon^{2} - a\delta\varepsilon)||y||_{1/2}^{2}\right\} + \\ + ||z||_{1}^{2} + (\delta\varepsilon - a\varepsilon^{2})||z||_{1/2}^{2} + a \cdot \left\{(\alpha - a)||y||_{1}^{2} + (a^{2}\varepsilon^{2} - a\delta\varepsilon)||y||_{1/2}^{2}\right\} = \\ = -(\mathbb{P}_{m}h_{\varepsilon}, Az) \leq \frac{1}{2} \cdot ||\mathbb{P}_{m}h_{\varepsilon}||^{2} + \frac{1}{2} \cdot ||z||_{1}^{2}.$$

From the assumption $a < \frac{\lambda_1 - 2|\delta|\varepsilon_0}{4\varepsilon_0^2}$ we have

$$\theta'(t) + 2a\theta(t) \le ||h_{\varepsilon}(t)||^2 \quad \text{for } t \ge 0$$

where

$$\theta(t) = \varepsilon^2 ||z||_{1/2}^2 + (\alpha - a) ||y||_1^2 + (a^2 \varepsilon^2 - a\delta \varepsilon) ||y||_{1/2}^2.$$

Therefore

$$\theta(t) \leq \theta(0) \cdot e^{-2at} + \int_0^t e^{-2a(t-s)} \|h_{\varepsilon}(s)\|^2 \, ds \leq \\ \leq \theta(0) \cdot e^{-2at} + C_5' \|h_{\varepsilon}\|_{\mathcal{L}_p(\mathbb{R}^+;X)}^2.$$

Since $a < \frac{\alpha}{2}$ and $\frac{a\varepsilon_0}{\lambda_1} \left(\frac{\varepsilon_0 \alpha}{2} + |\delta| \right) < \frac{\alpha}{4}$, then

$$(\alpha - a) \|y\|_1^2 + (a^2 \varepsilon^2 - a\delta \varepsilon) \|y\|_{1/2}^2 \ge$$
$$\ge \frac{\alpha}{2} \cdot \|y\|_1^2 - a\varepsilon_0 \left(\frac{\varepsilon_0 \alpha}{2} + |\delta|\right) \cdot \|y\|_{1/2}^2 \ge \frac{\alpha}{4} \cdot \|y\|_1^2.$$

Then one can easily show that there are $C_4, C_5 > 0$ such that

$$\varepsilon^{2} \|y'(t)\|_{1/2}^{2} + \alpha \cdot \|y(t)\|_{1}^{2} \leq \\ \leq C_{4}(\varepsilon^{2} \|y'(0)\|_{1/2}^{2} + \alpha \cdot \|y(0)\|_{1}^{2}) \cdot e^{-2at} + C_{5} \|h_{\varepsilon}\|_{\mathcal{L}_{p}(\mathbb{R}^{+};X)}^{2}$$

as claimed.

The solution of (2.1) is given by the variation of constants by the formula

$$S_{\varepsilon}(t)\Phi_{0} = \exp\left(-\mathcal{L}_{\varepsilon}t\right)\Phi_{0} + \mathcal{U}_{\varepsilon}(t)\Phi_{0}$$

where $\mathcal{U}_{\varepsilon}(t)\Phi_{0} = \int_{0}^{t} \exp\left(-\mathcal{L}_{\varepsilon}(t-s)\right) \left[0, -\varepsilon^{-2}g(\|u_{\varepsilon}(s)\|_{1/4}^{2})A^{1/2}u_{\varepsilon}(s)\right] ds$.

Put $\left[w_{\varepsilon}(t), w_{\varepsilon}'(t)\right] = \mathcal{U}_{\varepsilon}(t) [u_0, v_0]$. Clearly, w_{ε} is a solution of the linear strongly damped evolution equation

$$\varepsilon^{2} w_{\varepsilon}^{''}(t) + A w_{\varepsilon}^{'}(t) + \alpha A w_{\varepsilon}(t) + \varepsilon \delta w_{\varepsilon}^{'}(t) + h_{\varepsilon}(t) = 0$$
$$w_{\varepsilon}^{'}(0) = w_{\varepsilon}(0) = 0$$

where $h_{\varepsilon}(t) = g(||u_{\varepsilon}(t)||_{1/4}^2) A^{1/2} u_{\varepsilon}(t)$ and u_{ε} is a solution of $(1.1)_{\varepsilon}$ satisfying the initial conditions

$$u_{\varepsilon}(0) = u_0, \quad u_{\varepsilon}^{'}(0) = v_0.$$

Lemma 3.3. Let $\varepsilon \in (0, \varepsilon_0]$ be fixed. Then the set $K_{\varepsilon} = \bigcup_{t \ge 0} \mathcal{U}_{\varepsilon}(t)B$ is bounded in $X^1 \times X^{1/2}$ for any bounded set $B \subseteq X^{1/2} \times X$.

PROOF: Let B be a bounded set in $X^{1/2} \times X$, i.e. there is $M_1 > 0$ such that

$$\varepsilon^2 ||v||^2 + \alpha ||u||_{1/2}^2 + \mathcal{G}(||u||_{1/4}^2) \le M_1 \text{ for each } (u, v) \in B.$$

Let $(u_0, v_0) \in B$ and u_{ε} be a solution of $(1.1)_{\varepsilon}$ which satisfies the initial data $u_{\varepsilon}(0) = u_0, u'_{\varepsilon}(0) = v_0$. From (2.6) we have

$$\varepsilon^{2} \|u_{\varepsilon}'(t)\|^{2} + \alpha \|u(t)\|_{1/2}^{2} \le M_{1} + C_{0} = M_{1}'$$
 for each $t \ge 0$.

Therefore there exists $M_2 > 0$ such that

$$\|h_{\varepsilon}\|_{\mathcal{L}_{\infty}(\mathbb{R}^+;X)}^2 \le M_2$$

Thanks to Lemma 3.2 (with $p = \infty$) we have

$$\varepsilon^2 \|\mathbb{P}_m w_{\varepsilon}'(t)\|_{1/2}^2 + \alpha \cdot \|\mathbb{P}_m w_{\varepsilon}(t)\|_1^2 \le C_5 M_2 \quad \text{for each } t \ge 0 \text{ and } m \in \mathbb{N}.$$

Letting $m \longrightarrow \infty$, we conclude that

$$\varepsilon^2 \|w_{\varepsilon}^{'}(t)\|_{1/2}^2 + \alpha \cdot \|w_{\varepsilon}(t)\|_1^2 \le C_5 M_2 = M_3 \quad \text{for each } t \ge 0.$$

Then the arbitrariness of $(u_0, v_0) \in B$ implies the assertion of Lemma 3.3.

Theorem 3.1. Let $\varepsilon \in (0, \varepsilon_0]$ be fixed. Then there exists a compact global attractor $\mathcal{A}_{\varepsilon}$ for S_{ε} . Moreover, $\mathcal{A}_{\varepsilon}$ is bounded in $X^1 \times X^{1/2}$.

PROOF: In order to exploit the general results of [GT], we have to show that S_{ε} is bounded dissipative and for any bounded set $B \subseteq X^{1/2} \times X$ there is a compact set K_{ε}^{B} which attracts B, i.e.

$$\lim_{t \to \infty} \operatorname{dist} \left(S_{\varepsilon}(t) B, \ K_{\varepsilon}^{B} \right) = 0.$$

Clearly, by Lemma 3.1, S_{ε} is bounded dissipative, i.e. there exists a bounded set B_{ε} which dissipates all bounded sets of $X^{1/2} \times X$.

Let B be any bounded set in $X^{1/2} \times X$. From Lemma 3.3 we have that

$$K_{\varepsilon}^{B} = \bigcup_{t \ge 0} \mathcal{U}_{\varepsilon}(t)B$$
 is bounded in $X^{1} \times X^{1/2}$

Therefore K^B_{ε} is compact in $X^{1/2} \times X$. Since

dist
$$(S_{\varepsilon}(t)B, K_{\varepsilon}^{B}) \leq \sup_{\Phi \in B} \|\exp(-\mathcal{L}_{\varepsilon}t)\Phi\|_{\mathcal{X}} \leq M(\varepsilon) \exp(-\omega t) \cdot \sup_{\Phi \in B} \|\Phi\|_{\mathcal{X}}$$

where $\omega \in (0, \frac{\alpha}{2}),$

 $_{\mathrm{then}}$

$$\lim_{t \to \infty} \operatorname{dist} \left(S_{\varepsilon}(t) B, \, K_{\varepsilon}^{B} \right) = 0.$$

According to [GT, Proposition 3.1] $\mathcal{A}_{\varepsilon} = \Omega(B_{\varepsilon})$ is a compact global attractor for S_{ε} . Furthermore, since $\Omega(B_{\varepsilon})$ is the bounded and invariant set then we see that

dist
$$(\Omega(B_{\varepsilon}), K_{\varepsilon}^{\Omega(B_{\varepsilon})}) = 0.$$

Thus $\mathcal{A}_{\varepsilon} = \Omega(B_{\varepsilon}) \subseteq K_{\varepsilon}^{\Omega(B_{\varepsilon})}$. Hence $\mathcal{A}_{\varepsilon}$ is bounded in $X^1 \times X^{1/2}$.

Remark 3.1. In the general case (under the hypotheses H1-H3) the attractor $\mathcal{A}_{\varepsilon}, \varepsilon > 0$, does not reduce to a single point. Indeed, one can consider the case in which

$$-\alpha\sqrt{\lambda_{n+1}} < g(0) \le -\alpha\sqrt{\lambda_n}$$

where $0 < \lambda_1 < \lambda_2 < \dots$ are eigenvalues of A and $\Phi_k, k \ge 1$, are corresponding orthonormal eigenvectors. Since we assume

$$\int_0^\infty g(s) \, ds > -\infty \quad \text{ and } g \text{ is an increasing function},$$

the domain of g^{-1} (the inverse function of g) contains a subinterval [g(0), 0). Hence

$$w_k^{\pm} = \left[\pm \left(g^{-1} (-\alpha \cdot (\lambda_k)^{1/2}) / \lambda_k^{1/2} \right)^{1/2} \cdot \Phi_k, 0 \right] \quad k = 1, 2, \dots, n$$

are non-zero equilibrium states for (2.1), $\varepsilon > 0$, which are contained in $\mathcal{A}_{\varepsilon}$.

Remark 3.2. If we restrict g, δ by $\delta > -\lambda_1$ and $g(s) = \beta + k \cdot s$, where k > 0 and $\beta > -\alpha \sqrt{\lambda_1}$ then it is known ([B2, Theorem 6]) that every solution of $(1.1)_{\varepsilon}, \varepsilon > 0$, and its time derivative decay to zero, as $t \to +\infty$. Due to (4.1) it follows that every solution of $(1.1)_0$ also decays to zero. Hence, under the above assumption on δ and g, the dynamics of (2.1), $\varepsilon > 0$ is very simple—each trajectory approaches a zero equilibrium state.

From the invariance property of $\mathcal{A}_{\varepsilon}$ and Lemma 3.1, we infer the following

Corollary 3.1.

$$\varepsilon^2 \|v\|^2 + \alpha \cdot \|u\|_{1/2}^2 \leq C_1 \quad \text{ for each } \varepsilon \in (0, \varepsilon_0] \text{ and } (u, v) \in \mathcal{A}_{\varepsilon}$$

The following lemma gives us the uniform estimate of $X^1 \times X^{1/2}$ —norm of $\mathcal{A}_{\varepsilon}$, for $\varepsilon \in (0, \varepsilon_0]$.

Lemma 3.4. There is $C_6 > 0$ such that

$$\begin{split} \varepsilon^{2} \|u_{\varepsilon}^{''}(t)\|_{1/2}^{2} + \|u_{\varepsilon}^{'}(t)\|_{1}^{2} + \|u_{\varepsilon}(t)\|_{1}^{2} \leq C_{6} \\ \text{for each } \varepsilon \in (0, \varepsilon_{0}], \ t \in \mathbb{R} \ \text{ and any orbit} \\ \{(u_{\varepsilon}(t), u_{\varepsilon}^{'}(t)); \ t \in \mathbb{R}\} \subseteq \mathcal{A}_{\varepsilon} \,. \end{split}$$

PROOF: Let $m \in \mathbb{N}$ be an arbitrary integer. We take the projection \mathbb{P}_m of $(1.1)_{\varepsilon}$ to obtain

$$\varepsilon^{2} \mathbb{P}_{m} u_{\varepsilon}^{''} + \varepsilon \delta \mathbb{P}_{m} u_{\varepsilon}^{'} + A \mathbb{P}_{m} u_{\varepsilon}^{'} + \alpha A \mathbb{P}_{m} u_{\varepsilon} + g(\|u_{\varepsilon}\|_{1/4}^{2}) A^{1/2} \mathbb{P}_{m} u_{\varepsilon} = 0.$$

Put $w_{\varepsilon}(t) = \mathbb{P}_m u'_{\varepsilon}(t)$. Then w_{ε} satisfies the linear strongly damped equation

$$\varepsilon^2 w_{\varepsilon}^{''} + \varepsilon \delta w_{\varepsilon}^{'} + A w_{\varepsilon}^{'} + \alpha A w_{\varepsilon} + h_{\varepsilon} = 0$$

where

$$h_{\varepsilon}(t) = 2g'(\|u_{\varepsilon}(t)\|_{1/4}^{2}) \cdot (A^{1/2}u_{\varepsilon}'(t)), u_{\varepsilon}(t))A^{1/2}\mathbb{P}_{m}u_{\varepsilon}(t) + g(\|u_{\varepsilon}(t)\|_{1/4}^{2})A^{1/2}\mathbb{P}_{m}u_{\varepsilon}'(t).$$

From Corollary 3.1 and (2.6) we infer the existence of $C_7 > 0$ such that

$$\|h_{\varepsilon}\|^2_{\mathcal{L}_2(\mathbb{R}^+;X)} \leq C_7$$
 for each $\varepsilon \in (0,\varepsilon_0]$.

Obviously, we can choose C_7 to be independent of ε and $m \in \mathbb{N}$.

Recall that $\mathbb{P}_m w_{\varepsilon} = w_{\varepsilon}$. Then by Lemma 3.2, we have

$$\varepsilon^{2} \|w_{\varepsilon}'(t)\|_{1/2}^{2} + \alpha \cdot \|w_{\varepsilon}(t)\|_{1}^{2} \leq \\ \leq C_{4}(\varepsilon^{2} \|w_{\varepsilon}'(0)\|_{1/2}^{2} + \alpha \cdot \|w_{\varepsilon}(0)\|_{1}^{2}) \cdot e^{-2at} + C_{5} \cdot C_{7}.$$

Clearly,

$$\|w_{\varepsilon}(0)\|_{1}^{2} = \|\mathbb{P}_{m}u_{\varepsilon}^{'}(0)\|_{1}^{2} \leq \lambda_{m}^{2} \cdot \|u_{\varepsilon}^{'}(0)\|^{2}$$

 and

$$\begin{split} \|w_{\varepsilon}^{'}(0)\|_{1/2} &= \|\mathbb{P}_{m}u_{\varepsilon}^{''}(0)\|_{1/2} = \\ &= \varepsilon^{-2} \|\mathbb{P}_{m}(\varepsilon\delta u_{\varepsilon}^{'}(0) + Au_{\varepsilon}^{'}(0) + \alpha Au_{\varepsilon}(0) + g(\|u_{\varepsilon}(0)\|_{1/4}^{2})A^{1/2}u_{\varepsilon}(0))\|_{1/2} \leq \\ &\leq \varepsilon^{-2} \{\lambda_{m}^{3/2}\|u_{\varepsilon}^{'}(0)\| + \alpha \cdot \lambda_{m}\|u_{\varepsilon}(0)\|_{1/2} + \varepsilon |\delta|\lambda_{m}^{1/2}\|u_{\varepsilon}^{'}(0)\| + \\ &+ \lambda_{m}^{1/2}|g(\|u_{\varepsilon}(0)\|_{1/4}^{2})| \cdot \|u_{\varepsilon}(0)\|_{1/2} \} \,. \end{split}$$

Therefore there exists M(m) > 0 and an increasing function $\rho : \mathbb{R}^+ \longrightarrow \mathbb{R}^+$, which is independent of ε , such that

(3.4)
$$\varepsilon^{2} \| w_{\varepsilon}'(t) \|_{1/2}^{2} + \alpha \cdot \| w_{\varepsilon}(t) \|_{1}^{2} \leq \varepsilon^{-4} \cdot M(m) \cdot \rho(\varepsilon^{2} \| u_{\varepsilon}'(0) \|^{2} + \alpha \cdot \| u_{\varepsilon}(0) \|_{1/2}^{2}) \cdot e^{-2at} + C_{5} \cdot C_{7}.$$

Let $T \geq 0$. We set $(\bar{u}_{\varepsilon}(t), \bar{u}'_{\varepsilon}(t)) = (u_{\varepsilon}(t-T), u'_{\varepsilon}(t-T))$ for each $t \in \mathbb{R}$. Using the invariance property of $\mathcal{A}_{\varepsilon}$, we have

$$((\bar{u}_{\varepsilon}(t), \bar{u}_{\varepsilon}'(t)); t \in \mathbb{R}) \subseteq \mathcal{A}_{\varepsilon}.$$

Then, from (3.4), we obtain

$$\varepsilon^{2} \|\mathbb{P}_{m} u_{\varepsilon}^{''}(t)\|_{1/2}^{2} + \alpha \cdot \|\mathbb{P}_{m} u_{\varepsilon}^{'}(t)\|_{1}^{2} =$$

$$= \varepsilon^{2} \|\mathbb{P}_{m} \bar{u}_{\varepsilon}^{''}(t+T)\|_{1/2}^{2} + \alpha \cdot \|\mathbb{P}_{m} \bar{u}_{\varepsilon}^{'}(t+T)\|_{1}^{2} \leq$$

$$\leq \varepsilon^{-4} M(m) \rho(\varepsilon^{2} \|\bar{u}_{\varepsilon}^{'}(0)\|^{2} + \alpha \cdot \|\bar{u}_{\varepsilon}(0)\|_{1/2}^{2}) \cdot e^{-2a(t+T)} + C_{5} \cdot C_{7} \leq$$

$$\leq \varepsilon^{-4} \cdot M(m) \cdot \rho(C_{1}) \cdot e^{-2a(t+T)} + C_{5} \cdot C_{7}.$$

Then, by letting $T \to \infty$, we obtain

$$\varepsilon^{2} \|\mathbb{P}_{m} u_{\varepsilon}^{''}(t)\|_{1/2}^{2} + \alpha \cdot \|\mathbb{P}_{m} u_{\varepsilon}^{'}(t)\|_{1}^{2} \leq 1 + C_{5} \cdot C_{7}.$$

Since $m \in \mathbb{N}$ was an arbitrary integer then

$$\varepsilon^{2} \|u_{\varepsilon}^{''}(t)\|_{1/2}^{2} + \alpha \cdot \|u_{\varepsilon}^{'}(t)\|_{1}^{2} \leq 1 + C_{5} \cdot C_{7} \quad \text{for each } t \in \mathbb{R}.$$

According to the equation $(1.1)_{\varepsilon}$ we have

$$\begin{aligned} \alpha \cdot \|u_{\varepsilon}(t)\|_{1} &\leq \|u_{\varepsilon}^{'}(t)\|_{1} + \varepsilon^{2} \|u_{\varepsilon}^{''}(t)\| + \varepsilon |\delta| \cdot \|u_{\varepsilon}^{'}(t)\| + \\ &+ |g(\|u_{\varepsilon}(t)\|_{1/4}^{2})| \cdot \|u_{\varepsilon}(t)\|_{1/2} \,. \end{aligned}$$

Then, with regard to Corollary 3.1, one can easily find the constant $C_6 > 0$, as claimed.

4. Existence of a global attractor for the equation $(1.1)_0$.

We now turn our attention to the limiting equation $(1.1)_0$.

$$Au' + \alpha Au + g(||u||_{1/4}^2)A^{1/2}u = 0$$

which is equivalent $(0 \in \rho(A))$ to the differential equation in $X^{1/2}$

$$u' + \alpha u + g(||u||_{1/4}^2)A^{-1/2}u = 0.$$

According to the assumption on g, a local existence uniqueness and continuation of solutions of $(1.1)_0$ immediately follow from the theory of semilinear abstract evolution equations. See, for example, [H, Theorem 3.3.3, 3.3.4, 3.4.1 and 3.5.2].

We first give some a priori estimates of solutions of $(1.1)_0$. Take the scalar product in $X^{1/2}$ with u to obtain

(4.1)
$$\frac{1}{2}\frac{d}{dt}\|u(t)\|_{1/2}^2 + \alpha \cdot \|u(t)\|_{1/2}^2 + g(\|u(t)\|_{1/4}^2) \cdot \|u(t)\|_{1/4}^2 = 0$$

Thanks to (2.5) we have

(4.2)
$$\|u(t)\|_{1/2}^2 \le e^{-2\alpha t} \|u(0)\|_{1/2}^2 + \frac{C_0}{\alpha} \cdot (1 - e^{-2\alpha t})$$

Hence the solution u(t) exists on \mathbb{R}^+ . We set $S_0(t)u_0 = u(t)$, where u(t) is a solution of $(1.1)_0$ with $u(0) = u_0$. Then, from (4.2), we have that S_0 is the bounded dissipative semidynamical system in $X^{1/2}$. Recall that the variation of constants formula gives

$$S_0(t)u_0 = e^{-\alpha t}u_0 + \mathcal{U}_0(t)u_0$$

where

$$\mathcal{U}_0(t)u_0 = \int_0^t e^{-\alpha(t-s)} g(\|u(s)\|_{1/4}^2) A^{-1/2} u(s) \, ds.$$

From (4.2) one can show that

$$\bigcup_{t \ge 0} \mathcal{U}_0(t) B \text{ is bounded in } X^1,$$

whenever B is bounded in $X^{1/2}$.

Again, by [GT, Proposition 3.1], there exists a compact global attractor $\tilde{\mathcal{A}}_0$ for S_0 which is bounded in X^1 .

Finally, the attractor $\tilde{\mathcal{A}}_0$ can be naturally embedded into a compact set \mathcal{A}_0 in $X^{1/2} \times X$. The set \mathcal{A}_0 is defined by

$$\mathcal{A}_{0} = \left\{ (\Phi, \Psi) \in X^{1/2} \times X; \ \Phi \in \tilde{\mathcal{A}}_{0} \ \text{ and } \ \Psi = -\alpha \Phi - g(\|\Phi\|_{1/4}^{2})A^{-1/2}\Phi \right\} \,.$$

Obviously, \mathcal{A}_0 is bounded in $X^1 \times X^{1/2}$.

5. Upper semicontinuity of attractors A_{ε} at $\varepsilon = 0$.

Recall that we are going to prove the property

$$\lim_{\varepsilon \to 0^+} \operatorname{dist} \left(\mathcal{A}_{\varepsilon}, \mathcal{A}_0 \right) = 0.$$

In Lemma 3.4, we have shown that there exists $C_6 > 0$ such that

(5.1)
$$\begin{aligned} \varepsilon^{2} \|u_{\varepsilon}^{''}(t)\|_{1/2}^{2} + \|u_{\varepsilon}^{'}(t)\|_{1}^{2} + \|u_{\varepsilon}(t)\|_{1}^{2} \leq C_{6} \\ \text{for each } \varepsilon \in (0, \varepsilon_{0}], \ t \in \mathbb{R} \text{ and any orbit} \\ \{(u_{\varepsilon}(t), u_{\varepsilon}^{'}(t)); \ t \in \mathbb{R}\} \subseteq \mathcal{A}_{\varepsilon}. \end{aligned}$$

Concerning the attractor \mathcal{A}_0 , we have shown that there is $C_7 > 0$ with the property

$$\|u_0'(t)\|_{1/2}^2 + \|u_0(t)\|_1^2 \le C_7$$

for any orbit

$$\{(u_0(t), u_0^{'}(t)); t \in \mathbb{R}\} \subseteq \mathcal{A}_0$$
 .

The idea of the proof is essentially the same as of [HR1]. Let us consider a sequence $\varepsilon_n \longrightarrow 0^+$ and an orbit

$$\{(u_n(t), u'_n(t)); t \in \mathbb{R}\} \subseteq \mathcal{A}_{\varepsilon_n}$$

Since the set $\bigcup_{t \in \mathbb{R}} \bigcup_{n \in \mathbb{N}} u_n(t)$ is bounded in X^1 and

$$||u'_n(t)|| \le C_6$$
 for each $n \in \mathbb{N}$ and $t \in \mathbb{R}$.

By the Ascoli–Arzelào's theorem we may thus extract a subsequence $\{u_{n_1}\}$ of $\{u_n\}$ which converges to \bar{u} in the space $C(\langle -1, 1 \rangle; X^{1/2})$. Again, there is a subsequence $\{u_{n_2}\}$ which converges to \bar{u} in $C(\langle -2, 2 \rangle; X^{1/2})$. Thanks to the Cantor's diagonalization process, there is a subsequence $\{u_{n_k}\}$ of $\{u_n\}$ such that $u_{n_k} \longrightarrow \bar{u}$ in $C(J; X^{1/2})$ for any compact interval $J \subseteq \mathbb{R}$. Since

$$\sup_{n\in\mathbb{N}}\sup_{t\in\mathbb{R}}\|u_n(t)\|_{1/2}^2<+\infty,$$

then

$$\sup_{t \in \mathbb{R}} \|\bar{u}(t)\|_{1/2}^2 < +\infty.$$

On the one hand $\frac{\partial u_{n_k}}{\partial t} \longrightarrow \frac{\partial u}{\partial t}$ in $\mathcal{D}'(I; X^{1/2})$ (in the sense of distributions) for any bounded open interval $I \subseteq \mathbb{R}$.

On the sense of distributions) for any bounded of

On the other hand

$$u_{n_{k}}^{'}(t) = -A^{-1} \left\{ \varepsilon_{n_{k}}^{2} \cdot u_{n_{k}}^{''}(t) + \varepsilon_{n_{k}} \delta \cdot u_{n_{k}}^{'}(t) \right\} - \alpha \cdot u_{n_{k}}(t) - g(\|u_{n_{k}}(t)\|_{1/4}^{2})A^{-1/2}u_{n_{k}}(t) .$$

From (5.1) we observe that

$$\begin{split} \varepsilon_{n_k}^2 \|u_{n_k}^{''}(t)\|_{1/2} &\longrightarrow 0 \quad \text{and} \quad \varepsilon_{n_k} |\delta| \cdot \|u_{n_k}^{'}(t)\| \longrightarrow 0, \\ \text{as} \quad \varepsilon_{n_k} &\longrightarrow 0^+ \,. \end{split}$$

Therefore

$$\frac{\partial \bar{u}}{\partial t} = -\alpha \bar{u} - g(\|\bar{u}\|_{1/4}^2) A^{-1/2} \bar{u}.$$

Hence $\bar{u}(t)$ is the solution of $(1.1)_0$ which exists and is bounded on \mathbb{R} . Therefore

$$\{(\bar{u}(t), \bar{u}'(t)); t \in \mathbb{R}\} \subseteq \mathcal{A}_0.$$

Since $(u_{n_k}(\cdot), u'_{n_k}(\cdot)) \longrightarrow (\bar{u}(\cdot), \bar{u}'(\cdot))$ in $C(J; X^{1/2})$ for any compact interval $J \in \mathbb{R}$ then we have

$$(u_{n_{k}}(0), u_{n_{k}}^{'}(0)) \longrightarrow (\bar{u}(0), \bar{u}^{'}(0)) \in \mathcal{A}_{0} \text{ in } X^{1/2} \times X.$$

It means that

$$\lim_{\varepsilon \longrightarrow 0^+} \operatorname{dist} \left(\mathcal{A}_{\varepsilon}, \mathcal{A}_0 \right) = 0.$$

Indeed, suppose to the contrary that there exists $\varepsilon_n \longrightarrow 0^+, \sigma > 0$ and a sequence $(u_{n0}, u'_{n0}) \in \mathcal{A}_{\varepsilon_n}$ such that

dist
$$((u_{n0}, u'_{n0}), \mathcal{A}_0) \ge \sigma$$

Obviously, there are orbits $\{(u_{\varepsilon_n}(t), u'_{\varepsilon_n}(t)); t \in \mathbb{R}\} \subseteq \mathcal{A}_{\varepsilon_n}$, for $n \in \mathbb{N}$, such that $u_{\varepsilon_n}(0) = u_{n0}$ and $u'_{\varepsilon_n}(0) = u'_{n0}$. Then there exists a subsequence ε_{n_k} with the property

$$(u_{n_k}(0), u'_{n_k}(0)) \longrightarrow (\bar{u}(0), \bar{u}'(0)) \in \mathcal{A}_0$$

a contradiction. Hence Theorem 1.1 is proved.

References

- [BV] Babin A.B., Vishik M.N., Attraktory evolucionnych uravnenij s častnymi proizvodnymi i ocenki ich razmernosti (in Russian), Uspechi mat. nauk 38 (1983), 133–185.
- [B1] Ball J.M., Initial-boundary value problems for an extensible beam, J. Math. Anal. Appl. 42 (1973), 61–96.
- [B2] Ball J.M., Stability theory for an extensible beam, J. of Diff. Equations 14 (1973), 399-418.
- [ChL] Chow S.-N., Lu K., Invariant manifolds for flows in Banach spaces, J. of Diff. Equations 74 (1988), 285–317.
 - [F] Fitzgibbon W.E., Strongly damped quasilinear evolution equations, J. of Math. Anal. Appl. 79 (1981), 536–550.
- [GT] Ghidaglia J.M., Temam R., Attractors for damped nonlinear hyperbolic equations, J. de Math. Pures et Appl. 79 (1987), 273-319.
 - [H] Henry D., Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Math. 840, Springer Verlag.

- [HR1] Hale J.K., Rougel G., Upper semicontinuity of an attractor for a singularly perturbed hyperbolic equations, J. of Diff. Equations 73 (1988), 197-215.
- [HR2] Hale J.K., Rougel G., Lower semicontinuity of an attractor for a singularly perturbed hyperbolic equations, Journal of Dynamics and Diff. Equations 2 (1990), 16-69.
- [M1] Massat P., Limiting behavior for strongly damped nonlinear wave equations, J. of Diff. Equations 48 (1983), 334-349.
- [M2] Massat P., Attractivity properties of α -contractions, J. of Diff. Equations 48 (1983), 326-333.

Department of Mathematical Analysis, Comenius University, Mlynská dolina, 842 15 Bratislava, Czechoslovakia

(Received June 26, 1990, revised October 16, 1990)