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In this paper we consider a class of specific singularly perturbed abstract evolution equations. It is shown 
that, for small values of the singular parameter, the invariant manifold for the perturbed equation is C' 
close to that of the unperturbed equation. The results obtained are applied to the second-order evolution 
equations with strong damping arising in the mathematical theory of viscoelasticity. 

1. Introduction 

In this paper we will treat the qualitative properties of semiflows generated by the 
following system of abstract evolution equations: 

u' + A& = g(u, w), 

aw' + B,w =f(u), (1.1h 

where UE [0, a l l ,  { A @ } %  0 and 0 are continuously depending families of 
sectorial operators in the Banach spaces X and Y,  respectively, g : X y  x Y B  -+ X and 
f :  X -+ Y are C bounded functions for some y ,  f i  E [0, 1). Hereafter, XY and Y B  will 
denote the fractional power spaces with respect to the sectorial operators A .  and B o ,  
respectively (cf. [S, chapter 13). 

The goal of this paper is to establish the existence of a finite dimensional invariant 
C' manifold Ax for the semiflow sPa(t), t 2 0, generated by system (l.l)=. We further- 
more prove that both Am and the vector field on A= converge in the C' topology 
towards the ones corresponding to a = 0 (Theorem 3.11). By combining this result 
with the well-known theory of Morse-Smale vector fields (cf. [12]) one can prove 
topological equivalence of vector fields on Am and A. whenever the vector field on 
Ato is Morse-Smale. 

The techniques used in the proof of Theorem 3.11 are similar in spirit to those 
developed by Mora and Sola-Morales [ll]. The construction of an invariant mani- 
fold for (1.1) is based upon the well-known method of integral equations due to 
Lyapunov and Perron. In this method the major role is played by the choice of 
functional spaces we work with. For the proof of the existence of Am, we notice that 
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the usual choice would be the Banach space consisting of all continuous functions on 
(- co, 01 with values in XY x YB equipped with some exponentially weighted sup or 
integral norm. Then one can look for A, as the union of all solutions of (1.1) belonging 
to this functional space. We refer to [ S ,  9-11] for details. However, it turns out that 
such a setting does not capture the singular limit behaviour of the derivative of the 
vector field on A, as a+ 0'. In order to overcome this difficulty, in contrast to the 
approach of [ll], we will operate with Banach spaces consisting of all Holder 
continuous functions growing exponentially at - co. In the proof of Theorem 3.1 1 an 
important tool is a slightly modified version of the two-parameter contraction 
theorem due to Mora and Sola-Morales covering differentiability and continuity of 
a family of non-linear contraction mappings operating between a pair of Banach 
spaces. 

The paper is organized as follows. Section 2 is devoted to preliminaries. Perturba- 
tions of sectorial operators are investigated in section 2.1. The existence of solutions of 
(1.1) is established in section 2.2. In section 2.3 we introduce functional spaces we will 
work with. The core of the paper is contained in section 3. First, we prove the existence 
of a family of invariant manifolds for system (1.1). The singular limit 
dynamics of A,, a+ Of, is investigated in section 3.2. The main results are sum- 
marized in Theorem 3.1 1. Section 4 illustrates an application of the results obtained to 
the second-order evolution equations with strong damping arising in the mathemat- 
ical theory of elastic systems with dissipation: 

(1.3, 
where CI > 0 is a small parameter, ~ ~ [ 1 / 2 ,  l), A is a self-adjoint elastic operator in 
a real Hilbert space X and f: X e +  X is a non-linear C' function for some e E [K, 1). 
We prove that, for any a small enough, the invariant manifold A, for system ( 1.2), is 
C' close to that of the limiting equation 

au,, + A"u, + Au = f(u), 

u,+  A 1 - K u  = A - " f ( u ) .  (140  

2. Preliminaries 

2.1. Properties of a family of sectorial operators 

The goal of this section is to establish perturbation results for a family of closed 
densely defined operators. Let L :  D ( L )  c S + S be a sectorial operator in the Banach 
space S (cf. [8, Definition 1.3.11). It is well known (see [8, Theorem 1.3.4)) that if L is 
sectorial then the operator - L generates an analytic semigroup exp( - Lt), t 2 0, and 
exp(-Lt) = (1/27ri)JreAt(A + L)-'dA, where is a contour in @(-L)  such that 
argA++QasIAI+co forsorneOE(n/2,n). 

Consider a family { L , }  of closed densely defined operators in a Banach space 
S satisfying the following hypothesis: 

(1) D(L0)  = W E ) ,  

(3) L; 'L; '= L,'L,', 
(2) OEe(L,) and LoL;'+Z as a+Of in L(S,%), I (4) Lo is a sectorial operator in S such that Rea(Lo) > w > 0 

CI E [0, ao]. Applying [8, Theorem 1.3.23 we obtain the following lemma. 
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Lemma 2.1. Assume that hypothesis ( H l )  is satisfed. Then 

(a) (2  - L o ) - '  commuteswith(p - L,)-'foranyz~[O,a~],/I~~(L~)andp~~(L,), 
(b) there exists z l  d a. such that L,LO1 EL(%,%) for any a E [ O ,  x l ]  and 

(c) L, is u sectorial operator in 3 for any XE[O, a l l .  

Assume that L is a sectorial operator in the Banach space 3. Suppose that a ( L )  = 
ul u u2,  wherc ul, u2 are disjoint spectral sets and al is bounded in C. Let P : 3 +  3 
denote the projector associated with the operator L and the spectral set u, (cf. [8, 
chapter 1.51). 

L,L;'-+ I us a+ 0' and 

Hesides (Hl)  we also make the following hypothesis: 

(1) 

(2) 

LO' is a compact linear operator on 3 and 
there are 0 < 1.- < A t  < oc) such that a ( L o )  = ayu u;, where (H2) l o  a1 = { i e u ( L o ) ;  Re). < I . - }  and u: = { A E ~ ( L ~ ) ;  Re1 > ).+}. 

< co, where 
Xl,o := P O X ,  Po is the projector in 3 associated with Lo and cry. If LoL; -+ I as 
a -+ 0' then, by Lemma 2.1, L,L, + I and L;' -+ L;' in L ( 3 .  3) as well. Hence 
a(L; ' ) -+ a(L; I )  when z -+ 0' in the Hausdorff set distance metric of the complex 
plane. With this one can easily verify the following lemma. 

Lemma 2.2. Assume that hypotheses ( H l )  and (H2) are satisfied. Then there is z 1  > 0 
suficiently small and such that, for any a E [0, a ' ] :  

Notice that condition (H2), implies that is finite and 

(a) a(L,)  = a; u a;, where 

04 = { A E ~ ( L , ) ;  ReA < A-} and 0; = (Aeu(L,);  ReA > At}. 
(b) P, -+ Po in L ( 3 ,  3 )  as z -+ Ot, where P, is the projector associated with L, and u;. 

(c) P a J ~ , , u : % l , o  -+ X1,, is a linear isomorphism, where XI,,:= P U T .  Moreover, 
Furthermore, Po P, = P, Po.  

dim31,0  = dimX1., < cc. 

Remark 2.3. For any a 2 0 small enough, we denote by 

(2.1) 

the inverse operator of P u ~ ~ ~ , o : 3 1 , 0  -+ Since P,+ Po as a+ 0' the linear oper- 
ator PA-"P, converges to Po in the space I-.(%, 3). 

If Lo is a sectorial operator in 3 with Re a(Lo) > o > 0 then the fractional powers 
L i ,  Y E R ,  can be defined (see [8, Definition 1.4.73). Under hypothesis (Hl)  we have 
shown that - L, generates an analytic semigroup exp( - L,t), t 2 0 for a > 0 small. In 
the following lemma we give some estimates on the decay of exp( - L,t). 

PA- 1) ._ .- ~ ~ u l ~ , , ~ ~ - l : ~ l , l - + ~ l . o  

Lemma 2.4. Assume that hypothesis (HI) is  satisfed. Then there is a C > 0 such that, 
for any a E [0, a l l  and y 2 0, the following estimates hold: 

(a) Ilexp(- L,t)II < Ce-"I, t 2 0, 
(b) IILi(exp(- L,t) - exp(- Lor))ll < CIILoL;' - IIIt-Ye-"', t >O, 

(c) IIGexp(- L,t)I( < Ct-Ye-"', t >o. 



646 D. SevEoviE 

Proof. Using the translation operator La - ol it is sufficient to prove the lemma with 
o = 0. The proof of (a) immediately follows from Lemma 2.1 and [S, Theorem 1.3.41. 
To show part (b), we make use of the integral representation of exp( - Lat). We obtain, 
for t > 0, 

Li(exp(- Lat) - exp(- Lot)) 

e"Li(I + Lo)-'(LoLa-' - l)L,(I + La)-' d I  

Since Reo(t,) > o > 0 one can choose a contour r with the property ReA < 0 for 
any I E ~ .  By [S, Theorem 1.4.41 and Lemma 2.1, there is an M > 0 such that 

1 1  L;(I + Lo)-' 11 Q MII ly - '  and 1 1  L,(A + La)-' / I  Q M for any I E l -  and ~ E [ O ,  a,], 
a, small. Hence, 

1 1  Li(exp( - Lat) - exp( - Lot)) 1 1  Q c 1 1  L~ L,' - Ill t-Y, t > 0. 

Because of the well-known estimate I /  L; exp( - Lot) 1 1  < Ct-?, t > 0 [S, Theorem 
0 

Assume that a family {La, U E  [0, a'] ] satisfies (Hl) and (H2). For any CIE [0, a l l ,  we 

1.4.31, it is clear that part (c) follows from (b). 

denote Qa:= I - Pa and let 

Ll,,:= PaLa= Lapa, L2,,:= QaLa = LaQa, Pax ,  X2,a:= QaX. 

Then L1,, is a bounded linear operator, Reo(L1,,) < I -  in X, and Lz,a is a sectorial 
operator in X, Re a(L2.,) > I + .  Moreover, / I  L:,o II < CAY, y E [0, 1). Applying 
Lemma 2.4 to the operators I -  - Ll*a and Lz,a - I+, respectively, one obtains the 
following lemma. 

Lemma 2.5. Assume that hypotheses (Hl) and (H2) are satisjied. Then there is a C > 0 
such that, for any a E [0, a l l  and y 2 0, the following estimates are true: 

(a) IILiexp(- L,,,~)P,II Q CIYe-'-', t < 0, 
(b) I /  L;(exp(- Ll,,t)Pa - exp(- Ll,ot)Po)ll < CAY_ IILoL;' - Ill e-'--', t Q 0, 
(c) IIL;exp(- L,t)Q,// < Ct-Ye-'tt, t > 0, 
(d) IIL~(exp(-Lat)Qa-exp(-Lot)Qo)II <Ct -YI ILoL~l - I I I e - ' t t t , t  > O .  

In what follows, by C we will always denote the positive constant, the existence of 

We end this section by a useful lemma referring to the Holder continuity of the 
which is ensured by Lemmas 2.4 and 2.5. 

exponential mapping t H exp( - Lt). 
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for any r 2 0, h > 0. 0 

2.2. Existence of solutions of the system of abstract equations 

equations ( l . l )a ,  ae(0, a ' ] ,  and 
In this section, the aim is to show local and global solvability of a family of abstract 

U' + Aou = g(u, B ,  ' f (u)). (1.1)O 

Assume that the families { A a ,  a E [0, Q ] }  and {Ba ,  a E [0, a ' ] } ,  al > 0, small enough, 
fulfil hypotheses (Hl)-(H2) and ( H l )  on the Banach spaces X and Y, respectively. 

Henceforth, we denote by 

Xy := [D(A,Y)], Y8:=  [ D ( B ! ) ] ,  y ,  2 0, 
8 the fractional power spaces with graph norms of A: and Bo,  respectively, i.e. 

II u I I y : =  11 A i u  I( and 11 w ]Is:= 11 B i w  11 (cf. [8, chapter 11). 
By a globally defined solution of ( l . l ) a  with initial data (uo, w o ) e X y  x Y8, we 

understand a function 

t H (u(t), w(t))eC([O, TI;  X y  x Y s )  n C'((0, T);  X x Y) for any T > 0 
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such that (u(O), w(0))  = (uo, wo); (u(t), w ( t ) ) e D ( A )  x D ( B )  for t > 0 and (u( .), w( .)) 
satisfies (l.l), for any t > 0. 

By a globally defined solution of (l.l)o with initial data u O e X Y ,  we understand 
a function 

t i + u ( t ) E C ( [ O , T ] ; X Y ) n C ’ ( ( O , T ) ; X )  forany T > O  

such that u(0) = uo; u( t )ED(A)  for t > 0 and u( .) satisfies (l.l)o for any t > 0. 
As usual, for Banach spaces E l ,  E2  and q ~ ( 0 ,  11 we denote by C&,(E1, E 2 )  the 

Banach space consisting of the mappings F : El --* E2 which are Frechet differentiable 
and such that F and DF are bounded and uniformly continuous, the norm being given 
by II F II 1 := sup IF1 + sup IDFI. CIJd+d“(El, E 2 )  will denote the Banach space consisting 
of the mappings F E  Ctdd(El, E 2 )  such that DF is pHolder continuous, the norm 
being given by 

X , Y € E ,  

Concerning functions g and f we will assume 

gECtdd(XY x Y’; x), fEc,’,’,”(xy; Y‘) 
for some y ,  BE[O, I), D > t > B -  1 and ~ E ( O ,  11. (H3) { 

First, we will consider the case c1 > 0. According to Lemmas 2.1 and 2.4 the 
operator A,  (B,)  is sectorial in X (Y ) .  In Lemma 2.5 we have shown the estimates 

With the help of these inequalities one can easily adapt the proofs of [8, Theorems 
3.3.3 and 3.3.41 to establish local and global existence of solutions of (l.l),, cr~(0, a l l ,  
for initial data belonging to the phase space Xy x Yp. Local and global existence of 
solutions of(l.l)o with initial data from X y  follows from [8, Theorems 3.3.3 and 3.3.43. 

In this way we have shown that system (l.l),, cr~(0, u1], generates a semiflow 9’,(t), 
c B 0, on Xy x Y’ defined by yh(t)(u(O), w(O)):= (u(t), w(t)). Similarly, system (l.l)o 
generates a semiflow Po( t ) ,  t 2 0, on XY. 

2.3. Banach spaces with exponentially weighted norms 

Let X be a Banach space and p E R. Following the notation of [5, 111 we denote 

1 C;(%):= u :  ( -  co, 01 -+ 3, u is continuous and sup e”‘/I u(t)  1 1 %  < co i t 4 O  

and 

llullci~%~:= supe”‘ IIu(t)l l~.  
t 4 0  

The linear space C;(%) endowed with the norm 1 1 .  llcL(Tl is a Banach space. If 
p < v then embedding C ,  (%) ci C; (%) is continuous with an embedding constant 
equal to 1. 
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Let X ,  Y be Banach spaces and F : X +  Y a bounded and Lipschitz continuous 
mapping. Denote by 

F:C,(X)+ C,(Y) (2.2) 
a mapping defined as F"(u)(t):= F(u(t)) for any t < 0. By [ l l ,  Lemma 5.11, for every 
p 2 0, the mapping F" is bounded and Lipschitzian with suplF"1 < sup(F1 and 
Lip I FI < Lip IF I. If F : X -+ Y is Frechet differentiable then F": C; (X) -+ C; ( Y )  need 
not be necessarily differentiable. Nevertheless, the following result holds. 

Lemma 2.7 (Vanderbauwhede and Van Gils [l5, Lemma 51). If F : X -+ Y is FrCchet 
diferentiable with DF : X + L ( X ,  Y )  bounded and uniformly continuous, then, for every 
v > p, v > 0, the mapping F": C; ( X )  -+ C; (Y) is Frtchet diferentiable, its derivative 
being given by DF(u)h = DF(u( .))/I( .) and DF": C; ( X )  -+ L(C,  ( X ) ,  C; ( Y ) )  is 
bounded and uniformly continuous. 

We now recall a notion of uniform equicontinuity of a subset of C; (X) (see [l I]). 
By definition, a subset 9 c C; (X) is called C; -uniformly equicontinuous if and only 
if the set of functions {fp, f E 9 } ,  wheref,(t):= ep'f(t), is equicontinuous, i.e. for every 
E > 0 there is a 6 > 0 such that 

sup sup 11 ep'f(t) - epsf(s) II < E.  
f€gF t , s <  0 

It - SI < 6 

For any e E (0,1], a E (0,1] and p > 0, we futhermore denote 

c, ,a(%):= { ~ E C ; ( % ) ;  CuIp,Q,a < a}, 
where 

IIe"'u(t) - efi(r-h)u(t - h)ll 
he C ~ l p ,  p, a := SUP , 

t S O  
hd0,aI  

and let 

The space C , ,  .(a) endowed with the norm 1 1 .  llciQ,o is a Banach space continuously 
embedded into C;(%) with an embedding constant equal to 1. Furthermore, the 
space C L e J % )  is continuously embedded into C ; J % )  for any 0 < p < v and 
e E (0, 11. Indeed, for any u E C,  Q, ,(%), t < 0 and h E (0, a] ,  we have 

Ilev'u(t) - ev(r-h)u(t - h)II 

< II(,(V-P)~ - e ( v - N ( r - h )  )ep'u(t)II + Ile(v-p)(r-h)(e'ru(t) - e'('-h)u(t - h ) )  11 

< II~IIc-(%)(v- ~ ) h  + Culp,p,ahe* 

Thus, u E C,  e, a(%) and the embedding C,  @, .(%) ci Cv; Q, 

bedding constant being less or equal to max { 1, (v - p)al - Q } .  

is continuous, its em- 

For any K > 0, the set 

Fc:= { u E C i e , a ( T k  I I U I I ~ ~ , ~ , ~  < K }  (2.3) 
is a C ,  -uniformly equicontinuous and bounded subset of C; (%). 
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Since C,  is continuously embedded into C, (a) we obtain the following 
consequence of Lemma 2.7. 

Lemma 2.8. Let F :  X -+ Y be as in Lemma 2.7. Suppose that v > y, v > 0 and e ~ ( 0 ,  11. 
Then the mapping F": C i  e, , (X )  -+ C;( Y )  is Frtchet differentiable, its derivative 
DF: C ,  e, .(X) -, L(C, J X ) ,  C; ( Y ) )  being bounded and uniformly continuous. 

3. invariant manifolds 

3.1. Construction of a family of invariant mangolds 

In this section, we establish the existence of a one-parameter family of invariant 
manifolds for semiflows generated by abstract singularly perturbed equations (1. l),, 
a 2 0 small enough. 

First, we will deal with solutions of the linear equation 

aw' + B,w =f (3.1h 

existing on R and satisfying a growth condition of an exponential type when t -+ - 00. 
We will also consider the 'limiting equation' 

Bow =f: W)O 
Assume that a family {B, ,  a €  [0, a,]} satisfies hypothesis (Hl). From Lemma 2.1 

[0, a l l ,  al small. we know that B, is sectorial and Re a(B,) > w > 0 for any 
Moreover, we choose a,  > 0 such that 

w>vcI1 >o ,  
where v > 0 is given. Now, it is routine to verify that (3.1)m, cr~(0, a,], has the unique 
solution w E Cv- (YO), BE [0, l), for anyfe Cv- ( Y e ) ,  5 > P - 1. This solution is given by 

1 PI 

w(t) := 1 exp( - B,(t - s)/a) f (s) ds =: c , f ( t ) ,  t < 0. 
a - m  

The unique solution of (3.1)0 is determined by 

w:= B,'f=: C o f .  

Concerning the boundedness and limiting behaviour of the linear operators 

C , : C ; ( Y ' ) +  Cy-(YP), cl€[O,CL,], (3.2) 
we claim the following lemma. 

Lemma 3.1. Assume that the family {B, ;  ae[O, all} fu(fils hypothesis (Hl). Let 
PE[O, l), p > 5 > - 1 and 0 < val < w. Then 

(a) there is a C > 0 such that 

I / ~ ~ / I L ( c ; ( y 5 ) , c ; ( y B ) )  CT(1 - P + O(0 - v ~ l ) P - ~ - l  for any MECO, a l l ,  

where r is the gamma function r(8):= J," re- 'e-*dr  for 8 > 0, 

equicontinuous and bounded subset of C; (Ye ) ,  and 

any e E (0, 13, a > 0. 

(b) C ,  f -+ Co f as E-, O f  uniformly with respect to f E 9, where 9 is a C ;  -uni,formly 

(c) C, --* Co as a+ 0' in the norm topology of the space L(C&, J Ye),  C;  (YP))  for 
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Proof: Denote w := CJforfcz C;(  Y e ) .  With regard to Lemma 2.4 we obtain, for any 
t < 0 and crcz(0, a l l ,  

1 '  
evt I1 w(t) 118 < - j I1 B!-'exp(- (B, - W t  - s ) / 4  I1 evs I1 B $ f ( s )  I1 ds 

-m  

For o! = 0 we have 

II f Ilc; (ye) '  8 - 5 - 1  < coS-5-1  ev'IIw(t)Ila < IIBo II Ilfllc;(YC) -. 
(b) Because Re o(Bo) > o > 0, we have the following integral representation of 

B i 1 :  

B,' =gm exp( - B,(t - S)/CI) ds for any t < 0, c1 > 0. 

Let t < 0 and f~ 9 be arbitrary. Using Lemma 2.4 we obtain 

evz II c,f(t) - C ~ f ( t )  l l ~  

=:z1 + z z .  

As is usual in integrals with singular kernels (see e.g. [ll I)  we decompose the first 
integral into two parts Z l  = Jt-i + Jzr-7 =: Z l ,  + Z1,2, where 7 0 will be determined 
later. Clearly, 

eVZIIf(s) -f(t)IIr < 2ev('-S)llflIC;(Yl) for any - 00 < s < t < 0. 

Then 
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osc(fy, z):= sup ilev'f(t) - evsf(s)llc. 
t , s , < O  

If - S I  < T 

Hence, 

< cr(1 - B + <)(a - ~ ~ , ) ~ - ~ - ' ( o s c ( f Y ,  z) + (1 - e-vr)  Ilf/Ic;(yc)). 
Finally, we have 

1, d cr(1 - P + t)w8-'-'IIB,B,' - f I1 IlfllC;(YC). 
Since the set F c Cv-(Ye) is assumed to be C;-uniformly equicontinuous and 
bounded, we have 

osc(fv, z) + (1 - e-vr)  I l f i / C ; ( Y S ) +  O +  as z-+ O +  

uniformly with respect toft F. Now, it is easy to see that C, f -, Cofin C; ( YO) when 
c( + O +  uniformly for f~ 9. 

Finally, by (2.3), the set Fl := { 4~ C;, a( Y 5 ) ;  / I  I$ l l c L Q , a  < l} is a C; -uniformly 
equicontinuous and bounded subset of C; ( Y <). Hence, by (b), C, + Co as c( -, 0' in 

0 

We now turn our attention to the construction of an invariant manifold A, for the 
semiflow 9, generated by system ( l . l )@. From now on we will assume that the 
following hypothesis, 

the topology of the space L ( C ; , , ( Y s ) ,  C; (YO)). 

(1) the family {A , ,  ~ E [ O ,  a l l }  satisfies (Hl)-(H2) 
on a Banach space X ,  

(2) the family {Ba, NE [0, cxl]} satisfies (Hl) on a Banach space Y, 
(3) the functions g and f satisfy (H3) for some y, BE [O, 1) 

(H) 1 and P > t > B - l ,  

holds. 
The idea of the construction of an invariant manifold A, for (l.l), is fairly standard 

and is based on the well-known method of integral equations due to Lyapunov and 
Perron. According to this method, Am contains all solutions ( u ( . ) ,  w(.))EXY x YO of 
(l . l)@ existing on R and satisfying an exponential growth condition of the form 
II u( t )  Il + I/ w(t) 1 1 0  = O(e-"') as t + - 03 where p > 0 is fixed. In our case, we will take 
advantage of the particular form of (1.1). With regard to Lemma 3.1, for a given 
u E C, ( X y )  we have ~"(u)E C; ( Y e )  (rdefined in (2.2)), and hence w := C,f"(u) is the 
unique solution of (3.1), belonging to C; ( YO). Roughly speaking, the w-variable of the 
semiflow 9, on an invariant manifold Aa (if it exists) is governed by the u-variable. 
More precisely, as usual (see e.g. [S, 10,7]), we will construct A, as the union of curves 
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(u, C,y(u)) where u E C,  (X y ,  are fixed points of the mapping 

T,(x,  .) : c, (XY)  -, c, (XY),  

T,(x ,  u):= X,x + % ( 4 ( u ) ) .  

~ E [ O , C ( ~ ] ,  x E X l , O : =  POX and, for any UEC;(XY) ,  

The linear operators Xu : X 1 ,  -, C; ( X  ?), % : C; ( X )  -, C; ( X  y ,  are given by 

X , x : =  exp(- A,,,t)P,x for any X E X , , , ,  

(3.3) 

exp( - A,@ - s))Q,g(s)ds for any g E C,  ( X ) ,  (3.4) 

and the non-linearity 3, : C; (X y ,  + C; ( X )  is given by 

g,(u)(t) := g(u(t), ~ , f " ( u ) ( t ) )  for any u E C; ( ~ 7 ) .  

By means of the Banach fixed point theorem, we will show that the operator T,(x,. ) 
has a fixed point Y,(x) E C; ( X y ) .  To do this, we first establish estimates of norms of 
% and Xu and a Lipschitz constant of 9,. 

(c) X u  E Ux1.0, C, Q, I1 X z  I I  L(x,.o,  ci, Q, a(x ?)) < 2c2, 
% E L(C; ( X I ,  C ,  e, a(Xy)) ,  / I  % II L(c;  (x), c ,  a(xy)) G 2CK(A - 3 A+ 9 P, Y), 

( 4  Xz+ Xo and %-+To as a+O+ in L ( X l , o ,  C,Q,a(XY)) and 
L(Ci  ( X ) ,  C i  @, .(XY)), respectively. 

Proof. Using the estimates from Lemma 2.5 the proof of (a) is obvious. Again, with the 
help of Lemma 2.5, the proof of (b) is an immediate adaptation of that of [5 ,  Lemma 
3.11. 

In order to prove (c), we make use of Lemma 2.6. Applying Lemma 2.6(a), we obtain 

[ X , X ] ~ , ~ , ~  < a ' - Q ~ ~ ! + y l ~ ( p  - A,)A;'II  I I X I I  for any x e x , , , .  
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Thus 

II 9 II c- ( X )  . I C a l - r - e  + 
1 - Y  
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In this way we have shown that there exists a constant k = k ( L  , i , ,  p, y ,  e, C )  > 0 
such that 

Cxzxlp, @. < a' - @k II x II and CZdH @, 

< a(' - - @ ) I 2 / (  1 )  g 11 f o r a n y O < a <  1. c;(x) 
Hence, by taking a = a @ - ,  A,, p, 7, @, C) > 0 sufficiently small and using the state- 
ments (a) and (b), it follows that 

II.XIII.(x,,oc;p~(x")) < 2C)." and l l ~ l l ~ ( ~ ~ ( x ~ , ~ ~ ~ ~ , " ( ~ , ) )  < 2CKO.- 9 i + 9  p, 7). 

Finally, we will prove that 

Cx,x- . X O X I ~ , ~ , ~ - + O  and [Zg-%glp,Q,( l+O a s a - + O +  
uniformly with respect to I1 x (I < 1 and II g (Ic;(x, < 1, respectively. 

Denote 

Uz(t):= exp((C1- Al,,)t)P, - exP((P - A, ,o) t )Po,  

Kz(t):= ~ x P ( -  ( A ,  - P ) t ) Q a  - ~ x P ( -  (Ao - P ) t ) Q o .  

We have the following integral representation of U,(t): for any r < 0, h > 0, 

- 
- j r r - h  

C ( P  - Al.a)exP((p - A , . a ) < ) P z  

- (P - Al.o)exP((P - ~ 1 . 0 ) t ) ~ O l d ~  

= ( ~ 1 , o  - ~ 1 . 5 )  j,r-hexp((p - A,,a)t)Pad< 

+ ( P  - ~ 1 . 0 )  l-h Ua(t)dt. 

Using the above expression and Lemma 2.5 one can proceed similarly as in the proof 
of Lemma 2.6(a). One obtains 

II &(U,(r) - U,(r - h ) ) x  11  < C ,  h e(p - L ) ~  11 I - A,A; 1 1  11  x 1 1 ,  r G 0, h > 0, 

!! M W  + h )  - V,(d)x I! 

where C1 > 0 is a constant. Analogously, one also deduces that for any r 2 0, h > 0 

II I - A 4  II II x 11. < c, h(l - Y + e ) P r  - ( 1  + 'i + u)/2 - (I.+ - r)r 

With the help of these estimates, statement (d) can be readily proved by repeating the 
lines of the proof of (c), but now operating with U J t )  and K ( t )  instead of 

0 

Since g: X y  x Y p  -, X and f: Y B  + Y s  are bounded and Lipschitzian we have that 
the mapping 9%: Cp(Xy)+ C ; ( X )  is bounded, uniformly with respect to a E [ O ,  a,], 
and, moreover, 

exp((p - A , , , ) t ) P ,  and exp(- ( A ,  - p) t )Q . ,  respectively. 

l l ~ ~ ( ~ ~ ) - ~ a ( u 2 ) l l ~ ~ ( ~ ,  < L ~ P ( Y ) ( ~  + IIC,IILip(f))Ilul - U ~ I I ~ ; ( ~ ~ ) .  
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By Lemma 3.1, 

Lip(gz) < Lip(g)(l + cr(1 - b +  ()(o - pzl)b-c-l Lip(j')). (3.5) 

With this we have established the following lemma. 

Lemma 3.3. Let p E ( j . - ,  ,I.+ ). Assume that hypothesis (H) holds. Then the operator 
T , ( x ; ) :  C; ( X  7 )  -+ C; ( X  7)  is a uniform contraction with respect to 2 E [0,  r r  3 and 
x E X l , o ,  provided that the following inequality is satisjed: 

8:= C K ( A .  ,A+,p,y)Lip(g)( l  + CT(1 - B + 5 ) ( w - p a l ) B - 5 - ' L i p ( f ) ) <  1. 

(3.6) 

According to the previous lemma, if (3.6) is satisfied then, by the Banach fixed point 
theorem, there isafamily Y , ( x ) , a ~ [ 0 ,  z,], x ~ X ~ , ~ . o f f i x e d  pointsof Ta(x;). Because 

1 1  Tl(xl, u )  - T Z ( x 2 ,  u)(I  = l lXa(x l  - x2)II < CAT 1 1  x 1  - x 2  I \  we furthermore have 

(3.7) II Y a ( x l )  - Y ~ ( X ~ ) I I  G C J . ~  - ~ I I X ~  - x21l, 

i.e. Y,( . )  are Lipschitz continuous uniformly with respect to Z E  [0, a , ] .  
Now, we can define a set .A, as follows: 

41:= { (Yl(X)(O), CUT( Ya(x))(O)); x E Xl,O), ZE(O, a1 3. 
To show invariance of Az under the semiflow YZ(t), t 2 0, generated by system 

Al = { (u(r) ,  w ( r ) ) E X Y  x Y B ,  7~ R, (u, w ) E C ;  (Xy)  x C; ( Y B )  solves (l . l)z}.  

(l.l),, it suffices to prove that 

(3.8) 

Indeed, let us consider an arbitrary solution (u( .), w( .)), belonging to the right-hand 
side of (3.8). Take a T E R  and put U(t):= u( t  + T ) ,  W(t):= w(t  + T ) .  Then (U, ~ 3 )  is 
a solution of ( l . I )=  as well, and (U( .), W( . ) ) E  C; ( X y )  x C; ( Y B ) .  By Lemma 3.1, we 
have W = Car(U) and U is therefore a solution of U' + A,U = g(U, CaT(U)) = 9JU) .  
According to [ 5 ,  Lemma 4.21 U is a solution of 

U(t) = exp(- A,.. t)P,G(O) + Z(F&(U))(t), t < 0. 

By Lemmas 2.2 and 2.5, Pals, ,,: 5?l,o + is a linear isomorphism. Therefore, there 
exists x e X l , o  such that Pax = Pat7(0). Thus, U solves the operator equation 
z ( x ,  U) = U. By uniqueness of a fixed point of T,(x; ) ,  we have U = Y J x )  and hence 

( U ( T ) ,  W ( T ) )  = (U(O), N O ) )  = (Ya(X)(O), c , T ( Y , ( X ) ) ( O ) ) E ~ a .  

O n  the other hand, take an arbitrary X E X , , , .  Then ( Y a ( x ) ( . ) ,  C a r (  Y , ( x ) ) ( . ) ) E  
C; ( X y )  x CJ ( Y a )  is a solution of ( l . l ) ,  which can be extended to a solution existing 
globally on R. Hence (Y,(x)(O), C,f( Y,(x))(O)) belongs to the right-hand side of (3.8). 
In this way we have shown (3.8). 

For 2 = 0, we put - 
A o : =  { Y,(x)(O); XEX1,Oj.  

With regard to [ S ,  Theorem 4.43, io c X '  is an invariant manifold for the semiflow 
9, generated by (l.l),-,. This manifold can be naturally embedded into a manifold 
yKo c X' x Y B  defined as 

A,:= { ( u ,  B,'f(u)); U E J , } .  
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We note that the manifolds Au, U E  [O, C I ~ ] ,  are Lipschitz continuous submanifolds 

Denote 
of X y  x Y o  (see (3.7)) and dim&, = dimX,,, < 03 for any U E [ O ,  ul]. 

@,(x) := Y,(x)(O) and Y , ( x )  := C u r (  Y,(x))(O). 

The mapping XI, 0 3 x H (mU(x), Y , ( x ) )  E X y  x Y B  is Lipschitz continuous, its Lip- 
schitz constant being independent of U E  [0, a l l .  

In terms of @, and Y,, the manifold A, is given by 

-4, = { ( @ , ( X ) ,  Y U ( X ) ) 9  XEX'.O)? U E C O ,  a l l ,  
and the semiflow Yu (9,) on A, (io) is determined by solutions of its inertial form. By 
definition (see [7, chapter 2.1]), an inertial form for (1.1) is an ordinary differential 
equation in a finite dimensional space given by 

P' + Pi-''A,.aPup = PL-')Pug(@u(p)> y a ( p ) ) ,  (3.91, 
where the linear operator P:-') was defined in (2.1.4). Indeed, any solution (u, w) of 
(l.l), U E [ O ,  a l l ,  belonging to Au can be written as (u(t), w(t)) = (@&(t)), Y m ( p ( t ) ) ) ,  
where p ( .  ) is a solution of (3.9) and vice versa. 

Remark 3.4. Assume that 8 < 1 is sufficiently small. Then, following the lines of the 
proof of [ S ,  Theorem 5.11, one can also prove exponential attractivity of A=. It means 
that, for any (u, w)eXy x Y B ,  there is a unique (u*, w * ) 6 A U  such that I( Y,(f)(u, w) - 
Y u ( t ) ( u * ,  w*) 1 1  = O(e-"') as t + co. Hence, A, is an inertial manifold for the semiflow 
Yu in the sense of [7]. 

3.2. The singular limit dynamics of invariant manifolds 

manifolds Au when 0: + 0'. The main purpose is to show 
In this section, our objective is to study singular limit dynamics of invariant 

(@,, y,) + Po, yo)  as O +  (3.10) 

in the topology of the space Cidd(B, X y  x Yo) ,  where B is an arbitrary bounded and 
open subset of Xl,o. 

The proof uses abstract results due to Mora and Sola-Morales regarding the 
limiting behaviour of fixed points of a two-parameter family of non-linear mappings. 
With regard to Lemma 2.7, we note that the mapping c ( x , .  ): C, (Xy) -+ C, (X y ,  need 
not be generally C' differentiable. One can, however, expect that T, is a C' mapping 
when considering T,(x;) as a mapping from C;(Xy) into C;(Xy) for some v > p. 
Therefore, we need a version of a contraction theorem covering the case in which 
differentiability involves a pair of Banach spaces. 

First, we recall the assumptions of [ll, Theorem 5.11. Let %, U be Banach spaces, 
> 0. Let T,, CI E [0, a'], be a family of mappings from % x U into U such that 

'(1) there is 8 < 1 such that 1 1  T,(x, ul) - T,(x, u2)IIu < 811 u1 - u2 I I u  

(2) there is a Q < co such that I1 T,(x l ,  u) - Ta(x2, u)II 6 QIIxl - x2 1 1 %  

(3)  for any B c % bounded and open supxeB ) I  T,(x, Yo(x)) - 

for any X E % ,  u 1 , u 2 e U  and UE[O,CI~], 

for any x l ,  x 2  E%,  U E  U and t l ~  [0, a ' ] ,  and 

To(x, Yo(x))IIu+ 0 as a+ O + ,  where Y,(x), X E % ,  U E [ O ,  a l l ,  
is the unique fixed point of TJx, Y )  = Y.  , 
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Remark 3.5. Note that, by the Banach fixed point theorem, (T), and (T)2 ensure the 
existence of a family of fixed points Y,(x) of T,(x,. ) such that the mapping x H Y,(x) is 
Lipschitzian, its Lipschitz constant being Q(1 - 6) - ' .  Furthermore, (T)3 implies 
Y,(x) -+ Yo(x) as u -+ 0' uniformly with respect to x E B, B is an arbitrary bounded 
and open subset of X. 

We assume that the space U is continuously embedded into a Banach space 
U through a linear embedding operator J .  We also denote T, := J T ,  and F, := J Y,. We 
are now in a position to state a slightly modified version of [ l l ,  Theorem 5.11. 

Theorem 3.6 (Mora and Sola-Morales [11, Theorem 5.11). Besides hypothesis ( T )  we 
also assume that the mappings : X x U -+ e, a E [O, a,], satisfy the following condi- 
tions: 

(1) For any a E [0, a,],  F, is Frdchet diferentiabfe, with Di?;: X x U -+ L(X x U ,  0 )  
bounded and uniformly continuous, and there exist mappings 

d , G : X  x U -+ L(U,  U ) ,  &G:X x U -+ L(u ,  U ) ,  d,T,: X x U + L(X, U )  

such that 

D, T,(x, U )  = J d ,  T,(x, U )  = d; T'(x, u)J ,  

/I d!l T& 4 IlL(U, U )  Q 4 
D, T,(x, U )  = Jd, TJx, u), 

II & T 2 k  U) I /  L(U,  U )  Q 6, ll d x  TAX, 4 IIt(z, u )  Q Q. 
(2) For any B bounded and open subset of X, DT,(x, u) -+ DT,(x, u) as u -+ 0' 

uniformly with respect to (x, U ) E  B x FB, where 

FB:= {Y , ( x )EU;  X E B ,  C X E [ O , ~ , ] } .  

Then the mappings F, : X + U have the following properties: 

bounded and uniformly continuous 

with respect to x E B. 

(a) For any u E [0, a l l ,  F,: X --f U is Frichet diflerentiable, with D F, : X -+ L(X ,  0) 

(b) For any B bounded and open subset of X, DF,(x) -, DFo(x) as u -+ 0' uniformly 

ProoJ The only difference between the assumptions of the above theorem and those 
made in [ l l ,  Theorem 5.13 lies in part (2). Hence, the proof of part (1) remains the 
same as that of [ l l ,  Theorem 5.1, part (Kl)]. 

Recall that in [ l l ,  Theorem 5.11 Mora and Sola Morales required a uniform 
convergence of DF, -+ DFo instead of (2). Nevertheless, they have shown the estimate 

I1 D Fz(x) - D Fo(x) IIL(f7, f7) 
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Hence assumption (2) is sufficient for the proof of the local uniform convergence 
0 LIT, + DTo as stated in (b). 

Henceforth, we will assume that 

eE(0, 1 - y )  and 1- < p < (1 + q ) p  d K < ii < 1,. (3.1 1) 

In order to apply Theorem 3.6 to fixed points YJx) of the non-linear operator 
T,(x, . )  defined in (3.3), we choose the following Banach spaces, 

a:= C,e,a(XY) and @:= C,,JXY), 
and denote by 

J : c, @, a@ y ,  + c, @, u(XY) 
a linear embedding operator. A constant 0 < a + 1 will be determined later. Before 
proving that the family of mappings T,, ct E [0, ctl], fulfils the assumptions of Theorem 
3.6 we need several auxiliary lemmas, each of which is under hypothesis (H)  and (3.1 1). 
First, we introduce the notation. 

In the following, with regard to Lemma 3.2(c), (d), the mappings Xu and % will be 
considered as bounded linear operators acting on 

xu : x1.0 + 92, 

z : Xl,O + 42, 

% : c; (X) + 92. 

5: c, (X) + 42 

We also denote by 

the bounded linear operators analogous to Xu and z, respectively, but operating on 
exponentially weighted spaces with weight e@. We recall that the boundedness of 
Xu, z, 2u, 5 follows from Lemma 3.2(c), (d). Because Rank T, G 92 (see Lemma 3.2), 
we obtain 

Y,(x) = Ta(x, YU(x))€% for any X E X ~ , ~  and c t ~ [ O ,  all. 

Moreover, we have the following lemma. 

Lemma 3.7. Let B be a bounded subset of Then the set 

9 g : =  {Ya(x)EU; X E B ,  ctE[O,ct1]} 

is a bounded subset of !&. At the same time, 
bounded subset of C; (X ?). 

is a C, -uniformly equicontinuous and 

Pro05 Since Y,(x) = T,(x, Y,(x)) = X,x + Y,(x))) and is bounded, the proof 
0 follows from Lemma 3.2(c) and (2.3). 

c, (XY) + C,( YC), J(u)(t)  := f (u(t)) ,  

Because of the assumption fECIA"(Xy ,  Ye;) we have that the mapping 

is bounded and Lipschitz continuous. Recall that the space 92 is continuously 
embedded into C; (X y ) .  Hence the mapping 

H ,  : 92 + C, ( Ys), H,(u) := CUf"(u), 
is bounded and Lipschitz continuous as well. We also denote by c, the linear operator 
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defined in (3.2) and operating from C; ( Y 5 )  --t C; ( Ys) .  Define 

H a  := J’H, : Q -+ C; ( Y s ) ,  

where J ’ :  C; ( Y s )  -+ C[( YP) is a linear embedding operator. 

Lemma 3.8. 
(a) H a  E c t d d ( , @ ,  c; ( ya)), 
(b) there is an operator d H ,  : Q -+ L(Q, C; ( Y a ) )  such that DH, = J’dH,.  

Proof: (a) From Lemma 2.8 we have TEcidd(@, C; (Y5) )  and, by Lemma 3.1, 
C , E L ( C ; ( Y ~ ) ,  C ; ( Y ~ ) ) .  Hence H,EC~,,~(Q!, c ; ( Y ~ ) )  and DA, = C,DJ 

(b) Since D f :  X y  -+ L ( X y ,  Y 5 )  is bounded we obtain that the operator 

df :@-+L(Q,C;(Yc) ) ,  df (u):= D f ( u ( - ) ) ,  

is well defined and bounded. By Lemmas 2.7 and 2.8, the derivative Dflis given by 
Dfl= J ’ d f :  Denote 

dH,:= C,dc 

Then D H ,  = c a D f ” =  J’C,df = J’dH,. 0 

Lemma 3.9. Let 8 be a bounded subset of@. Then H,(u) -+ H,(u)  as a+ 0’ in C, (Yb)  
and DH,(u) --* DHo(u)  as ct -+ 0’ in L(Q, C; ( Y s ) )  uniformly with respect to u €8. 

Proof: (a) Because both f and D f are assumed to be bounded, one can show that the 
set 

Fo:= { f l (u);  U E B }  

is a C; -uniformly equicontinuous and bounded subset of C; ( Yc) .  By Lemma 3.1, we 
obtain 

H,(u) = c , ~ ( u >  + ~ , f ( u )  = ~ ~ ( u )  as a -+ O +  

in the space C, ( Y s )  uniformly for u E 8. 
(b) From (3.11) we have (K - p ) / v  > p. Since we have assumed that the mapping 

X y  3 u H D f (u) E L ( X  y, Y 5 )  is v-Holder continuous one can easily verify that the set 

F1 := { df(u);  u E 8 } 

is a C;-,-uniformly equicontinuous and bounded subset of C;-,(L(Xy, YC)). Then, 
by [ l l ,  Lemma 5.4(d)] and (2.3), the set 

%2:= (d f (u)h;  \\hl\c: < 1, U E ~ }  
P e.0 

is a C; -uniformly equicontinuous and bounded subset of C; ( Yt ) .  Again, by Lemma 
3.1 (b), we obtain 

Dfl , (u)h  = C,df(u)h -+ C,df(u)h = DHo(u)h as a -, 0’ 

uniformly for II h l / C i Q , , a  < 1 and u €8. 0 

It follows from Lemma 2.7 and (H3) that 

g E cidd(c; (x  ’) x c; (Y’), c i  (x)), (3.12) 

where i stands either for p or for K. Define the operators 

d,g:C,(XY)x C;(Ys)-+ L(C;(Xy) ,  C,(X)) 
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and 

d , g : C , ( X Y ) x  C,(Ya)+ L ( C , ( Y a ) ,  C ; ( X ) )  

d , g h  w):= D,g(U(.) ,  w ( . ) )  and d,g(u, w):= D,g(u( . ) ,  w ( . ) ) .  
as follows: 

As Dg is bounded, the mappings dug and d,g are bounded as well. Further, the 
derivative Dij when restricted to C; (XY)  x C; (YS) can be expressed as 

D,ij = J”d,g,  D,ij = J”d,g, (3.13) 

where J ”  : C;  ( X )  + C; ( X )  is a linear embedding operator. 

Lemma 3.10. Let 4 be a bounded subset of 9. Then 

E Ctdd(%, C f  ( X ) ) ,  where % := J ” 4 ,  (a) 
(b) there is a mapping dgU%?,: 42 + L(%, C ;  ( X ) )  such that D% = J”dg, ,  
(c) %=(u) + g0(u) in C; ( X )  and D g ( u )  + Dg0(u) as 01 + 0’ in L(%, C ;  ( X ) )  uniform- 

Proof: The proof of statement (a) follows from Lemma 3.8 and (3.12). Let us define dgu 
as follows: 

ly with respect to u E %. 

dg,:= dug + d,gdH,.  

By Lemmas 2.7 and 3.8 and (3.13), 

0% = 0.8 + D,ijDR, = J”d,g + J ” d , g d H ,  = J‘td?3u. 

Since %,(u) = g ( u ( . ) ,  C,f”((u)(-)) = g(u( . ) ,  H,(u) ( . ) ) ,  the first part of statement (c) 
follows from Lemma 3.9. As 08, is bounded, the second part is a consequence of 
Lemmas 2.7, 2.8 and 3.9. 0 

Now we can apply Theorem 3.6 to the family of non-linear operators {T,}, 
introduced in section 3.1. 

Since the mapping gg : 9 -, C, ( X )  is Lipschitz continuous, its Lipschitz constant 
being estimated by the right-hand side of (3.5), using Lemma 3.2(c), (d), we obtain that 
the family K(x;) satisfies hypotheses Tl and T, in the Banach space 9 with the 
constants 

8:=28  and Q:=2CRY, (3.14) 

where the constant 8 > 0 was defined in (3.6). Furthermore, according to Lemmas 3.2 
and 3.10, assumption (T)3 is also fulfilled. Let us define the operators 

d,  Tu : X l . 0  x 9 + L ( 9 ,  a), d ,  Tu : X1.o  x 9 + L(X1,o ,  9 1 3  

& T, : X I ,  x 9 + L(@, @) 

as follows: 

d,  TU(x, U )  := z d g u ( u ) ,  d ,  T,(x, U) := X,, Z, T,(x, U )  := Z@,(U), 
where &fa is defined in the same way as the operator dg, but operating from 
C i  Q, ,(XY) to L ( C i  Q, ,(Xy), C j  ( X ) ) .  Denote 

Fa:= JTu:Xl,o x 9  + @ and Fa:= JY,. 
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By Lemma 3.10, T,E Cldd(X1,O x @, 4). Moreover, from Lemmas 3.2 and 3.7 we 
obtain DT,(x,  u) -, DFo(x, u) as or-  0’ uniformly with respect to ( x ,  U ) E X ~ , ~  x FB for 
every B bounded and open subset of Xl,o.  

In this way we have shown that the family T , ( x ; )  and the mappings 
du T,, d ,  T,, & T, satisfy the assumptions of Theorem 3.6, provided that the constant 
odefined by (3.14) is less than 1. In the case when fk 1, by Theorem 3.6 we obtain 

YE-+ Yo as a + o +  in Cidd(B,CiQ,JXY)) (3.15) 

for any B c Xl,o bounded and open. 
Recall that 

(QD,(x), ‘ y , ( x ) )  := ( Y J X ) ( O ) ?  m R ( x ) ) ( o h  

where fi, is now considered as a C ’ mapping from C, Q, J X Y )  into C; ( Y a )  for some 
v > p. In view of Lemma 3.9, statement (3.15) readily implies a C’-local uniform 
convergence of (Q,, Y,) towards (Qo, Y o )  as stated in (3.10). 

In accordance with Lemma 3.3, we remind ourselves that the assumption 8 < 1 is 
sufficient for the existence of a family of Lipschitz continuous invariant manifolds 
-44, for the semiflows Y,, o r ~ [ O ,  orl]. On the other hand, the assumption e= 28 < 1 
guarantees a ‘C’-closeness’ of Jkt, and do which can be precisely expressed by (3.10). 
Clearly, one way of ensuring the condition 8< 1 is to require smallness of the 
constant K > 0. 

Having developed the previous background we can state the main result of this 
paper. 

Theorem 3.11. Assume that hypothesis (H)  holds. Then there are constants z > 0 and 
or1 > 0 such that, i f K ( A - ,  A+, p, y )  < z then, for every a ~ ( 0 ,  a l l ,  the following hold: 

(a) There exists an invariant manifold Ma (J0) for the semiflow 9, (go) generated by 
system (l.l),. Moreover, dim& = dirndlo < 00 and A, (io) is the graph of a C’ 
continuous mapping xl,03X H (@,(x),  Y , ( x ) ) ~ x Y x  YP (x1 ,03X H Q D o ( x ) ~ X Y ) .  

(b) For any bounded and open subset B c Xl,o,  

(@,, - (Qo, Yo) as a + O +  in Cidd(B, X Y  x Y P ) .  

Remark 3.1.2. In addition to hypothesis (H)  we also assume that A.  is a self-adjoint 
operator with eigenvalues 

0 < A1 < .  . .d An < A n + l  d .  ’ .  A n - c o  as n -  co. 

As is usual in such a case, we will let 1- := A,, A+ := An+ and p := (1, + A-)/2. With 
this setting it should be obvious that the condition ‘K is small’ reduces to the 
requirement ‘ A l ( A n + l  - A n ) - ’  is small enough’. In the case when 1, % m2, m E N ,  the 
assumptions of Theorem 3.1 1 are satisfied, whenever y E [0, 1/2) and n is large enough. 

4. An application 

We will consider the second-order abstract evolution equations of the form 

CLU” + A K U ‘  + Au = f (u), 

u(0) = uo, u’(0) = 00, 
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where A (the elastic operator) is a self-adjoint positive operator in a real Hilbert space 
%, K E  [1/2, l), M 2 0 andf: .Ye+ % is a non-linear function for some p E [ K ,  1). The 
operator A" may represent dissipation in elastic systems (cf. [3]). 

In recent years, many authors have studied problems having the general form (4.1) 
(see e.g. [3,4] and other references therein). As a motivation for studying systems like 
(4.1) one can consider some specific beam equations with damping, e.g. 

u,, - p ~ u ,  + A Z ~  = m( jn ~ v u i z ) ~ ~ ,  

(4.2) 
u = Au = 0 on an, u(0, x) = uo(x), &(O, x) = uo(x),  ~ € 5 1 ,  

where 51 c RN is a smoothly bounded domain, jl > 0 is a damping coefficient and 
m: R +  + R is a non-decreasing differentiable function measuring non-local character 
of structural damping of a beam or string (see, for instance [1,2, 131). If we let 
X:= L2(!2), Au:= A'u, D ( A )  = (W4.2(51), u = Au = 0 on an} then problem (4.2) can 
be rewritten abstractly as problem (4.1) with e = K = 1/2. After a suitable rescaling 
time (z := t /p )  one obtains M = l/pz and the singular limit M + 0' corresponds to the 
situation when p tends to infinity (see [14]). 

Throughout this section we will assume the following hypothesis: 

A : D&I) E % + X is a self-adjoint positive unbounded operator in 
a real Hilbert space %. The resolvent A-' is a compact operator on X. 
K€[1/2, l), M 2 0. 
f ~ C i ; ' ( ( a Q ,  %) for some eE[K, 1) and ~ E ( O ,  13. I 

We recall that an operator A satisfying hypothesis (E) has the spectrum consisting 
of eigenvalues 

a(A) = {A,,;  EN}, 0 < A1 6 A 2  < .  . . , A,,+ co as n-, co. 

We denote by 4,, the eigenvector of A correponding to A,,, n e N .  According to [8, 
chapter 11 A is a sectorial operator in % and the fractional powers of A and 9F can be 
characterized as 

m 

Knowing the above spectral decompositions, one can readily show that, for any 
r, s 2 0, the operator A' is a self-adjoint positive operator in the Hilbert space 
X : =  Xs, its domain being D,(A'):= D&lr+S). The fractional power space Xy, 
y E [0, 13, subject to the sectorial operator A' consists of the domain D&IS+Y') and 
the norm on XY is given by IIullxy= IIAs+yruIla for any UEXY. Moreover, 
a(A') = {A:;  EN}. 

(4.4) 
Now we return to system (4.1). We use a change of variables in such a way that the 

resulting system fits into the abstract setting investigated in section 3. To do so, we let 
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X, Y denote the real Hilbert spaces 

X:= [oa(A(l-")K)] I- - % ( l - W ) K  , 

0 E (0, (1 - e)/4 

Y:=%, 

where 

is fixed. Let the linear operators A,, B,, a E [O, go], in X and Y, respectively, be defined 
as follows: 

1 
2 

B,:= -(1 + (1 - 4aA1-2")1'2)A" 
A" 
2a 

A,:= -(1 - (1 - 4aA"")"Z), 

for a E (0, aO], a. > 0 small, and 

A,:= A'-", Bo:= A", 

their domains being 

&(A,):= D,(B,):= &(A") for any c t ~ [ O ,  aO]. 

Since A. and Bo are self-adjoint positive operators in Xand Y, respectively, with 
regard to [S, chapter 13, we have that they are sectorial ones. Notice that A,, 
M E  (0, aO], is well defined. Indeed, using (4.3) we obtain 

A 2 K - 1  

(1  - (1 - ~C~A'"" ) ' ' ~ )EL(X,X)  
2a 

for a E (0, aO], and hence 
A 2"- 1 

A, = ~ (1 - (1 - 4aA")"2)A'-K. 
2a 

Furthermore, 
AK-1  

A,' = - (1 + (1  - 4aA'-2")'/2). 
2 

Therefore, A, A; ' + I in L ( X ,  X ) .  Similarly, B,B; ' -+ I in L( Y, Y ) .  Hence the fami- 
lies of operators {A , ,  a E [0, aO]} and {B, ,  CI E [0, a O ] }  fulfil hypotheses (Hl)-(H2) and 
(Hl) on the Hilbert spaces X and Y,  respectively. 

In terms of A, and B,, system (4.1) can be rewritten as a system of two abstract 
equations: 

u' + A,u = w, 

aw' + B,w =f(u ) ,  U E  [O, a l l ,  (4.51, 

u(0) = uo, w(0) = wo 
in the space X x Y. Let us take 

Q- (1 - O)K 
1 - K  

y := and /3:= 1 - 0. 

Then y, PE(O, 1) and the functions 

g:XYxYfl+X, g(u,w):=w, 

f : X Y +  Y 
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satisfy hypothesis (H3) from section 9 (here X y ,  Y B  denote the fractional power spaces 
with respect to sectorial operators A. = A -" , Bo = A", respectively). Indeed, taking 
(4.4) into account, we obtain 

XY = Dz(A(I-O)K+Y(l-")  ) = D Z ( A Q )  = X Q ,  
yB = Db(AP") = Db(A"-"'") = x, 

Hence, g E L(X x Ys, X )  and f E Ci&'(Xy, Y). 
Having developed this background we can apply Theorem 3.11 to semiflows 

generated by systems (4.5),, a~ [0, ao], in the phase space X y  x Y B .  With regard to 
Remark 3.12 and (4.41, the assumptions of Theorem 3.11 are fulfilled whenever 
inf,,,, A:' -"IY /(A:;: - A,' -") = 0. Because and 
w ~ ( 0 ,  (1 - @),k), the last condition becomes 

(1 - ~)y = e - K + OK =: 6 

= 0 for some 6E(e  - K ,  1 - K ) .  (4.6) 

Theorem 4.1. Assume that hypothesis (E) and (4.6) are satisjed. Let y := 6/( 1 - K )  and 
/? := (6 - @)I.. Then the conclusions of Theorem 3.1 1 hold for semijlows generated by 
systems (4.5),, K E  [0, ao], a. > 0 small enough, in the phase space X y  x Y B .  

Remark 4.2. Let us consider system (4.2). It is known [13] that there exists a compact 
global attractor for the semiflow generated by (4.2). Then one can smoothly modify 
the function f (u):= m( 11 Vu 11 ')Au far from a neighbourhood of an attractor. Hence the 
assumption f E  Ci,&'(XQ, Y) is not restrictive when we deal with local invariant 
manifolds instead of global ones. By classical spectral results (see e.g. [6]), it follows 
that An z n4IN2, where An,  n e N ,  are eigenvalues of the self-adjoint operator A:=  A' 
subject to 'hinged ends' boundary conditions u = Au = 0 on aR. In system (4.2) we 
have K = e = 1/2. Hence condition (4.6) is satisfied whenever N = 1 and 6 E (0, 1/4). 

Remark 4.3. Theorem 4.1 remains true for the case when the fractional power 
operator A" is replaced by a general self-adjoint linear operator B which commutes 
with A and is comparable with A" (cf. [4]), i.e. there are constants a, b > 0 such that 

2 inf 
n s N  2,';; - 2: -" 

a(AKu,  u) < (Bu, u) < b(A"u, u) for any U E D ( A " )  = D(B). 
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