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XVA for American options with two stochastic factors: modelling,
mathematical analysis and numerical methods

I. Arregui1 and B. Salvador1 and D. Ševčovič2 and C. Vázquez1
1. Universidade da Coruña, Spain

2. Comenius University, Bratislava, Slovakia

Abstract

In this work, we derive new linear and nonlinear partial differential equations (PDEs) models for pricing
American options and total value adjustment in the presence of counterparty risk. Moreover, stochastic spreads
are considered, which increases the dimension of the problem.

1. Introduction
Counterparty risk can be understood as the risk to each party of a contract from a future situation in which one of
the counterparties cannot live up its contractual obligations. Since the last financial, crisis when several institutions
went bankrupt, a relevant effort in quantitative finance research concerns to the consideration of counterparty risk
in financial contracts, specially in the pricing of derivatives As a consequence, different adjustments on the value
of the derivative without counterparty risk (hereafter referred as risk–free derivative) are being included in the
derivative pricing. For example, the credit value adjustment (CVA) refers to the variation on the price of a contract
due to the possibility of default of one (or both) of the counterparties. Adjustments on debit (DVA) and funding
(FVA) are also important issues included in the so called total value adjustment (XVA). The XVA incorporates the
sum of all the adjustments related to counterparty risk.
In a previous work [2], European and American options have been priced considering corunterparty risk. In

suchmodel, constant intensities of default for both counterparties have been assumed. So that a model depending on
just one underlying stochastic factor (the underlying asset) is posed to price XVA. However, the intensity of default
is not always constant, then stochastic intensities of default has been assumed in [3] as a result a model depending
on two stochastic factors (the asset price and the spread from the investor) was deduced to price European options.
In the current work, as we have done in [3], we consider that only the investor is defaultable and presents a stochastic
intensity of default. Moreover, similar hypotheses as in the European options model introduced in [3] are assumed.
Then, we extend the models introduced in [2], [3] to price the American options considering counterparty risk and
compute the associated total value adjustment when stochastic intensity of default is assumed. So, we deduce a
two dimensional PDE model for the American risky derivative value with stochastic intensity of deafult. The plan
of the chapter is the following. In Section 1 we pose the complementarity problems deduced from the hedging
arguments. In Section 2 we present the mathematical analysis of the previous problems. Section 3 presents the
numerical methods and Section 4 shows some illustrative numerical results.

2. Mathematical model
In this section, we deduce themodels forAmerican options considering counterparty risk. With this aim, we consider
self–financing portfolio and non–arbitrage scenarios. Moreover, we assume an investor as a risky counterparty and
consider that the issuer’s intensity of default is null. Thus, the underlying asset price 𝑆, and the short term CDS
spread of the investor ℎ are modelled by the following system of stochastic differential equations:

𝑑𝑆𝑡 = (𝑟 (𝑡) − 𝑞(𝑡)) 𝑆𝑡 𝑑𝑡 + 𝜎𝑆 (𝑡) 𝑆𝑡 𝑑𝑊𝑆
𝑡 ,

𝑑ℎ𝑡 = (𝜇ℎ (𝑡) − 𝑀ℎ (𝑡)𝜎ℎ (𝑡)) 𝑑𝑡 + 𝜎ℎ (𝑡) 𝑑𝑊ℎ
𝑡 ,

where (𝑟 (𝑡) − 𝑞(𝑡)) and (𝜇ℎ (𝑡) − 𝑀ℎ (𝑡)𝜎ℎ (𝑡)) are the (respective) drifts of the processes. Moreover, 𝑟 (𝑡) denotes
the risk-free interest rate, 𝑞(𝑡) is the asset dividend yield rate, 𝑀ℎ (𝑡) is the market price of investor’s credit risk,
𝜎𝑆 (𝑡, 𝑆) and 𝜎ℎ (𝑡, ℎ) are the volatility functions, and 𝑊𝑆

𝑡 and 𝑊ℎ
𝑡 are two correlated Wiener processes (i.e.,

𝜌 𝑑𝑡 = 𝑑𝑊𝑆
𝑡 𝑑𝑊

ℎ
𝑡 ) so that 𝜌 is the instantaneous correlation between 𝑆𝑡 and ℎ𝑡 .

Thus, we consider a derivative trade between a hedger and an investor, where only the investor has probability
of default. The risky derivative value from the point of view of the investor, at time 𝑡, is denoted by 𝑉 (𝑡, 𝑆𝑡 , ℎ𝑡 , 𝐽 𝐼𝑡 ),
and depends on the spot value of the asset (𝑆𝑡 ), on the spread of the investor (ℎ𝑡 ) and on the investor’s default
state at time 𝑡 (𝐽 𝐼𝑡 ). Remind that 𝐽 𝐼𝑡 = 1 in case of default before or at time 𝑡, otherwise 𝐽 𝐼𝑡 = 0. The risk–free
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American option value, corresponding to the same contract between two free–bankruptcy counterparties, is denoted
by 𝑉 (𝑡, 𝑆𝑡 ) and does not include any counterparty risk adjustment, whereas the risky derivative price 𝑉𝑡 includes
total value adjustment.
The risky derivative price in case of the investor makes default is given by:

𝑉 (𝑡, 𝑆𝑡 , ℎ𝑡 , 1) = 𝑅𝑀+ (𝑡, 𝑆𝑡 , ℎ𝑡 ) + 𝑀− (𝑡, 𝑆𝑡 , ℎ𝑡 ), (2.1)

where 𝑀 (𝑡, 𝑆𝑡 , ℎ𝑡 ) denotes the mark–to–market price, 𝑀+ = max(𝑀, 0) and 𝑀− = min(0, 𝑀). In terms of the
mark-to-market condition (2.1), we introduce Δ𝑉 as the variation of 𝑉 at default, which is given by:

Δ𝑉𝑡 = 𝑅𝑀
+
𝑡 + 𝑀−𝑡 −𝑉𝑡 , (2.2)

where 𝑀𝑡 = 𝑀 (𝑡, 𝑆𝑡 , ℎ𝑡 ). As it is usually assumed in the literature [4], and as we did in [2] and [3], we consider
two possibilities for the mark–to–market value: either the risk–free value, either the derivative value including
counterparty risk.
The hedger will trade with different financial instruments to hedge the market risk, the spread risk and the

investor’s default risk. Thus, in order to derive the value of American options with counterparty risk, we consider
the same self–financing portfolio built for European options in [3], Π𝑡 , which is designed to hedge all underlying
risk factors:

Π𝑡 = 𝛼(𝑡)𝐻 (𝑡) + 𝛽(𝑡) + 𝛾(𝑡)CDS(𝑡, 𝑇) + 𝜀(𝑡)CDS(𝑡, 𝑡 + 𝑑𝑡) +Ω(𝑡)𝐵(𝑡, 𝑡 + 𝑑𝑡) . (2.3)
Furthermore, in order to avoid arbitrage opportunities we introduce the following hedging inequality:

𝑑𝑉𝑡 ≤ 𝑑Π𝑡 . (2.4)

Next, by applying Itô’s Lemma for jump diffusion processes, we obtain the variation 𝑑𝑉𝑡 of the derivative value
𝑉𝑡 . Thus, replacing the change of the portfolio and the change of the derivative in (2.4), the hedging equation is
transformed into:

𝜕𝑉

𝜕𝑡
+ 1
2
(𝜎𝑆)2𝑆2 𝜕

2𝑉

𝜕𝑆2
+ 1
2
(𝜎ℎ)2 𝜕

2𝑉

𝜕ℎ2
+ 𝜌𝜎𝑆𝜎ℎ𝑆 𝜕

2𝑉

𝜕𝑆𝜕ℎ

≤ 𝜕𝑉/𝜕𝑆
𝜕𝐻/𝜕𝑆

(
𝑐𝐻 − (𝑟 − 𝑞)𝑆 𝜕𝐻

𝜕𝑆

)
+ 𝜕𝑉/𝜕𝑆
𝜕𝐻/𝜕𝑆 (− 𝑓 𝐻)

+ 𝜕𝑉/𝜕ℎ
𝜕CDS(𝑡, 𝑇)/𝜕ℎ

(
− ℎ

1 − 𝑅ΔCDS(𝑡, 𝑇) −
(
𝜇ℎ − 𝑀𝜎ℎ

) 𝜕CDS(𝑡, 𝑇)
𝜕ℎ

)

+
(

𝜕𝑉/𝜕ℎ
𝜕CDS(𝑡, 𝑇)/𝜕ℎ

ΔCDS(𝑡, 𝑇)
1 − 𝑅 − Δ𝑉

1 − 𝑅

)
ℎ + 𝑓 𝑉 , (2.5)

in [0, 𝑇) × (0,∞) × (0,∞). Then, the American option value when considering counterparty risk is modelled
by the following complementarity problem:




L(𝑉) = 𝜕𝑉

𝜕𝑡
+ L̃𝑆ℎ𝑉 + Δ𝑉

1 − 𝑅 ℎ − 𝑓 𝑉 ≤ 0

𝑉 (𝑡, 𝑆, ℎ) ≥ 𝐺 (𝑆)
L(𝑉) (𝑉 − 𝐺) = 0
𝑉 (𝑇, 𝑆, ℎ) = 𝐺 (𝑆) ,

(2.6)

where 𝐺 (𝑆) represents the option payoff and the differential operator L̃𝑆ℎ is

L𝑆ℎ𝑉 ≡ 12 (𝜎
𝑆)2𝑆2 𝜕

2𝑉

𝜕𝑆2
+ 1
2
(𝜎ℎ)2 𝜕

2𝑉

𝜕ℎ2
+ 𝜌𝜎𝑆𝜎ℎ𝑆 𝜕

2𝑉

𝜕ℎ𝜕𝑆
+ (𝑟 − 𝑞)𝑆 𝜕𝑉

𝜕𝑆
− 𝜅

1 − 𝑅 ℎ
𝜕𝑉

𝜕ℎ
.

According to the mark-to–market choices, two alternative linear complementarity problems are deduced:

• If 𝑀 = 𝑉 , we deduce the nonlinear complementarity problem:



L1 (𝑉) = 𝜕𝑉

𝜕𝑡
+ L𝑆ℎ𝑉 − 𝑓 𝑉 − ℎ𝑉+ ≤ 0, in [0, 𝑇) × (0,∞) × (0,∞)

𝑉 (𝑡, 𝑆, ℎ) ≥ 𝐺 (𝑆)
L1 (𝑉) (𝑉 − 𝐺) = 0
𝑉 (𝑇, 𝑆, ℎ) = 𝐺 (𝑆) .

(2.7)
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• If 𝑀 = 𝑉 , the following linear complementarity problem is derived:




L2 (𝑉) = 𝜕𝑉

𝜕𝑡
+ L𝑆ℎ𝑉 −

(
ℎ

1 − 𝑅 + 𝑓
)
𝑉

−((1 − 𝑅)𝑉+ −𝑉) ℎ

1 − 𝑅 ≤ 0, in [0, 𝑇) × (0,∞) × (0,∞)
𝑉 (𝑡, 𝑆, ℎ) ≥ 𝐺 (𝑆)
L2 (𝑉) (𝑉 − 𝐺) = 0
𝑉 (𝑇, 𝑆, ℎ) = 𝐺 (𝑆) .

(2.8)

Moreover, to compute the XVA value, we consider that 𝑉 = 𝑉 + 𝑈 where 𝑈 denotes the XVA, then the
adjustments can be obtained as the difference of the risky derivative value, 𝑉 , and the risk–free derivative value, 𝑉 ,
which is the solution of the classical Black-Scholes American problem:




L3 (𝑉) = 𝜕𝑉

𝜕𝑡
+ L𝑆𝑉 − 𝑓 𝑉 ≤ 0 , in [0, 𝑇) × (0,∞)

𝑉 (𝑡, 𝑆) ≥ 𝐺 (𝑆)
L3 (𝑉) (𝑉 − 𝐺) = 0
𝑉 (𝑇, 𝑆) = 𝐺 (𝑆) ,

(2.9)

where the operator L𝑆 is given by

L𝑆𝑉 ≡ (𝜎
𝑆)2
2

𝑆2
𝜕2𝑉

𝜕𝑆2
+ (𝑟 − 𝑞)𝑆 𝜕𝑉

𝜕𝑆
.

In order to numerically solve problems (2.7) and (2.8) by a finite element method, we proceed to localize the
problems on a bounded domain. For this purpose, let us consider Ω = (0, 𝑆∞) × (0, ℎ∞) for large enough values of
𝑆∞ and ℎ∞, so that their choice does not affect the solution in the domain of financial interest. We need to impose
appropiate boundary conditions on the risky derivative value problem in the bounded domain. For this purpose, we
consider the same boundary conditions than for 𝑉 and 𝑉 as in the case of European options in [3]. Then, at 𝑆 = 0
and 𝑆 = 𝑆∞, the derivative value is given by:{

𝑉 (𝑡, 0, ℎ) = 𝑉 (𝑡, 0) = 𝑉0 (𝑡) ,
𝑉 (𝑡, 𝑆∞, ℎ) = 𝑉 (𝑡, 𝑆∞) = 𝑉∞ (𝑡) ,

where the values of 𝑉0 (𝑡) and 𝑉∞ (𝑡) are respectively given by:

𝑉0 (𝑡) =
{
0 , for a call option,
𝐾 exp(− 𝑓 (𝑇 − 𝑡)) , for a put option,

(2.10)

𝑉∞ (𝑡) =
{
𝑆∞ − 𝐾 , for a call option,
0 , for a put option.

(2.11)

In the next section, the existence and uniqueness of solution of problem (2.7) are studied. For this purpose, we
introduce the problemwhich models the XVA in order to obtain a problemwith homogeneous boundary conditions.
Then, we split up the risky derivative value, 𝑉 , as the sum of the XVA, 𝑈, plus the total value adjustment, 𝑉 , i.e.
𝑉 = 𝑉 +𝑈. Introducing this breakdown in (2.7), the following nonlinear complementarity problem is deduced:




L𝑡 (𝑈) = 𝜕𝑈

𝜕𝑡
+ L𝑆ℎ𝑈 − 𝑓𝑈 − ℎ(𝑈 +𝑉)+ ≤ −𝜕𝑉

𝜕𝑡
− L𝑆𝑉 + 𝑓 𝑉 , 𝑡 ∈ [0, 𝑇) , (𝑆, ℎ) ∈ Ω

𝑈 (𝑡, 𝑆, ℎ) ≥ 𝐺 (𝑆) −𝑉 (𝑡, 𝑆)[
L𝑡 (𝑈) −

(
− 𝜕𝑉
𝜕𝑡
− L𝑆𝑉 + 𝑓 𝑉

)] [
𝑈 − (𝐺 (𝑆) −𝑉 (𝑡, 𝑆)) ] = 0

𝑈 (𝑇, 𝑆, ℎ) = 0
𝑈 (𝑡, 0, ℎ) = 0
𝑈 (𝑡, 𝑆∞, ℎ) = 0
𝑈 (𝑡, 𝑆, 0) = 0
(𝐴∇𝑈 · ®𝑛) (𝜏, 𝑆, ℎ∞) = 0 .

(2.12)

For the linear problem (2.8), the same boundary conditions are considered.
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3. Mathematical analysis
In this section we prove the existence and uniqueness of solution for the XVA problem (2.12) for a given function
𝑉 . Then, taking into account the existence and uniqueness of solution 𝑉 for the classical Black-Scholes problem,
we obtain the existence and uniqueness of solution for problem (2.7). Introducing the time to maturity variable,
𝜏 = 𝑇 − 𝑡, as well as the new variables and unknown:

𝑥 = ln
𝑆

𝐾
, 𝑢(𝜏, 𝑥, ℎ) = 𝑈 (𝑡, 𝑆, ℎ), 𝑣(𝜏, 𝑥) = 𝑉 (𝑡, 𝑆) .

we pose the nonlinear complementarity problem (2.12) as follows:




L𝜏 (𝑢) = 𝜕𝑢

𝜕𝜏
+ A𝑢 −Φ(𝜏, 𝑢) ≥ ℓ , (𝑥, ℎ) ∈ Ω̂, 𝜏 ∈ (0, 𝑇]

𝑢 ≥ 𝜓
[L𝜏 (𝑢) − ℓ] [𝑢 − 𝜓] = 0
𝑢(0, 𝑆, ℎ) = 0
𝑢(𝜏, 𝑥0, ℎ) = 0
𝑢(𝜏, 𝑥∞, ℎ) = 0
𝑢(𝜏, 𝑥, 0) = 0
(𝐴∇𝑢 · ®𝑛) (𝜏, 𝑥, ℎ∞) = 0 ,

(3.1)

Theorem 3.1 The following statements are satisfied:

1. The continuous operator A satisfies Gårding’s inequality, i.e.:

(A𝑧, 𝑧) ≥ 𝜔1‖𝑧‖2
𝐻 1Γ (Ω̂)

− 𝜔2‖𝑧‖2
𝐿2 (Ω̂) , ∀𝑧 ∈ 𝐻

1
Γ (Ω̂) , (3.2)

with 𝜔1 > 0 and 𝜔2 ∈ R.
2. ℓ ∈ 𝐿2 (0, 𝑇 ; 𝐿2 (Ω̂)) ⊂ 𝐿2 (0, 𝑇 ;𝑊∗).

3. Let 𝐷 (𝜙) =
{
𝑧 ∈ 𝐻1Γ (Ω̂) / 𝜙(𝑧) < ∞

}
and 𝑢0 = 𝑢(0, 𝑥, ℎ). Then, 𝑢0 ∈ 𝐷 (𝜙).

4. Φ(𝜏, 𝜑) is Lipschitz continuous on variable 𝜑, i.e.
‖Φ(𝜏, 𝜑1) −Φ(𝜏, 𝜑2)‖𝐿2 (Ω̂) ≤ 𝐿𝐺 ‖𝜑1 − 𝜑2‖𝐻 1Γ (Ω̂) .

Therefore, the nonlinear variational inequality (3.1) has a unique solution 𝑢 ∈ 𝐿2 (0, 𝑇 ;𝐻1Γ (Ω̂))∩C([0, 𝑇]; 𝐿2 (Ω̂));
in particular 𝑢 ∈ 𝑊1,2 (0, 𝑇 ; 𝐿2 (Ω̂)) and satisfies

‖𝑢‖𝑊 1,2 (0,𝑇 ;𝐿2 (Ω̂)) ≤ 𝐶1
(
1 + ‖𝑢0‖𝐿2 (Ω̂) + ‖ℓ‖𝐿2 (0,𝑇 ;𝐻 1Γ (Ω̂))

)
. (3.3)

4. Numerical simulation
The numerical approximation is mainly based on finite element methods combined with the method of character-
istics. Moreover, a fixed point scheme is implemented for the nonlinear complementarity problem.

4.1. The method of characteristics
More precisely, taking into account the advective term, the risky derivative problem is approximated by




L𝑛1 (𝑉𝑛+1) =
𝑉𝑛+1 −𝑉𝑛 ◦ 𝜒𝑛

Δ𝜏𝑛
− div(𝐴∇𝑉𝑛+1) + 𝑓 𝑉𝑛+1 + ℎ(𝑉𝑛+1)+ ≥ 0 ,

𝑉0 (𝑆, ℎ) = 0 ,
𝑉𝑛+1 (𝑆, ℎ) ≥ 𝐺 (𝑆) ,
L𝑛1 (𝑉𝑛+1) (𝑉𝑛+1 − 𝐺) = 0 ,

(4.1)

for 𝑛 = 0, 1, 2 . . . , 𝑁𝑇 −1, where𝑉𝑛 (·) ≈ 𝑉 (𝜏𝑛, ·) and 𝜒𝑛 = 𝜒(𝜏𝑛) = 𝜒((𝑆, ℎ), 𝜏𝑛+1; 𝜏𝑛) represents the characteristic
curve passing through point (𝑆, ℎ) at time 𝜏𝑛+1. Then function 𝜒 is the solution of the final value ODE problem:



𝑑𝜒1
𝑑𝜏

=
( (
𝜎𝑆

)2 − (𝑟 − 𝑞)) 𝜒1,
𝜒1 (𝜏𝑛+1) = 𝑆,



𝑑𝜒2
𝑑𝜏

=
𝜌𝜎𝑆𝜎ℎ

2
+ 𝜅

1 − 𝑅 𝜒2,
𝜒2 (𝜏𝑛+1) = ℎ ,

(4.2)
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The components of 𝜒𝑛 can thus be deduced and are given by:

𝜒𝑛1 = 𝑆 exp
(
−((𝜎𝑆)2 − 𝑟 + 𝑞) (𝜏𝑛+1 − 𝜏𝑛)

)
,

𝜒𝑛2 = − (1 − 𝑅)𝜎
𝑆𝜎ℎ𝜌

2𝜅
+

(
ℎ + (1 − 𝑅)𝜎

𝑆𝜎ℎ𝜌

2𝜅

)
exp

( −𝜅
1 − 𝑅 (𝜏

𝑛+1 − 𝜏𝑛)
)
.

4.2. Fixed point scheme
In order to solve the nonlinearity of problem (4.1), a fixed point scheme is proposed at each iteration of the
characteristics method. Thus, the global scheme is shown in Algorithm 1.

Algorithm 1
Let 𝑁𝑇 > 1, 𝑛 = 0, 𝜀 > 0 and 𝑉0 given
For 𝑛 = 1, 2, . . . , 𝑁𝑇 − 1:
1. Let 𝑉𝑛+1,0 = 𝑉𝑛, 𝑘 = 0, 𝑒 = 𝜀 + 1
2. For 𝑘 = 0, 1, . . .

• Search 𝑉𝑛+1,𝑘+1 solution of:

(1 + Δ𝜏𝑛 𝑓 )𝑉𝑛+1,𝑘+1 − Δ𝜏𝑛 div(𝐴∇𝑉𝑛+1,𝑘+1)
≥ 𝑉𝑛 ◦ 𝜒𝑛 − Δ𝜏𝑛 ℎ (𝑉𝑛+1,𝑘 )+ (4.3)

𝑉𝑛+1,𝑘+1 (𝑆, ℎ) ≥ 𝐺 (𝑆)
L𝑛1 (𝑉𝑛+1,𝑘+1) (𝑉𝑛+1,𝑘+1 − 𝐺) = 0

• Compute the relative error 𝑒 =
‖𝑉𝑛+1,𝑘+1 −𝑉𝑛+1,𝑘 ‖
‖𝑉𝑛+1,𝑘+1‖

until 𝑒 < 𝜀.

4.3. Finite element method
For the spatial discretization of (4.3) a triangular mesh of Ω and the associated finite element space of piecewise
linear Lagrange polynomials are considered. For fixed natural numbers 𝑁𝑆 > 0 and 𝑁ℎ > 0, we consider a uniform
mesh of the computational domain Ω, the nodes of which are (𝑆𝑖 , ℎ 𝑗 ), with 𝑆𝑖 = 𝑖Δ𝑆 (𝑖 = 0, . . . , 𝑁𝑆 + 1) and
ℎ 𝑗 = 𝑗Δℎ ( 𝑗 = 0, . . . , 𝑁ℎ + 1), where Δ𝑆 = 𝑆∞/(𝑁𝑆 + 1) and Δℎ = ℎ∞/(𝑁ℎ + 1) denote the constant mesh steps
in each coordinate. Associated to this uniform mesh, a piecewise linear Lagrange finite element discretization is
considered. More precisely, we introduce the finite element spaces

𝑊ℎ = {𝜑ℎ ∈ C(Ω) / 𝜑|𝑇𝑗 ∈ P1 , ∀𝑇𝑗 ∈ T } ,
Kℎ = {𝜑ℎ ∈ 𝑊ℎ / 𝜑ℎ = 𝑉 on Γ∗,+1 ∪ Γ∗,−2 and 𝜑ℎ ≥ 𝐺 (𝑆)} ,

in order to find 𝑉𝑛+1,𝑘+1ℎ ∈ Kℎ satisfying the boundary conditions and such that:∫
Ω
(1 + Δ𝜏𝑛 𝑓 )𝑉𝑛+1,𝑘+1ℎ

(
𝜑ℎ −𝑉𝑛+1,𝑘+1ℎ

)
𝑑𝑆 𝑑ℎ

+ Δ𝜏𝑛
∫
Ω
𝐴∇𝑉𝑛+1,𝑘+1ℎ ∇ (

𝜑ℎ −𝑉𝑛+1,𝑘+1ℎ

)
𝑑𝑆 𝑑ℎ

− Δ𝜏𝑛
∫
Γ∗,+2

(𝐴∇𝑉𝑛+1,𝑘+1ℎ , 𝑛) (𝜑ℎ −𝑉𝑛+1,𝑘+1ℎ )𝜕𝛾

≥
∫
Ω

(
𝑉𝑛ℎ ◦ 𝜒𝑛

) (
𝜑ℎ −𝑉𝑛+1,𝑘+1ℎ

)
𝑑𝑆 𝑑ℎ − Δ𝜏𝑛

∫
Ω
ℎ
(
𝑉𝑛+1,𝑘ℎ

)+ (
𝜑ℎ −𝑉𝑛+1,𝑘+1ℎ

)
𝑑𝑆 𝑑ℎ ,

for all 𝜑ℎ ∈ Kℎ . Quadrature formula based on the midpoints of the edges of the triangles has been used to obtain the
coefficients of the matrix and the right hand side vector which define the linear system associated to the discretized
problem.
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After the time discretization with the method of characteristics and the spatial discretization with finite elements,
the fully discretized problem can be written in the form:



𝐴ℎ𝑉

𝑛+1,𝑘+1
ℎ ≥ 𝑏𝑛+1,𝑘+1ℎ ,

𝑉𝑛+1,𝑘+1ℎ ≥ Ψℎ ,

(𝐴ℎ𝑉𝑛+1,𝑘+1ℎ − 𝑏𝑛+1,𝑘+1ℎ ) (𝑉𝑛+1,𝑘+1ℎ − Ψℎ) = 0 ,
(4.4)

where Ψℎ denotes the discretized exercise value, 𝐺 (𝑆), which also coincides with the value at maturity.
In order to solve problem (4.4), the augmented Lagrangian active set (ALAS) algorithm is employed.

5. Numerical results
Finally, in order to show the relevance of incorporating counterparty risk pricing derivatives we show some
numerical results to understand the behaviour of the total value adjustment for American options. We focus on an
American put option sold by the investor. The maturity time is 𝑇 = 0.5 years and is discretized with 𝑁𝑇 = 700
time steps. Firstly, we plot the risky and risk-free derivative value and the XVA. Moreover, we present the exercise
region for both derivative value in order to show how affects the counterparty risk in the early exercise.

Fig. 1 American put option value risky valur (left), risk–free value (right)

Fig. 2 Total value adjustment
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Fig. 3 Exercise regions (white) risky value (left) risk–free value (right)
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