
Linear Algebra and its Applications 673 (2023) 280–303
Contents lists available at ScienceDirect

Linear Algebra and its Applications

journal homepage: www.elsevier.com/locate/laa

On the Moore-Penrose pseudo-inversion of block 

symmetric matrices and its application in the graph 

theory ✩

Soňa Pavlíková a, Daniel Ševčovič b,∗

a Alexander Dubček University of Trenčín, Slovakia
b Department of Applied Mathematics and Statistics, Faculty of Mathematics 
Physics and Informatics, Comenius University, Mlynská dolina, 842 48, Bratislava, 
Slovakia

a r t i c l e i n f o a b s t r a c t

Article history:
Received 22 July 2022
Received in revised form 2 February 
2023
Accepted 15 May 2023
Available online 19 May 2023
Submitted by R. Brualdi

MSC:
05C50
05B20
05C22
15A09
15A18
15B36

Keywords:
Pseudo-invertible matrix and graph
Positively and negatively 
pseudo-invertibility

The purpose of this paper is to analyze the Moore-Penrose 
pseudo-inversion of symmetric real matrices with application 
in the graph theory. We introduce a novel concept of positively 
and negatively pseudo-inverse matrices and graphs. We also 
give sufficient conditions on the elements of a block symmetric 
matrix yielding an explicit form of its Moore-Penrose pseudo-
inversion. Using the explicit form of the pseudo-inverse matrix 
we can construct pseudo-inverse graphs for a class of graphs 
which are constructed from the original graph by adding 
pendent vertices or pendant paths.

© 2023 Elsevier Inc. All rights reserved.

✩ Acknowledgments: Support of the Slovak Research and Development Agency under the projects APVV-
19-0308 (SP), and APVV-20-0311 (DS) is kindly acknowledged.
* Corresponding author.

E-mail address: sevcovic@fmph.uniba.sk (D. Ševčovič).
https://doi.org/10.1016/j.laa.2023.05.016
0024-3795/© 2023 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.laa.2023.05.016
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/laa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.laa.2023.05.016&domain=pdf
mailto:sevcovic@fmph.uniba.sk
https://doi.org/10.1016/j.laa.2023.05.016


S. Pavlíková, D. Ševčovič / Linear Algebra and its Applications 673 (2023) 280–303 281
Bridged graph generalized Schur 
complement

1. Introduction

In this paper we investigate the Moore-Penrose pseudo-inversion of block symmetric 
matrices with application in the graph theory. We present sufficient conditions on the 
elements of a block matrix yielding an explicit block matrix form of its Moore-Penrose in-
version. We also introduce a novel concept of positively and negatively pseudo-invertible 
matrix. In the context of the graph theory we extend the concept of positive and negative 
invertibility of a graph due to Godsil [9], Pavlíková and Ševčovič [19] to the case when 
its adjacency matrix is not invertible.

In the past decades various ways of introducing inverses of graphs have been pro-
posed. They are based on inversion of the adjacency matrix. Except of the trivial case 
when the graph is a union of isolated edges, the inverse matrix need not define a graph 
again because it may contain negative entries (cf. [13]). A successful approach how to 
overcome this difficulty was proposed by Godsil [9] who defined a graph to be invertible 
if the inverse of its non-singular adjacency matrix is diagonally similar (cf. [26]) to a non-
negative integral matrix representing the adjacency matrix of the inverse graph in which 
positive labels determine edge multiplicities. In [19], Pavlíková and Ševčovič extended 
this notion to a wider class of graphs by introducing the concept of negative invertibility 
of a graph. Both positively and negatively invertible graphs have the appealing property 
that inverting an inverse graph gives back the original graph. For a survey of results 
and other approaches to graph inverse, we recommend [16]. Godsil’s ideas have been 
further developed in several ways. Akbari and Kirkland [14], Kirkland and Tifenbach 
[15], and Bapat and Ghorbani [1] studied inverses of edge-labeled graphs with labels in 
a ring, Ye et al. [24] considered connections of graph inverses with median eigenvalues, 
and Pavlíková [18] developed constructive methods for generating invertible graphs by 
edge overlapping. A large number of related results, including a unifying approach to 
inverting graphs, were proposed in a recent survey paper by McLeman and McNicholas 
[16], with emphasis on inverses of bipartite graphs and diagonal similarity to nonnegative 
matrices.

In theoretical chemistry, biology, or statistics, spectral indices and properties of graphs 
representing structure of chemical molecules or transition diagrams for finite Markov 
chains play an important role (cf. Cvetković [6,8], Brouwer and Haemers [4] and refer-
ences therein). Various graph energies and indices have been proposed and analyzed. For 
instance, the sum of absolute values of eigenvalues is referred to as the matching energy 
index (cf. Chen and Liu [33]), the maximum of the absolute values of the least positive 
and largest negative eigenvalue is known as the HOMO-LUMO index (see Mohar [34,35], 
Li et al. [36], Jaklić et al. [37], Fowler et al. [39]), their difference is the HOMO-LUMO 
separation gap (cf. Gutman and Rouvray [40], Li et al. [36], Zhang and An [41], Fowler et 
al. [38]). It turns out that properties of maximal and minimal eigenvalues of the inverse 
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graph can be used in order to analyze the least positive and largest negative eigenvalues 
of an adjacency matrix.

Recently, McDonald, Raju, and Sivakumar investigated Moore-Penrose inverses of 
matrices associated with certain graph classes [30] whose adjacency matrices are singular. 
They derived formulae for pseudo-inverses of matrices that are associated with a class of 
digraphs obtained from stars. This new class contains both bipartite and non-bipartite 
graphs. A blockwise representation of the (pseudo)inverse of the adjacency matrix of 
the Dutch windmill graph is also presented in [30]. In [32] Pavlíková, and Krivoňáková 
gave characterization of pseudo-inverses of cycles. In the context of the Laplacian of 
connections of a graph, Hessert and Mallik [29] and Gago [31] studied Moore-Penrose 
inverses of the signless Laplacian and edge-Laplacian of graphs or networks. They found 
combinatorial formulae of the Moore-Penrose inverses for trees and odd unicyclic graphs. 
In [22] Pavlíková and Širáň constructed a pseudo-inverse of a weighted tree, based solely 
on considering maximum matchings and alternating paths.

Recall that the complete list due to McKay of simple connected graphs is available 
at http://users .cecs .anu .edu .au /~bdm /data /graphs .html. In Section 3 (see Table 1) we 
present our computations of total numbers of simple connected graphs based on the 
McKay’s list together with a survey of integrally positive/negative invertible graphs (see 
Pavlíková and Ševčovič [23]). When the number of vertices increases we can observe less 
proportion of positively or negatively invertible graphs although all adjacency matrices 
are pseudo-invertible in the Moore-Penrose sense. It is the main purpose of this paper 
to introduce and analyze concept of positively and negatively pseudo-invertible graphs. 
We also present possible applications in the spectral graph theory. Furthermore, we are 
concerned with spectral properties of real block symmetric matrices of the form

M =
(

A K

KT B

)
, (1)

where A, and B are n × n, and m ×m real symmetric matrices, and K is an n ×m real 
matrix. Such an adjacency matrix M corresponds to the graph GM on n + m vertices 
which is obtained by bridging the vertices of the graph GA to the vertices of GB through 
the (n, m)-bipartite graph GK (cf. Pavlíková and Ševčovič [21,20]), i.e., its adjacency 
matrix M of the graph GM has the form of (1) (see Fig. 1). Using the explicit form 
of the Moore-Penrose pseudo-inverse of the block matrix M we derive explicit form of 
pseudo-inverse graphs for graphs which are constructed from a given graph by adding 
pendant vertices or pendant paths.

The rest of the paper are organized as follows. In Section 2 we recall the classical 
concept of the Moore-Penrose pseudo-inversion M † of a matrix M . Maximal and min-
imal eigenvalues of a pseudo-inverse matrix M † are closely related to the least positive 
λ+(M ) > 0 and the largest negative eigenvalues λ−(M ) < 0 of a symmetric real matrix 
M . We present the key idea of derivation of the explicit Banachiewicz–Schur form of the 
Moore-Penrose pseudo-inverse of a block symmetric matrix. It can be used in order to 

http://users.cecs.anu.edu.au/~bdm/data/graphs.html
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Fig. 1. Graphs GA, GB , and a bipartite graph GK (left). A bridged graph through a bipartite graph GK

(right).

characterize the least positive and the largest negative eigenvalues in terms of semidefinite 
optimization problem. Section 3 is devoted to pseudo-invertibility of simple connected 
graphs. We introduce a novel concept of positively and negatively pseudo-invertibility 
of graphs. We also present a summary table containing number of positively/negatively 
pseudo-invertible graphs. The list of graphs with no more than 10 vertices contains com-
plete information on various classes of (pseudo)invertible graphs including their spectral 
properties. Furthermore, we present special examples of pseudo-invertible graphs con-
structed from a given graph by adding pendant vertices or pendant paths.

2. Moore-Penrose pseudo-inversion of a block symmetric matrix and its application in 
spectral theory

In this section we derive an explicit form of the Moore-Penrose pseudo-inverse matrix 
for a given block symmetric matrix satisfying certain assumptions on the entries of 
the block matrix. First, we recall the classical notion of the Moore-Penrose pseudo-
inverse matrix. Let Λ = diag (λ1, . . . , λN ) be a diagonal matrix with real eigenvalues 
λi ∈ R, i, . . . , N . For a diagonal real matrix we can define the pseudo-inverse matrix as 
follows:

Λ† = diag (μ1, . . . , μN ) where μi = 1/λi if λi �= 0, and, μi = 0 if λi = 0.

If M is an N ×N real symmetric matrix, then it is orthogonally similar to a diagonal 
matrix Λ, i.e., there exists a matrix P such that PTP = PPT = I and PMPT =
Λ = diag (λ1, . . . , λN ), λi being real eigenvalues of M . Let M † be the Moore-Penrose 
pseudo-inverse matrix satisfying Moore-Penrose axioms for symmetric matrices, i.e.,

MM † = M †M , MM †M = M , M †MM † = M †. (2)

Then M † can be uniquely defined as follows: M † = PTΛ†P. Clearly, M † is a symmetric 
matrix, and (M †)† = M . Furthermore, M † = M−1 provided that the matrix M is 
invertible. If K is an n × m real matrix, then its Moore-Penrose inverse matrix is an 
m × n matrix K† which is uniquely determined by the Moore-Penrose identities:

(KK†)T = KK†, (K†K)T = K†K, KK†K = K, K†KK† = K†. (3)



284 S. Pavlíková, D. Ševčovič / Linear Algebra and its Applications 673 (2023) 280–303
For further properties of generalized Moore-Penrose inverses we refer the reader to [3].
Suppose that M is a symmetric real matrix having positive and negative eigenvalues. 

This is a typical case when M represents an adjacency matrix of a simple graph with 
no loops having zeros in its diagonal, and so the largest eigenvalue is positive whereas 
the least eigenvalue is negative. Clearly, the least positive λ+(M ) and largest negative 
λ−(M ) eigenvalues of M can be expressed as follows (see e.g. [19]):

λ+(M ) = λmax(M †)−1, λ−(M ) = λmin(M †)−1. (4)

Here λmax(M †) > 0 and λmin(M †) = −λmax(−M †) < 0 are the maximal and minimal 
eigenvalues of the inverse matrix M †, respectively.

In what follows, we denote by Rn×m the vector space consisting of all n × m real 
matrices. Suppose that A ∈ Rn×n, B ∈ Rm×m are symmetric matrices, and K ∈ Rn×m. 
Consider the following (n + m) × (n + m) real symmetric block matrix:

M =
(

A K

KT B

)
. (5)

The Moore-Penrose inverse M † of a block symmetric matrix M always exists and it has 
the block symmetric form:

M † =
(

E H

HT F

)
. (6)

One can easily set up a system of matrix equations for the elements E, F, H by follow-
ing the basic axioms for the Moore-Penrose inverse. On the other hand, this system of 
nonlinear matrix equations need not have an explicit solution. Assuming further condi-
tions on A, B, and K there exists the so-called Banasiewicz-Schur explicit form of the 
Moore-Penrose pseudo-inverse matrix M † of M . Although the form of M † is known in 
the literature (see e.g. [27], [28]), we give a short sketch of its derivation for reader’s con-
venience. This way we recall the method of block diagonalization of M and M † which is 
important matrix algebra tool for reformulation of the nonlinear eigenvalue problem as 
nonlinear optimization problem with semi-definite matrix inequality constraints. Gener-
alized Moore-Penrose inverses of bordered matrices have been studied by F. Hall in a 
series of papers (see e.g. [11]). In the context of the graph theory integral matrices play 
important role. Integral generalized inverses of integral matrices have been studied by 
Batigne, Hall, and Katz in [12].

We apply the Schur complement trick. We define the matrix Q having its inverse 
matrix Q−1 as follows:

Q =
(
I −KB†

0 I

)
, Q−1 =

(
I KB†

0 I

)
.
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Assuming the structural condition K
(
I −B†B

)
= 0, a straightforward calculation yields 

the identity:

QMQT =
(

SA K
(
I −B†B

)(
I −BB†)KT B

)
=

(
SA 0
0 B

)
,

where SA = A −KB†KT is the generalized Schur complement of the matrix B matrix 
in M . Next, following the ideas of the Schur complement trick, we propose the pseudo-
inverse matrix in the so-called Banachiewicz–Schur form:

M † = QT

(
S†
A 0
0 B†

)
Q =

(
S†
A −S†

AKB†

−B†KTS†
A B† + B†KTS†

AKB†

)
. (7)

Again, using the assumption K
(
I −B†B

)
= 0 we obtain

MM † =
(
SAS

†
A (I − SAS

†
A)KB†

0 BB†

)
.

Hence, MM † = M †M provided that the condition (I − SAS
†
A)K = 0 is satisfied. 

Finally, one can easily verify the remaining Moore-Penrose axioms, i.e., MM †M = M , 
M †MM † = M †.

Definition 1. Let A ∈ Rn×n and B ∈ Rm×m be symmetric matrices. We say that a 
matrix K ∈ Rn×m is (A, B) compatible, if K

(
I −B†B

)
= 0 and (I − SAS

†
A)K = 0

where SA = A −KB†KT .

Analogously, exchanging the role of A and B matrices we conclude that the Moore-
Penrose pseudo-inverse matrix in the form:

M † =
(
A† + A†KS†

BK
TA† −A†KS†

B

−S†
BK

TA† S†
B

)
, (8)

provided that 
(
I −AA†)K = 0, and K(I−S†

BSB) = 0. Since the Moore-Penrose pseudo-
inverse matrix M † is unique, we obtain the following proposition.

Proposition 1. Let A ∈ Rn×n and B ∈ Rm×m be symmetric matrices, K ∈ Rn×m. 
Assume that K

(
I −B†B

)
= 0, (I−SAS

†
A)K = 0, and 

(
I −AA†)K = 0, K(I−S†

BSB) =
0, i.e., K is (A, B) compatible and KT is (B, A) compatible. Then for the generalized 
Schur complements SA = A −KB†KT , and SB = B −KTA†K the following identities 
hold:

(1) S†
AKB† = A†KS†

B,
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(2) S†
A = A† + A†KS†

BK
TA†,

(3) S†
B = B† + B†KTS†

AKB†.

Remark 1. The structural conditions K
(
I −B†B

)
= 0, (I − SAS

†
A)K = 0 are indepen-

dent of each other. Indeed, let us consider the following simple example:

A = A† =
(

1 0
0 0

)
, B = B† =

(
0 0
0 1

)
, K =

(
0 1
0 0

)
.

Then, K(I −B†B) = 0, but SA = 0, and so S†
A = 0, (I − SAS

†
A)K = K �= 0. Similarly, (

I −AA†)K = 0 but SB = 0, and so K(I − S†
BSB) = K �= 0.

Proposition 2. Let M be a block symmetric matrix of the form (5). If the matrix M is 
invertible and K

(
I −B†B

)
= 0, then the generalized Schur complement matrix SA =

A −KB†KT is invertible.

Proof. Suppose that SAx = 0, i.e., Ax − KB†KTx = 0. Take y = −B†KTx. Then 
Ax + Ky = 0, and KTx + By =

(
I −BB†)KTx = 0. Hence M (x, y)T = 0. Since M is 

invertible, we conclude that x = y = 0, and SA is invertible as well. �
Remark 2. The converse statement is not true, in general. Indeed, let us consider A =
I, B = 0, and K = 0. Then M is singular although SA = A = I is invertible. On the 
other hand, if both A and B are invertible matrices, then M is invertible if and only if 
the Schur complement matrix SA = A −KB−1KT is invertible (cf. [19]).

In the following definition we introduce a novel concept of positive and negative 
pseudo-invertibility of a symmetric real matrix.

Definition 2. Let A be a symmetric real matrix. It is called positively pseudo-invertible 
if the Moore-Penrose pseudo-inverse matrix A† is signable to a nonnegative matrix. 
That is there exists a diagonal ±1 signature matrix D such that the matrix DA†D

contains nonnegative elements only. It is called negatively pseudo-invertible if there exists 
a diagonal ±1 signature matrix D such that the matrix DA†D contains nonpositive 
elements only.

Positive and negative (pseudo)invertibility of a symmetric real matrix generalizes 
the concept of a monotone matrix. Recall that a matrix A is monotone in the sense 
of Collatz if and only if the component-wise inequality Ax ≥ 0 implies x ≥ 0. Every 
monotone matrix A is invertible, and the inverse matrix A−1 ≥ 0 contains nonnegative 
elements. As a consequence, for a monotone matrix A the inequality −b ≤ Ax ≤ b

implies −A−1b ≤ x ≤ A−1b. As a consequence, ‖x‖∞ ≤ ‖A−1b‖∞ ≤ ‖A−1‖1‖b‖∞ where 
‖B‖1 =

∑
i,j |Bij |, and ‖b‖∞ = maxi |bi|. In the following proposition we show that a 
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similar property holds for positively or negatively pseudo-invertible matrices which need 
not be monotone in general.

Proposition 3. Suppose that n ×n real symmetric matrix A is positive (negative) pseudo-
invertible. If −b ≤ Ax ≤ b for a nonnegative vector b ≥ 0, then

‖A†Ax‖∞ ≤ ‖A†‖1‖b‖∞.

In particular, if the matrix A is invertible, then ‖x‖∞ ≤ ‖A−1‖1‖b‖∞.

Proof. Notice that vector component-wise inequality −b ≤ y ≤ b implies −b ≤ Dy ≤ b

for any diagonal signature matrix D containing ±1 elements. Without loss of general-
ity suppose that A is positively pseudo-invertible, i.e., there exists a signature matrix 
D such that DA†D ≥ 0. Notice that for a diagonal matrix D containing ±1 elements 
only, we have DD = I. It means that D−1 = D. The inequality −b ≤ Ax ≤ b implies 
−b ≤ DAx ≤ b, and so −DA†Db ≤ DA†DDAx ≤ DA†Db. As D2 = I, we obtain 
−DA†Db ≤ DA†Ax ≤ DA†Db. Finally, the inequality −DA†Db ≤ A†Ax ≤ DA†Db

implies ‖A†Ax‖∞ ≤ ‖DA†‖1‖Db‖∞ = ‖A†‖1‖b‖∞, as claimed. In the case A is neg-
atively pseudo-invertible the proof of the estimate is similar. If A is invertible, then 
A†A = A−1A = I and the proof of proposition follows. �
Proposition 4. Suppose that an N ×N real symmetric matrix A is positive and negative 
pseudo-invertible. Then

i) D+A
†D+ = −D−A†D− where D± are signature matrices signing A† to nonnegative 

and nonpositive matrices, respectively.
ii) The spectrum σ(A) is symmetric, i.e. λ ∈ σ(A) iff −λ ∈ σ(A).

Proof. Let D± be diagonal signature matrices such that D+A
†D+ contains nonnega-

tive elements and D−A
†D− contains nonpositive elements only. Since (D±A

†D±)ij =
(D±)ii(A†)ij(D±)jj , we conclude that (D±A

†D±)ij �= 0 if and only if (A†)ij �= 0. As a 
consequence, we obtain (D+A

†D+)ij = −(D−A
†D−)ij for each i, j, and the proof of the 

part i) follows.
Suppose that λ ∈ σ(A), λ �= 0. Then μ = 1/λ ∈ σ(A†), and there exists an eigenvector 

x �= 0 such that A†x = μx. As D+D+ = D−D− = I, we obtain A† = D+D+A
†D+D+ =

−D+D−A
†D−D+ = −DA†D where D = D+D− = D−D+ is a signature matrix (see 

the part i)). Then for the nontrivial vector x̃ = Dx = D+D−x we obtain, x = Dx̃, and

A†x̃ = −DA†Dx̃ = −DA†x = −μDx = −μx̃.

Hence −μ ∈ σ(A†). As a consequence, we obtain −λ ∈ σ(A), as claimed in the part 
ii). �
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Fig. 2. Examples of bipartite graphs which are neither positively nor negatively (pseudo)invertible.

Remark 3. The converse statement to the part ii) is not true, in general. Indeed, let us 
consider the following 5 × 5 block matrix

M =
(

0 K

KT 0

)
where K =

(
1 1 0
0 1 1

)
.

The spectrum σ(M ) = {±
√

3, ±1, 0} is symmetric. The matrix M represents an ad-
jacency matrix of the bipartite path graph P5 shown in Fig. 2 (left). It is a simple 
connected graph with smallest number of vertices with an adjacency matrix which is 
neither positively, nor negatively pseudo-invertible.

We say that an N ×N matrix M is permutationally similar to an off-diagonal block 
matrix iff there exists a permutation matrix P and an n ×m real matrix K, n +m = N , 
such that

PTMP =
(

0 K

KT 0

)
. (9)

Theorem 1. Let M ∈ RN×N be a real symmetric matrix.

i) If M is a positive (negative) pseudo-invertible matrix which is permutationaly sim-
ilar to a block off-diagonal matrix (9), then M is also negative (positive) pseudo-
invertible matrix.

ii) If M is a positive and negative pseudo-invertible matrix, then M is permutationaly 
similar to a block off-diagonal matrix of the form (9).

iii) An off-diagonal matrix M of the form (9) is positively and negatively pseudo-
invertible if and only if there are n × n and m × m signature diagonal matrices 
DA and DB such that the matrix DBK

†DA contains elements of the same sign.

Proof. First, we note that for the Moore-Penrose inverse M † of the following block 
symmetric matrix M we have the implication:
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M =
(

0 K

KT 0

)
=⇒ M † =

(
0 (K†)T
K† 0

)
, (10)

where K† is the uniquely determined Moore-Penrose inverse of the n ×m matrix K.
In order to prove the part i), let us assume there is an N × N permutation matrix 

P such that PTMP has the block form of (9). Without loss of generality, we may 
assume P = I is the identical permutation of indices. Assume M is positively pseudo-
invertible. We shall prove that M is also negatively pseudo-invertible, and vice versa. 
Assuming that M is positively pseudo-invertible, then there exists a signature matrix 
D+ = diag(DA, DB) such that the matrix

D+M †D+ =
(
DA 0
0 DB

)(
0 (K†)T
K† 0

)(
DA 0
0 DB

)
(11)

=
(

0 DA(K†)TDB

DBK
†DA 0

)

contains nonnegative elements only. Here DA and DB are n × n and m ×m signature 
diagonal matrices containing ±1 elements only. Taking the signature diagonal matrix 
D− = diag(DA, −DB) the matrix

D−M †D− =
(

0 −DA(K†)TDB

−DBK
†DA 0

)
(12)

contains nonpositive elements only. Hence the matrix M is also negatively pseudo-
invertible, and vice versa.

In order to prove the part ii), suppose that M is positively and negatively pseudo-
invertible matrix. With regard to Proposition 4 we obtain

D+M †D+ = −D−M †D−, (13)

where D± are diagonal signature matrices. Then there exists an N × N permutation 
matrix P such that

PTD+D−P =
(
In 0
0 −Im

)
, i. e., D+D− = D−D+ = P

(
In 0
0 −Im

)
PT ,

where In, Im are the n × n and m ×m identity matrices, n +m = N . Here n (m) is the 
number of positive (negative) units in the matrix D+D−, respectively. It follows from 
(13) that

M † = −D+D−M †D−D+ = −P

(
In 0
0 −Im

)
PTM †P

(
In 0
0 −Im

)
PT .
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Since PTP = PPT = I, we have

PTM †P = −
(
In 0
0 −Im

)
PTM †P

(
In 0
0 −Im

)

Writing PTM †P in the form of a block matrix we obtain

PTM †P ≡
(

V H

HT W

)
= −

(
In 0
0 −Im

)(
V H

HT W

)(
In 0
0 −Im

)

=
(
−V H

HT −W

)
.

It means that V = W = 0. Hence

PTM †P =
(

0 H

HT 0

)
=⇒ PTMP =

(
0 K

KT 0

)
,

where K = (HT )†. It means that the matrix M is permutationally similar to the block 
matrix (9), as claimed.

Finally, consider the diagonal N ×N signature matrix D = diag(DB , DA). Then

DM †D =
(

0 DA(K†)TDB

DBK
†DA 0

)

contains elements of the same sign iff DBK
†DA contains elements of the same sign, and 

the proof of the part iii) follows. �
In the following theorem we present sufficient conditions for a general block symmetric 

matrix to be positively or negatively pseudo-invertible.

Theorem 2. Let A ∈ Rn×n and B ∈ Rm×m be real symmetric matrices, K ∈ Rn×m. Let 
SA = A −KB†KT be the Schur complement of B in the block matrix M in (5). Assume 
that SA and B are both positively (negatively) pseudo-invertible signable to a nonnegative 
(nonpositive) matrices by the signature matrices DA and DB, respectively. Assume that 
the real matrix K ∈ Rn×m is (A, B) compatible and such that DAKDB contains elements 
of the same signs. Then the block matrix M of the form (5) is positively (negatively) 
pseudo-invertible.

Proof. First, we assume both SA and B are positively pseudo-invertible and the matrix 
DAKDB is nonnegative. We consider the signature matrix D = diag(DA, −DB). If 
DAKDB is nonpositive, then we take D = diag(DA, DB). In what follows, we shall 
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prove that M † is signable to a nonnegative real matrix by the signature matrix D. We 
have

DM †D =
(

DAS
†
ADA DAS

†
AKB†DB

DBB
†KTS†

ADA DBB
†DB + DBB

†KTS†
AKB†DB

)
.

Since DADA = In, DBDB = Im, we have

DAS
†
AKB†DB = (DAS

†
ADA)(DAKDB)(DBB

†DB) ≥ 0,

DBB
†KTS†

AKB†DB = (DBB
†DB)(DBK

TDA)(DAS
†
ADA)(DAKDB)(DBB

†DB) ≥ 0,

are matrices with nonnegative elements only. Hence the matrix M is positively pseudo-
invertible, as claimed. In the case SA and B are both negatively pseudo-invertible the 
proof of negatively pseudo-invertibility of M is analogous. �

In the rest of this section we apply the previous results for characterization of the 
least positive and largest negative eigenvalues of a block matrix (9). As usual, we let 
denote by 
 the Löwner partial ordering on symmetric matrices, i.e., A 
 B iff the 
matrix B − A is a positive semidefinite matrix, that is B − A � 0. Following [5], [8], 
and using the Löwner ordering, the maximal positive and minimal negative eigenvalues 
of M † can be expressed as follows:

0 < λmax(M †) = min
M†�tI

t, 0 > λmin(M †) = max
sI�M†

s.

Suppose that M is a symmetric real matrix such that λmin(M ) < 0 < λmax(M ). 
With regard to (4) we have λ+(M ) = λmax(M †)−1, λ−(M ) = λmin(M †)−1. Introducing 
the new variables μ = 1/t, η = −1/s, we deduce that the least positive and largest 
negative eigenvalues of the matrix M can be expressed as follows:

λ+(M ) = max
μM†�I

μ, λ−(M ) = − max
−ηM†�I

η. (14)

Let us denote by ΛHL
sg (M ) = λ+(M ) − λ−(M ) and ΛHL

ind(M ) = max(|λ+(M )|,
|λ−(M |) the HOMO-LUMO spectral gap ΛHL

sg and the index ΛHL
ind of a symmetric matrix 

M representing the difference between the least positive and largest negative eigenvalue 
of the matrix M . In the context of the spectral graph theory the eigenvalues of the 
adjacency matrix representing an organic molecule play an important role. The spectral 
gap ΛHL

sg (M ) is also referred to as the HOMO-LUMO energy separation gap of the 
energy of the highest occupied molecular orbital (HOMO) and the lowest unoccupied 
molecular orbital (LUMO). The bigger the spectral gap is the molecule is more stable. 
Generalizing the results by Pavlíková and Ševčovič [21,20], the HOMO-LUMO spectral 
gap and index of the matrix M can be expressed in terms of the following nonlinear 
programming problem:
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ΛHL
sg (M ) = max

μ,η≥0
μ + η (15)

ΛHL
ind(M ) = max

μ,η≥0
max(μ, η) (16)

s.t. μM † 
 I, −ηM † 
 I.

Assume M has a block symmetric matrix of the form (5). Then, for any μ ≥ 0, we have 
μM † 
 I if and only if

μ

(
S†
A 0
0 B†

)
= μ(Q−1)TM †Q−1 
 (Q−1)TQ−1 where Q−1 =

(
I KB†

0 I

)
.

Therefore,

μM † 
 I ⇔
(
I − μS†

A KB†

B†KT I − μB† + B†KTKB†

)
� 0. (17)

Similarly, for η ≥ 0, we have

−ηM † 
 I ⇔
(
I + ηS†

A KB†

B†KT I + ηB† + B†KTKB†

)
� 0. (18)

The semi-definite constraints appearing in the right-hand sides of (17), and (18) can be 
viewed as linear matrix inequalities. Such inequalities can be utilized in order to optimize 
the least positive and largest negative eigenvalues λ+(M ), and λ−(M ) of a block matrix 
M with respect to matrix elements A, B, and K, respectively (cf. [20], [21]).

3. Applications of block matrix pseudo-inversion in the graph theory

Inverse graphs are of interest in estimating the least positive eigenvalue in families 
of graphs, a task for which there appears to be lack of suitable bounds. However, if the 
graphs are invertible, then one can apply one of the (many) known upper bounds on 
largest eigenvalues of the inverse graphs instead (cf. [17,18]). Properties of the spectra of 
inverse graphs can also be used to estimate the difference between the minimal positive 
and maximal negative eigenvalue (the so-called HOMO-LUMO gap) for structural models 
of chemical molecules, as it was done e.g. for graphene structures in [25].

Let G be an undirected simple graph, possibly with multiple edges, and with a sym-
metric binary adjacency matrix A. Conversely, if A is a binary symmetric matrix, then 
we will use the symbol GA to denote the graph with the adjacency matrix A. The spec-
trum σ(G) of G consists of eigenvalues (i.e., including multiplicities) of AG (cf. [7,6]). If 
the spectrum does not contain zero, then the adjacency matrix A is invertible. We begin 
with a definition of an integrally invertible graph.
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Definition 3. A graph G = GA is said to be integrally invertible if the inverse A−1 of its 
adjacency matrix exists and is integral.

It is well known (cf. [14]) that a graph GA is integrally invertible if and only if 
det(A) = ±1. Next, we recall the classical concept graph positive invertibility intro-
duced by Godsil in [9] which was extended by Pavlíková and Ševčovič to negatively 
invertible graphs [19]. Note that, in such a case the inverse matrix A−1 need not repre-
sent a graph as it may contain negative entries. To overcome this difficulty in defining the 
inverse graph we restrict our attention to those graphs whose adjacency matrix is posi-
tively or negatively (pseudo)invertible. Next, we extend the concept of positive/negative 
invertibility to graphs whose adjacency matrices are not invertible.

Definition 4. A graph GA is called positively (negatively) integrally invertible if det(A) =
±1, and A−1 is signable to a nonnegative (nonpositive) integral matrix. If D is the 
corresponding signature matrix, then the positive (negative) inverse graph H = G−1

A is 
defined by the adjacency matrix AH = DA−1D (AH = −DA−1D).

The concept of positive integral invertibility coincides with the original notion of 
integral invertibility introduced by Godsil [9]. Definition 4 extends Godsil’s concept to 
a larger class of integrally invertible graphs with inverses of adjacency matrices signable 
to nonpositive matrices.

Definition 5. A graph GA is called positively (negatively) pseudo-invertible if the Moore-
Penrose pseudo-inverse matrix A† is signable to a nonnegative (nonpositive) matrix. If 
D is the corresponding signature matrix, then the positively (negatively) pseudo-inverse 
graph H = G†

A is defined by the weighted nonnegative adjacency matrix AH = DA†D

(AH = −DA†D).

Note that the positively (negatively) pseudo-inverse graph H† is defined by the non-
negative weighted adjacency matrix DA†D (−DA†D). The matrix (DA†D)† is signable 
by the same signature matrix, and D(DA†D)†D = DD(A†)†DD = A. One can proceed 
similarly if G is a negatively pseudo-invertible graph. As a consequence, we obtain

(G†)† = G.

Furthermore, it is easy to verify by a simple contradiction argument that the weighted 
pseudo-inverse graph G†

A is connected provided that the original graph GA is connected.
In Table 1 we show the number of all connected graphs with m ≤ 10 vertices, num-

ber of invertible, and number of integrally/positively/negatively invertible graphs. We 
employed McKay’s list of connected graphs available from http://users .cecs .anu .edu .au /
~bdm /data /graphs .html. The complete list of positively, negatively pseudo-invertible 
and pseudo-invertible graphs on m ≤ 10 including their spectrum and signature matri-

http://users.cecs.anu.edu.au/~bdm/data/graphs.html
http://users.cecs.anu.edu.au/~bdm/data/graphs.html
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Table 1
Number of invertible (det(A) �= 0) and integrally invertible (det(A) = ±1) simple connected graphs GA

with m ≤ 10 vertices. The number of positively but not negatively invertible graphs (+signable). The 
number of negatively but not positively pseudo-invertible graphs (-signable). The number of positively and 
negatively invertible and pseudo-invertible graphs (±signable).

Source: own computations [23], http://www .iam .fmph .uniba .sk /institute /sevcovic /inversegraphs/
m = 2 m = 3 m = 4 m = 5 m = 6 m = 7 m = 8 m = 9 m = 10

all conn. graphs 1 2 6 21 112 853 11117 261080 11716571
Invertible graphs
det(A) �= 0 1 1 3 8 52 342 5724 141063 7860195
Integrally invertible graphs
int. invertible 1 - 2 - 29 - 2381 - 1940904
+signable 0 - 1 - 20 - 1601 - 1073991
-signable 0 - 0 - 4 - 235 - 105363
±signable 1 - 1 - 4 - 25 - 349
Signable pseudo-invertible graphs
+signable 0 0 1 3 27 111 2001 15310 1247128
-signable 0 0 0 1 7 60 638 11643 376137
±signable 1 1 3 4 13 25 93 270 1243

ces can be found at: http://www .iam .fmph .uniba .sk /institute /sevcovic /inversegraphs/
(see [23]).

Theorem 3. Let GM be a simple connected graph.

i) If GM is a bipartite graph which is positively (negatively) pseudo-invertible, then it 
is also negatively (positively) pseudo-invertible.

ii) If GM is a positively and negatively pseudo-invertible graph, then it is a bipartite 
graph.

Proof. The part i) is a consequence of Theorem 1, i). Indeed, the adjacency matrix M
of a bipartite graph GM is permutationaly similar to a block off-diagonal matrix (9). 
With regard to Theorem 1, i), if M is positive (negative) pseudo-invertible, then it also 
negative (positive) pseudo-invertible matrix, as claimed in the part i).

If the adjacency matrix M is positive and negative pseudo-invertible, then M is 
permutationaly similar to a block off-diagonal matrix of the form (9) (see Theorem 1, 
ii)), and the proof of the theorem follows. �
Remark 4. In general, bipartitness of a graph does not imply its positive and negative 
(pseudo)invertibility. A smallest example is the path P5 (shown in Fig. 2 (left)) which 
is a bipartite graph with the adjacency matrix of the form (9). It is neither positively 
nor negatively pseudo-invertible, and its spectrum is symmetric σ(P5) = {0, ±1, ±

√
3}

(see also Remark 3). In Fig. 2 (middle) we show a bipartite graph GA on 6 vertices 
with symmetric spectrum σ(A) = {0, 0, ±1.1756, ±1.9021}. Again it is neither posi-
tively nor negatively pseudo-invertible. In Fig. 2 (right) we show a bipartite graph 
GA on 8 vertices which is integrally invertible with a symmetric spectrum σ(A) =
{±2.5231, ±1.4413, ±0.5669, ±0.4851}. This is a smallest example of an integrally in-
vertible bipartite graph which is neither positively nor negatively invertible.

http://www.iam.fmph.uniba.sk/institute/sevcovic/inversegraphs/
http://www.iam.fmph.uniba.sk/institute/sevcovic/inversegraphs/
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Example 1. Let us denote Sn+1 the bipartite star graph on n + 1 vertices (see example 
in Fig. 6 (right) for n + 1 = 6). Its adjacency matrix M has the block form (9) with 
K = (1, . . . , 1)T ∈ Rn. It is easy to verify that K† = 1

nK
T . According to Theorem 1, 

iii), Sn+1 is positively and negatively pseudo-invertible. The adjacency matrix S†
n+1 is 

equal to 1
nM , and its spectrum σ(Sn+1) = {0, . . . , 0, ±√

n}.

Remark 5. According to the Theorem 8.8.2 due to Godsil and Royle [10] (see also Brouwer 
and Hamers [4, Proposition 3.4.1]) a graph is bipartite if and only if its spectrum is 
symmetric. In Remark 4 we showed the bipartitness (or symmetry of the spectrum) does 
not imply positively or negatively (pseudo)invertibility.

If A is an m × n matrix and B is a p × q matrix, then the Kronecker product A ⊗B

is the pm × qn block matrix with blocks (aijB)i=1,...,m, j=1,...,n.

Proposition 5. Assume B ∈ Rm×m is a symmetric nonsingular matrix. Let us consider 
the block matrix

M =
(

0 K

KT B

)
, (19)

where K = (I, . . . , I)T ∈ Rkm×m, I is the m × m identity matrix, and 0 is the n × n

zero matrix, n = km where k ∈ N. Then the spectrum consists of real eigenvalues:

σ(M ) = {λ ∈ R, λ = 0, or λ = (μ±
√

μ2 + 4k)/2, for some μ ∈ σ(B)}.

Furthermore, the spectrum σ(M ) is symmetric if and only if the spectrum σ(B) is sym-
metric. Finally,

M † = 1
k2

(
−1 ⊗B kK

kKT 0

)
(20)

where ⊗ denotes the Kronecker product of matrices where 1 is the k×k matrix consisting 
of ones. The matrix M is negatively pseudo-invertible. If there exists an m ×m signature 
matrix D− such that D−BD− ≤ 0, then M is also positively pseudo-invertible.

Proof. It is easy to verify that λ is a nonzero eigenvalue of M iff μ = λ − k/λ is an 
eigenvalue of B. Hence the spectrum σ(M ) is symmetric if and only if the spectrum 
σ(B) is symmetric, and all nonzero eigenvalues of M are given by λ = (μ ±

√
μ2 + 4k)/2

for some μ ∈ σ(B). For the Schur complement SA we have

SA = A−KB−1KT = −KB−1KT = −1 ⊗B−1,

where 1 is the k × k matrix consisting of units. For example, if k = 2, then we have
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SA = A−KB−1KT = −
(
B−1 B−1

B−1 B−1

)
.

Then it is easy to verify that

S†
A = − 1

k2 1 ⊗B and SAS
†
A = 1

k
1 ⊗ I.

Therefore, (I − SAS
†
A)K = 0n×m and K(I − B−1B) = 0, i.e., K is a (0, B) compat-

ible matrix. Furthermore, S†
AKB−1 = − 1

kK, and B−1 + B−1KTS†
AKB−1 = B−1 −

1
kB

−1KTK = B−1 − B−1 = 0. Now, it follows from (7) that M † is given by (20). In 
particular, if k = 2, then

M † = 1
4

⎛
⎜⎝−B −B 2I

−B −B 2I
2I 2I 0

⎞
⎟⎠ .

Hence M † is signable to nonpositive matrix by the signature matrix D = diag(I, . . . ,
I, −I). Finally, if there exists an m ×m signature matrix D− such that D−BD− ≤ 0, then 
M is signable to nonnegative matrix by the signature matrix D = diag(D−, . . . , D−, D−), 
as claimed. �
Remark 6. GB is a bipartite graph iff there exists a signature matrix D− such that 
D−BD− ≤ 0. Indeed, if we set (D−)ii = 1 for a vertex i belongs to first bipartition, and 
(D−)jj = −1 for a vertex j belongs to the second bipartition, then D−BD− ≤ 0. On 
the other hand, if there exists a signature matrix D− such that D−BD− ≤ 0, then there 
exists a bipartition of GB, each of two bipartitions consisting of vertices with the same 
sign of D−.

Proposition 6. Assume GB is a graph on m vertices whose adjacency matrix B is in-
vertible. Let us denote by Gk,1

B the graph which is constructed from GB by adding k ∈ N

pendant vertices to each vertex of GB. Then Gk,1
B is negatively pseudo-invertible. If there 

exist an m ×m signature matrix D− such that D−BD− ≤ 0, then Gk,1
B is also positively 

pseudo-invertible graph.

Proof. The adjacency matrix M of Gk,1
B has the form (20). The rest of the proof follows 

from Proposition 5. �
The following result is a consequence of Proposition 6 for the case of k = 1 pendant 

vertex added to vertices of GB. It is a generalization of [2, Theorem 3.38] stating that, 
if a tree is invertible, then it is isomorphic to itself iff it is a corona tree obtained from 
a tree GB by adding a pendant vertex to every vertex of GB.
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Fig. 3. The path graph GB = P2 with two vertices (left), the graph G2,1
B constructed from the path graph 

P2 by adding two pendant vertices (middle), its positive pseudo-inverse graph (G2,1
B )† (right).

Fig. 4. The negatively invertible fulvene graph GB = F0 (left), the graph G2,1
B constructed from F0 by 

adding two pendant vertices (middle), its negative pseudo-inverse graph (G2,1
B )† (right).

Corollary 1. Assume GB is a graph on m vertices with an adjacency matrix B. Then the 
graph G1,1

B is negatively self pseudo-invertible, i.e., (G1,1
B )† ∼= G1,1

B . If GB is a bipartite 
graph, then G1,1

B is also positively self pseudo-invertible.

In Fig. 3 and Fig. 4 we show the simple path graph GB = P2 on two vertices and 
the graph GB = F0 representing fulvene organic molecule. We also show the graphs 
G2,1

B constructed from GB by adding two pendant vertices and their negatively pseudo-
invertible graphs (G2,1

B )†. For GB = P2 the graph (G2,1
B )† is also positively pseudo-

invertible bipartite graph.

Proposition 7. Assume GB is a graph on m vertices whose adjacency matrix B is in-
vertible. Let us denote by G1,l

B , l ∈ N, the graph which is constructed from GB by adding 
pendant paths Pl to each vertex of GB. Then the adjacency matrix M of G1,l

B is invertible.

(1) If l is odd, then G1,l
B is a negatively integrally invertible graph. Moreover, if there ex-

ists a signature matrix D− such that D−BD− ≤ 0, then G1,l
B is a positively integrally 

invertible graph.
(2) If l is even, then G1,l

B is a positively/negatively invertible graph provided that GB is 
positively/negatively invertible graph.
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Fig. 5. The positively invertible graph GB on four vertices (left), the graph G1,2
B constructed from GB by 

adding pendant paths P2 on each vertex (middle), its pseudo-inverse graph (G1,2
B )† (right).

Proof. The adjacency matrix M ∈ R(l+1)m×(l+1)m of the graph G1,l
B has the block form 

(5) where the block matrices A ∈ Rlm×lm, and K ∈ Rlm×m have the form:

A = A ⊗ I =

⎛
⎜⎜⎜⎜⎜⎝

0 I
I 0 I

I 0
. . .

. . . . . . I
I 0

⎞
⎟⎟⎟⎟⎟⎠ K = e⊗ I = (I, 0, . . . , 0)T ,

where I = Im is the identity matrix, e = (1, 0, . . . , 0)T ∈ Rl, and A is the adjacency 
matrix of the path graph Pl, i.e., Aij = 1 for |i − j| = 1, and Aij = 0, otherwise. 
An example of a graph G1,2

B is shown in Fig. 5). The Schur complement matrix SA =
A −KB−1KT = A ⊗ I − e ⊗ IB−1eT ⊗ I = A ⊗ I − eeT ⊗ B−1. It is straightforward 
to verify that the matrix SA is invertible, and it has the block cyclic form:

S−1
A︸︷︷︸

l=2

=
(

0 I
I B−1

)
, S−1

A︸︷︷︸
l=3

=
(−B 0 B

0 0 I
B I −B

)
,

S−1
A︸︷︷︸

l=4

=

⎛
⎜⎝

0 I 0 −I
I B−1 0 −B−1

0 0 0 I
−I −B−1 I B−1

⎞
⎟⎠ , S−1

A︸︷︷︸
l=5

=

⎛
⎜⎜⎜⎝
−B 0 B 0 −B
0 0 I 0 −I
B I −B 0 B
0 0 0 0 I

−B −I B I −B

⎞
⎟⎟⎟⎠ ,

etc. In general, if l is odd, then the matrix S−1
A contains the matrix B, whereas, if 

l is even, then it contains the inverse matrix B−1. As the inverse matrices B−1 and 
S−1
A exist then the matrix K is (A, B) compatible. Moreover, if l is odd, then we have 

S−1
A KB−1 = (−I, 0, I, 0, . . . )T , and so B−1KTS−1

A KB−1 = 0. If l is even, then we have 
S−1
A KB−1 = (0, B−1, 0, −B−1, . . . )T , and so B−1KTS−1

A KB−1 = −B−1. The matrix 
M is invertible, and it has the block matrix form:
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Fig. 6. Top row: examples of positively (left), negatively (middle), positively and negatively (bipartite) 
pseudo-invertible graphs with adjacency matrix det(B) �= ±1 on m = 5 vertices. Corresponding graph 
pseudo-inversions (bottom row).

M−1︸ ︷︷ ︸
l=2

=

⎛
⎝0 I B−1

I B−1 B−1

0 B−1 B−1

⎞
⎠ , M−1︸ ︷︷ ︸

l=3

=

⎛
⎜⎝
−B 0 B I
0 0 I 0
B I −B −I
I 0 −I 0

⎞
⎟⎠ ,

M−1︸ ︷︷ ︸
l=4

=

⎛
⎜⎜⎜⎝

0 I 0 −I 0
I B−1 0 −B−1 −B−1

0 0 0 I 0
−I −B−1 I B−1 B−1

0 −B−1 0 B−1 B−1

⎞
⎟⎟⎟⎠ ,

M−1︸ ︷︷ ︸
l=5

=

⎛
⎜⎜⎜⎜⎝
−B 0 B 0 −B I
0 0 I 0 −I 0
B I −B 0 B −I
0 0 0 0 I 0

−B −I B I −B I
I 0 −I 0 I 0

⎞
⎟⎟⎟⎟⎠ ,

etc. Now, if l is odd, then the matrix M−1 is integral and det(M ) = ±1. Clearly, the 
matrix M−1 is signable to a nonpositive matrix by the signature matrix:
D = diag([I, [I, −I], −[I, −I], . . . , (−1)k−1[I, −I], −I]) where l = 2k + 1. If there exists 
a signature matrix D− such that D−BD− ≤ 0, then the matrix M−1 is signable to a 
nonnegative matrix by the signature matrix:
D = diag([D−, −[D−, D−], [D−, D−], . . . , (−1)k[D−, D−], D−]) where l = 2k + 1.

Suppose that l = 2k is even. If B is positively pseudo-invertible, then there exists 
a signature matrix D+ such that D+B

−1D+ ≥ 0. Then the matrix M is positively 
pseudo-invertible because DM−1D ≥ 0 where D = diag([D+, D+], −[D+, D+], . . . ,



3

Fig. 7. Top row: examples of positively (left), negatively (middle), positively and negatively (bipartite) 
integrally invertible graphs on m = 6 vertices. Corresponding graph inversions (bottom row).

(−1)k−1[D+, D+], −D+]). If B is negatively pseudo-invertible, then there exists a signa-
ture matrix D− such that D−B

−1D− ≤ 0. Then the matrix M is negatively pseudo-
invertible as DM−1D ≤ 0 where D = diag([D−, −D−], −[D−, −D−], . . . , (−1)k−1[D−,

−D−], D−]), as claimed. �
In Fig. 7 (middle) we show the graph F0 with 6 vertices representing the organic 

molecule of the fulvene hydrocarbon (5-methylidenecyclopenta-1,3-diene). The graph 
F0 is negatively (but not positively) invertible with the integral inverse graph (F0)−1

depicted in Fig. 7 (middle). The nonsymmetric spectrum consists of the following eigen-
values σ(F0) = {−1.8608, −q, −0.2541, 1/q, 1, 2.1149} where q = (

√
5 + 1)/2 is the 

golden ratio with the least positive eigenvalue λ+(F0) = 1/q. The inverse adjacency 
matrix A−1

F0
is signable to a nonpositively integral matrix by the signature matrix 

D = diag(−1, −1, 1, 1, 1 − 1). The inverse graph is depicted in Fig. 7 (middle) (see 
Figs. 8–10).

4. Conclusions

In this paper we investigated the Moore-Penrose pseudo-inversion M † of a block 
symmetric matrix M with applications in the graph theory. We showed that maximal 
and minimal eigenvalues of a pseudo-inverse matrix M † are related to the least positive 
λ+(M ) > 0 and largest negative eigenvalues λ−(M ) < 0 of a symmetric real matrix M . 
We also present the key idea of derivation of the explicit Banachiewicz–Schur form of 
the Moore-Penrose pseudo-inverse of a block symmetric matrix. It can be used in order 
to characterize the least positive and largest negative eigenvalues in terms of a mixed 
00 S. Pavlíková, D. Ševčovič / Linear Algebra and its Applications 673 (2023) 280–303
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Fig. 8. Top row: examples of positively (left), negatively (middle), positively and negatively (bipartite) 
pseudo-invertible graphs with singular adjacency matrix on m = 6 vertices (top row). Corresponding 
weighted pseudo-inverse graphs (bottom row).

Fig. 9. Top row: an example of a positively and negatively (bipartite) pseudo-invertible graph on m = 9
vertices (left). Its pseudo-inverse weighted graph (right).

Fig. 10. Examples of two positively and negatively (bipartite) pseudo-invertible graphs with singular adja-
cency matrices on m = 10 vertices.
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integer-nonlinear optimization problem. We introduced and analyzed a novel concept of 
positive and negative pseudo-invertibility of a symmetric matrix and graphs. We present 
a summary table containing number of positively/negatively pseudo-invertible graphs. 
The list of graphs with no more than 10 vertices contains complete information on various 
classes of (pseudo)invertible graphs including their spectral properties. Furthermore, we 
present special examples of pseudo-invertible graphs constructed from a given graph by 
adding hanging vertices or paths.
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