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Abstract. The Hamilton-Jacobi-Bellman equation arising from the op-
timal portfolio selection problem is studied by means of the maximal
monotone operator method. The existence and uniqueness of a solution
to the Cauchy problem for the nonlinear parabolic partial integral dif-
ferential equation in an abstract setting are investigated by using the
Banach fixed-point theorem, the Fourier transform, and the monotone
operators technique.
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1 Introduction

In this survey paper, we investigate the existence and uniqueness of a solution
φ = φ(x, τ) to the Cauchy problem for the nonlinear parabolic PDE

∂τφ− ∂2
xα(φ) = g0(φ) + ∂xg1(φ), φ(x, 0) = φ0(x), (1)

where τ ∈ (0, T ), x ∈ R, g0, g1 are Lipchitz continuous functions. The diffusion
function α = α(x, φ) is assumed to be Lipschitz continuous and strictly increas-
ing in the φ-variable. In this contribution, we focus our attention to the case
when the value function of the following parametric optimization problem is of
the form:

α(x, φ) = min
θ∈△

(
−µ(x,θ) +

φ

2
σ(x,θ)2

)
, x ∈ R. (2)

Here, µ and σ2 are given C1 functions, and △ ⊂ Rn is a compact decision set. In
the case when the mean return vector µ and the covariance matrixΣ respectively
belong to some compact uncertainty sets M and S , the value function for the
worst case portfolio optimization has the form:

α(φ) = min
θ∈△

(
max

µ∈M ,Σ∈S

(
−µTθ +

φ

2
θTΣθ

))
(cf. Kilianová and Trnovská [8]). The nonlinear parabolic equation expressed in
(1) is a result of dynamic stochastic programming. Assume that the underlying
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stochastic process {xθ
t } satisfies the following Itô’s stochastic differential equa-

tion dxθ
t = µ(xθ

t ,θt)dt+σ(xθ
t ,θt)dWt, where the control process {θt} is adapted

to the process {xt}. Here, µ(x,θ) and σ(x,θ) are the drift and volatility func-
tions, respectively, and {Wt} is the standard one-dimensional Wiener process.
We assume that the control parameter θ belongs to a given compact subset △
in Rn. Our goal is to maximize the conditional expected value of the terminal
utility of the portfolio:

max
θ|[0,T )⊂△

E
[
u(xθ

T )
∣∣xθ

0 = x0

]
, (3)

on a finite time horizon [0, T ], where u : R → R is an increasing terminal utility
function. Following Bertsekas [3], we have that the intermediate value function
V (x, t) := supθ|[t,T )⊂△ E

[
u(xθ

T )|xθ
t = x

]
satisfies the fully nonlinear Hamilton-

Jacobi-Bellman (HJB) parabolic equation

∂tV +max
θ∈△

(
µ(x, t,θ) ∂xV +

1

2
σ(x, t,θ)2 ∂2

xV

)
= 0 , V (x, T ) = u(x), (4)

where x ∈ R, t ∈ [0, T ). A typical example of the decision set △ is the compact
convex simplex △ ≡ Sn = {θ ∈ Rn | θ ≥ 0,1Tθ = 1} ⊂ Rn, where 1 =
(1, . . . , 1)T ∈ Rn. To solve the Cauchy problem (4), we can employ the Riccati
transformation. Following the papers by Abe and Ishimura [1], Ishimura and
Ševčovič [4], Ševčovič and Macová [12], and Kilianová and Ševčovič [7], the
Riccati transformation of the value function reads as follows:

φ(x, τ) = −∂2
xV (x, t)/∂xV (x, t), where τ = T − t. (5)

According to [9, Theorem 4.2], an intermediate value function V (x, t) such that
∂xV > 0 is a solution to the Hamilton-Jacobi-Bellman equation (4) if and only
if the transformed function φ(x, τ), is a solution to the Cauchy problem for the
quasilinear parabolic PDE:

∂τφ− ∂2
xα(·, φ) = −∂x (α(·, φ)φ) , φ(x, 0) = φ0(x), (x, τ) ∈ R× (0, T ). (6)

Equation (6) is of the form (1) with g0 being equal to zero and g1(·, φ) =
−α(·, φ)φ.

2 The value function α and static Markowitz model

Recall that the goal of the classical Markowitz static optimization model is to
maximize the mean return of the set of stochastic returns Xi, i = 1, . . . , n,
under the constraint that the variance of the portfolio is bounded by a given
constant σ2

0 . Given a vector θ = (θ1, . . . , θn)
T of weights, we construct a port-

folio X =
∑n

i=1 θiX
i. Let µ ∈ Rn, µi = E(Xi), be the vector of mean returns of

stochastic asset returns and Σ be their covariance matrix, Σij = cov(Xi, Xj),
then E(X) = µTθ, and the variance D(X) = θTΣθ. The Markowitz optimal
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portfolio optimization problem can be formulated as the following convex op-
timization problem to maximize the mean return under the constraint on the
variance:

max
θ∈△

µTθ s.t.
1

2
θTΣθ ≤ 1

2
σ2
0 ,

where △ = {θ ∈ Rn,
∑n

i=1 θi = 1, θi ≥ 0}. The Lagrange function for the
minimization of −µTθ has the form: L(θ, φ, λ, ξ) = −µTθ+φ 1

2θ
TΣθ+λ1Tθ+

ξTθ, where φ ∈ R, λ ∈ R, ξ ∈ Rn, and ξ ≥ 0 are Lagrange multipliers. The same
Lagrange function corresponds to the minimization problem:

α(φ) := min
θ∈△

−µTθ +
φ

2
θTΣθ

provided the Lagrange multiplier φ > 0 is given. In Fig. 1, we present the optimal
asset allocation for the German DAX30 (2017) stock index for various values of
φ > 0. The value of the Lagrange multiplier φ can be viewed as a measure of
the investor’s risk aversion (see Fig. 1). Therefore, the higher the value of risk
aversion, the more the portfolio is diversified among less risky assets with lower
mean returns.

φ = 1 φ = 4 φ = 6 φ = 8

Fig. 1. Optimal asset allocation for the German DAX30 stock index for various φ > 0.
φ can be viewed as risk aversion. Source: own calculations.

The smoothness of the value function α depends on the structure of the
decision set △. In general, it is only C0,1 (Lipschitz) continuous, provided that
△ is a compact decision set. Indeed, if we define αθ(x, φ) := −µ(x,θ)+ φ

2 σ(x,θ)
2

then the minimal function α(x, φ) = minθ∈△ αθ(x, φ) is Lipschitz continuous.
In [10, Theorem 1], Kilianová and Ševčovič derived sufficient conditions for

the decision set△ and functions µ and σ that guarantee higher smoothness of the
value function α. Suppose that △ ⊂ Rn is a compact convex set and µ(x,θ) and
σ(x,θ)2 are C1,1 smooth functions such that the function θ 7→ µ(x,θ)+φ

2 σ(x,θ)
2

is strictly convex. Then, the function α(φ) is C1,1 continuous. The proof is based
on the classical envelope theorem due to Milgrom and Segal [5] and the result

on Lipschitz continuity of the minimizer θ̂(x, φ) belonging to a convex compact
set △ due to Klatte [11]. In Fig. 2, we plot the value function α for convex and
discrete decision sets △, its second derivative α′′, and the dependence of the
optimal decision vector θ̂ on the parameter φ. If the decision set △ is a compact
convex set, then the function α(φ) is C1,1 continuous, i.e., the derivative α′(φ) is
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Lipschitz continuous (blue line). If △ is a discrete subset △̂ = {θ1,θ2,θ3} ⊂ △,
then the function α is just C0,1 continuous piece-wise affine function (dotted

line). Furthermore, we show a trajectory of the minimizer θ̂(φ) for increasing
φ > 0. Fig. 2(c) demonstrates that for small values of φ, the minimizer belongs to

a one-dimensional set (edge). For higher values of φ, the minimizer θ̂(φ) belongs
to higher-dimensional subsets (face, volume) of the simplex △ = {θ ∈ Rn | θ ≥
0,1Tθ ≤ 1}.
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Fig. 2. a) A graph of the value function α, b) its second derivative α′′(φ) for the
portfolio consisting of the stocks index and bonds (cf. [6]) for the convex compact
decision set △. The dotted line in a) corresponds to the discrete decision set △̂ =
{θ1,θ2,θ3} ⊂ △. The trajectory of the minimizer θ̂(x, φ) for increasing φ > 0 is
shown in c).

3 Existence and uniqueness of solutions in Sobolev spaces

Let V ↪→ H ↪→ V ′ be the so-called Gelfand triple, where H = L2(R) = {f :
R → R, ∥f∥2L2 =

∫
R |f(x)|2dx < ∞} is a Hilbert space endowed with the inner

product (f, g) =
∫
R f(x)g(x)dx. Here, V = H1(R) is a Sobolev space, and V ′ =

H−1(R) is its dual space. The triple V ↪→ H ↪→ V ′ naturally induces the time-
dependent Gelfand triple V ↪→ H ↪→ V ′, where H is a Hilbert space endowed

with the norm ∥φ∥2H =
∫ T

0
∥φ(τ)∥2Hdτ, ∀φ ∈ H. Similarly, we define the spaces

V = L2((0, T );V ), H = L2((0, T );H) and V ′ = L2((0, T );V ′).
In [14], Udeani and Ševčovič proved the following result on the existence and

uniqueness of a solution to (6). The proof is based on the maximal monotone
operator technique (cf. Barbu [2] and Showalter [13]) and the Banach fixed-point
theorem.

Let us introduce the auxiliary functions: p(x) = maxθ∈△ |∂xµ(x,θ)|, and
h(x) = −maxθ∈△ µ(x,θ).

Theorem 1. [14, Theorem 5] Let the decision set △ ⊂ Rn be compact and
the function u : R → R be an increasing utility function such that φ0(x) =
−u′′(x)/u′(x) belongs to the space L2(R)∩L∞(R). Suppose that the drift µ(x,θ)
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and volatility function σ2(θ) > 0 are C1 continuous in the x and θ variables,
and the value function α(x, φ) given in (2) satisfies p ∈ L2(R) ∩ L∞(R), h ∈
L∞(R), and ∂2

xh ∈ L2(R). Then for any T > 0 there exists a unique solution
φ of the Cauchy problem (6) that satisfies φ ∈ C([0, T ];H) ∩ L2((0, T );V ) ∩
L∞((0, T )× R).

−5 0 5 10
−2

0

2

4

6

8

10

x

ϕ
(x
,τ
)

Solution ϕ(x, τ )

Fig. 3. A solution φ(x, τ) for the DARA utility function u such that φ0(x) =
−u′′(x)/u′(x) ∈ {9, 8}. Source: our calculations based on the numerical method from
[14,7]

In contrast to the fully nonlinear property of the original HJB equation
(4), the transformed equation (6) represents a quasilinear parabolic equation
in divergence form. Thus, efficient numerical schemes can be constructed for
this class of equations. In our computational experiments, we employ the fi-
nite volume discretization scheme proposed and investigated by Kilianová and
Ševčovič [9,7,10]). Fig. 3 shows the results of a time-dependent sequence of pro-
files φ(x, τ) for a constant initial condition φ0 ≡ 9. This graph shows the so-
lution profiles for the discountinuous initial condition φ0 ∈ {9, 8}. It represents
the utility function u of the decreasing absolute risk aversion (DARA) such that
φ0(x) = −u′′(x)/u′(x). The function φ(x, τ) increases in the variable x and de-
creases in the variable τ = T−t. Therefore, the optimal vector θ(x, τ) contains a
more diversified portfolio of assets when x increases and time t → T (see Fig. 3).
Furthermore, it is reasonable to invest in an asset with the highest expected
return when the value of the account x is low, while an investor must diversify
the portfolio when x is large and time t approaches the end of maturity T .

4 Conclusions

In this paper, we discussed the qualitative and numerical results of a fully non-
linear HJB equation that arises from a stochastic dynamic optimization problem
in Sobolev spaces. This equation is related to a portfolio management problem
where the goal is to maximize the expected terminal utility of a portfolio. We
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transformed the equation into a quasilinear parabolic equation using the Riccati
method, and under certain assumptions, we showed that the diffusion function is
globally Lipschitz continuous. We also provided numerical examples to illustrate
our results.

Acknowledgments. Support from the Slovak Research and Development Agency
under the project APVV-20-0311 (C.U.) and the VEGA 1/0611/21 grant (D.Š.)
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