
Learning the solution operator of a nonlinear
parabolic equation using physics informed deep

operator network

Daniel Ševčovič1 and Cyril Izuchukwu Udeani1

Comenius University in Bratislava, Mlynská dolina, 84248 Bratislava, Slovakia,
sevcovic@fmph.uniba.sk,

www.iam.fmph.uniba.sk/institute/sevcovic

Abstract. This study focuses on addressing the challenges of solving
analytically intractable differential equations that arise in scientific and
engineering fields such as Hamilton-Jacobi-Bellman. Traditional numer-
ical methods and neural network approaches for solving such equations
often require independent simulation or retraining when the underly-
ing parameters change. To overcome this, this study employs a physics-
informed DeepONet (PI-DeepONet) to approximate the solution oper-
ator of a nonlinear parabolic equation. PI-DeepONet integrates known
physics into a deep neural network, which learns the solution of the PDE.

Keywords: Deep learning, PI-DeepONet, Nonlinear parabolic equation

1 Introduction

It is well-known that various nonlinear parabolic equations arise from various
applied problems in industry. However, most of these differential equations are
analytically intractable. Classical methods, such as the finite volume method,
the finite difference method, and spectral methods, have been widely used to
solve such equations. The corresponding finite-dimensional algebraic systems
are often solved by iterative methods. Although these methods are efficient and
well-studied, they require a lot of memory space and time, leading to high com-
putational costs. Furthermore, a slight change in the input parameter leads to a
new numerical simulation. To overcome these challenges, many researchers have
replaced traditional numerical discretization methods with artificial neural net-
works (ANNs) to approximate the PDE solution. Recently, deep neural networks
(DNNs) have been widely used to solve classical applied mathematical problems,
including PDEs, utilizing machine learning and artificial intelligence approaches
[1]. Due to significant nonlinearities, convection dominance, or shocks, some
PDEs are difficult to solve using standard numerical approaches. To this end,
deep learning has recently emerged as a new paradigm of scientific computing
thanks to the universal approximation theorem and the great expressivity of
neural networks [7]. Recent studies have shown that deep learning is a promis-
ing method for building metamodels for fast predictions of dynamic systems. In

ar
X

iv
:2

30
8.

11
13

3v
1 

 [
m

at
h.

N
A

] 
 2

2 
A

ug
 2

02
3



2 Daniel Ševčovič and Cyril Izuchukwu Udeani

particular, neural networks (NNs) have been shown to represent the underly-
ing nonlinear input-output relationship in complex systems. In an attempt to
approximate the solution of PDEs, one can employ the deep Galerkin method
[1] involving DNNs to solve nonlinear PDEs. More recently, Lu et al. [5] intro-
duced an efficient technique called physics-informed neural networks (PINN) to
approximate the solution of PDEs. Although PINNs are faster than traditional
numerical methods, they also have some limitations; e.g., a slight change in the
underlying parameters could result in the retraining of the model. To overcome
the shortcoming of PINNs, Lu et al. [4] further introduced the concept of Deep-
ONet, which is an NN-based model that can learn linear and nonlinear PDE
solution operators with a small generalization error via the universal approxi-
mation theorem for operators. DeepONet consists of two parts: a deep neural
network that learns the solution of the PDE and an operator network that en-
forces the PDE at each iteration. The operator network acts as a constraint to
ensure that the neural network outputs satisfy the underlying PDE. DeepONet
maps input functions with infinite dimensions to output functions belonging to
infinite-dimensional space. It can efficiently and accurately solve PDE with any
initial and boundary conditions without retraining the network. PI-DeepONet
approximates the PDE solution operator using two networks: one network that
encodes the discrete input function space (branch net) and one that encodes
the domain of the output functions (trunk net) (cf. [4]). It can effectively ap-
proximate the solution of different PDEs without requiring a large amount of
training data by introducing a regularization mechanism that biases the output
of DeepONet models to ensure physical consistency. PI-DeepONet can efficiently
solve parametric linear and nonlinear PDEs compared to other variants of PINN
since it can take source term parameters (including other parameters) as input
variables. It can also break the curse of dimensionality in the input space, mak-
ing it more suitable than other traditional approaches. Inspired by the above
development and studies, we apply the PI-DeepONet approach for solving the
following parabolic equation.

∂τφ− ∂2
xα(φ) = g(τ, x), (τ, x) ∈ Ω ≡ (0, T )× (−L,L). (1)

For simplicity, we consider zero initial and boundary conditions for the solution
φ(τ, x). Here g is the source term. This model equation arises from the Hamilton-
Jacobi-Bellman (HJB) equation describing the stochastic optimization problem
(see Ševčovič and Kilianová [2] and Ševčovič and Udeani [6]). The diffusion
function α is the value function arising from a convex parametric optimization
problem (see Ševčovič and Kilianová [2] and Kilianová and Trnovská [3] for
details).

2 Methodology of PI-DeepONet

In this section, we introduce and discuss the methodology of PI-DeepONet.
Consider the following equation:

F(g, φ) = 0, (2)



Learning the solution operator using PI-DeepONet 3

where F is a differential operator for the governing PDE of some underlying
physics laws, g denotes its source term, and φ is its solution. The differen-
tial equation (2) is assumed to have zero initial and boundary conditions. Note
that the same idea can be applied to any initial and boundary conditions. Let
G : g → G(g) be an operator between two infinite-dimensional function spaces
where g and G(g) are two functions. This mapping is called the solution operator
of equation (2), which can be evaluated at a random location y. In learning an
operator in a more general setting, the inputs usually consist of two independent
parts: the input function g and the location variable (s) y. This learning can be
done directly using traditional neural networks such as feedforward neural net-
works (FNN), recurrent neural networks (RNNs), convolutional neural networks
(CNNs), or combining the two inputs as a single network input (i.e., {g, y}).
Meanwhile, it is not necessarily advisable to directly use RNNs or CNNs since
the input does not have a definite structure. Therefore, it is recommended to
use FNNs as the baseline model. Furthermore, the DeepONet consists of branch
and trunk nets. The branch net takes g as the input function evaluated at a
collection of fixed sensors {xi}mi=1 and outputs a feature embedding of q dimen-
sions. The trunk net takes y as input and also outputs a feature embedding
of q dimensions. Note that the dimensions of y and g need not be the same,
indicating that g and y need not be treated as a single input like traditional
NN. In general, the DeepONet network for learning an operator takes g and y
as inputs and outputs G(g)(y), which is obtained by taking the dot product of
two subnetworks. The dot product of the outputs of the two subnets plays a
crucial role in determining how well the learned solution operator aligns with
the actual solution of the PDE. It measures the similarity or alignment between
the two networks’ outputs. This helps to improve the accuracy of the learned
solution operator. Consequently, the PI-DeepONet is trained by minimizing the
loss function L(θ) (see 3) over all the input-output triplets {g, y,G(g)(y)}, where
θ is the set of the weight matrix and the bias vector in the networks. The first
goal is to find such an approximator Gθ(g), but thanks to the universal approx-
imation theorem for operator [7, Theorem 5], which guarantees the existence of
such function, i.e., Gθ(g)(y) ≈ G(g)(y) = φ(y) ∈ R. The final objective is to
find the best parameters that minimize the loss function (3) using suitable op-
timization techniques. The universal approximation theorem shows the stacked
and unstacked DeepONet. The stacked network has one trunk net and P stacked
branch nets, whereas the unstacked network has one trunk net and one branch
net, which are fully independently connected. For more details, see T. Chen and
H. Chen [7]. Fig. 1a shows the schematics of an unstacked DeepONet. In this
study, we use an unstacked DeepONet to solve a parametric parabolic equation
arising from portfolio selection problems.

3 Problem formulation

To employ PI-DeepONet to solve the nonlinear parabolic equation (1), we first
define an operator that maps the input function to the PDE solution asG(g) = φ.



4 Daniel Ševčovič and Cyril Izuchukwu Udeani

Branch network

Trunk network
.
.
.

.

.

.

Dot product

(a) DeepONet

Physics lossBranch net

Trunk net

Total loss
Dot product

Operator loss

(b) Physics informed DeepONet

Fig. 1: Schematics of DeepONet a), and physics informed DeepONet b)

The novelty of DeepONet is that it takes any arbitrary source term function as
the input variables, making it more suitable than the PINN approach. Since φ is
also a function, we can evaluate it at some point, say y, to obtain G(g)(y) = φ(y).
In our application, y = (τ, x) denotes the point in the computational domain Ω
where the network predicts the solution of the PDE (1). In general, the branch
(with g as input function) and trunk (with y as input variable) networks are given
by B(g(x̃)) = c · σ(WB · g(x̃) + bB) and T (y) = σ(WT · y + bT ), respectively.
Here, x̃ = (τ,x); c is some positive constant; σ is the activation function;WB and
WT represent the weight matrices of branch and trunk networks, respectively;
bB and bT represent the bias vector of branch and trunk networks, respectively.

Now, letting gi, i = 1, . . . , N , be any given input function representing the
source term in (1), then equation (1) becomes gi = ∂τφ

i−∂2
xα(φ

i). According to
[7, Theorem 5], there exists Gθ(g

i) such that Gθ(g
i)(y) ≈ G(gi)(y) = φi(y). For

a fixed i, the approximator in the DeepONet solution operator is the dot product
of the outputs of the branch and trunk networks, i.e., Gθ(g

i)(y) = B(g(y))·T (y).
Hence, gi ≈ ∂τGθ(g

i)(y)−∂2
xα(Gθ(g

i)(y)). Therefore, the physics loss evaluated
at the Q collocation points in the interior of the domain is

LPhysics(θ) =
1

NQ

N∑
i=1

Q∑
j=1

|Ri
θ(y

i
r,j)− gi(xi

r,j)|2.

Here, Ri
θ(y

i
r,j) = ∂τGθ(g

i)(yir,j)− ∂2
xα(Gθ(g

i)(yir,j)) represents the residual that

satisfies the underlying PDE, and yir,j = (τ ir,j , x
i
r,j) denotes the collocation points

where the PDE is evaluated. Next, we use the zero boundary and initial condi-
tions to obtain the second loss as follows:

LOperator(θ) =
1

NP

N∑
i=1

P∑
k=1

|Gθ(g
i)(yig,k)−G(gi)(yig,k)|2

where yig,k = (τ ig,k, x
i
g,k) denotes points from the initial and boundary conditions.

Hence, the total loss becomes

L(θ) = LPhysics(θ) + LOperator(θ). (3)



Learning the solution operator using PI-DeepONet 5

It follows that by minimizing the loss function (3) the network can effectively
predict the solution of the HJB equation. Fig. 1b shows the schematics of physics-
informed DeepONet connected in a feedforward manner.

4 Results and Discussion

The PI-DeepONet exhibits infinitesimal optimization and generalization errors,
as it is easy to train and generalizes well to unseen data. In our approach, we did
not use any input-output data, rather we only used the zero boundary and initial
conditions. We approximate the PDE solution operator using branch and trunk
nets. As a test example, we consider the diffusion function α(φ) = φ2. First, the
input function of the branch net is discretized in a finite-dimensional space using
a finite number of points called sensors. Then, the discretized input function is
evaluated at fixed sensors to obtain point-wise evaluations. The trunk net takes
the spatial and temporal coordinates and evaluates the solution operator to
obtain the loss function. To generate our training data, we randomly sample
N = 500 source term functions as input functions of the trunk net from a
zero mean Gaussian process with an exponential quadratic kernel having a 0.2-
length scale. The kernel function defines the covariance between two points in
the process as a function of the distance between them. The parameter l > 0
determines how quickly the covariance between two points decays as the distance
between them increases. In this study, we set l = 0.2. A smaller length scale
results in a higher correlation between nearby points, whereas a larger length
scale results in a lower correlation between nearby points. Then, the selected
input functions are evaluated at m = 100 points as input sensors. The m outputs
of the source term functions are sent to the branch network. Next, we select
the P = 100 output sensors from the initial and boundary conditions, which
are sent to the trunk nets. Our operator is then approximated by computing
the dot product between the branch and trunk networks, and the corresponding
operator loss is computed. After that, we select Q = 100 collocation points inside
the domain, and the error related to the underlying physics is computed. Finally,
the total loss is evaluated by combining the two losses, which are minimized using
the adaptive moment estimation (ADAM) optimizer with a learning rate of 10−3.
Similarly, the test set is generated using the same approach. In Fig. 2, we compare
a solution obtained by a physics-informed DeepONet method using the Relu
activation function for 10000 iterations with a numerical solution constructed
by means of the finite difference numerical method.

5 Conclusions

In this study, we employed a physics-informed DeepONet to approximate the
solution operator of a parametric parabolic equation arising from portfolio se-
lection problems. The input function of the branch net was discretized in a
finite-dimensional space using a fixed number of sensors. The discretized input
functions were evaluated at fixed sensors to obtain point-wise evaluations. The



6 Daniel Ševčovič and Cyril Izuchukwu Udeani

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

t

Input function, g

400

200

0

200

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

t

NN solution

0

200

400

600

800

1000

1200

1400

1600

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

t

Eact solution

0

200

400

600

800

1000

1200

1400

1600

τ τ τ 

Input function g NN solution FDM numerical solution

Fig. 2: Comparision of a physics-informed DeepONet solution (NN solution) and the
numerical solution obtained by the finite difference method (FDM numerical solution).
The right-hand side represents the input function g.

operator was approximated by computing the dot product between the branch
and trunk networks, and the corresponding operator loss is computed. We ap-
plied the physics-informed DeepONet to solve the model nonlinear parabolic
equation obtained from the Hamilton-Jacobi-Bellman equation for solving opti-
mal stochastic dynamic optimization problem.

Acknowledgments. The research was supported by the APVV-20-0311 (C.U.)
and VEGA 1/0611/21 (D.Š.) projects.

References

1. Justin, S., Konstantinos, S.: DGM: A deep learning algorithm for solving partial
differential equations. Journal of Comp. Physics, 375, 1339–1364 (2018).

2. Kilianová, S., Ševčovič, D.: A Transformation Method for Solving the Hamilton-
Jacobi-Bellman Equation for a Constrained Dynamic Stochastic Optimal Allocation
Problem. ANZIAM Journal, 55, 14–38, (2013).

3. Kilianová, S., Trnovská, M.: Robust Portfolio Optimization via solution to the
Hamilton-Jacobi-Bellman Equation. Int. Journal of Comp. Math., 93, 725–734
(2016).

4. Lu, Lu, Jin, P., Pang, G., Zhang, Z., Karniadakis, G. Em.: Learning nonlinear
operators via DeepONet based on the universal approximation theorem of operators.
Nature Machine Intelligence, 3, 218–229 (2021).

5. Raissi, M., Perdikaris, P., Karniadakis, G. E.: Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlin-
ear partial differential equations. Journal of Comp. Physics, 378, 686–707 (2019).

6. Ševčovič, D., Udeani, C.I.: Application of maximal monotone operator method for
solving Hamilton–Jacobi–Bellman equation arising from optimal portfolio selection
problem. Jpn. J. Ind. Appl. Math., 5, pp 1–21 (2021).

7. Tianping, C., Hong, C.: Universal approximation to nonlinear operators by neu-
ral networks with arbitrary activation functions and its application to dynamical
systems. IEEE Transactions on Neural Networks, 6, 911–917 (1995).

8. Zhu, Y., Zabaras, N., Koutsourelakis, P., Perdikaris, P.: Physics-constrained deep
learning for high-dimensional surrogate modeling and uncertainty quantification
without labeled data. Journal of Comp. Physics, 394, 56–81 (2019).


	Learning the solution operator of a nonlinear parabolic equation using physics informed deep operator network

