Mathematical Methods in the Applied Sciences, Vol. 20, 79–94 (1997) MOS subject classification: 35 B 40, 35 B 35, 35 B 25, 76 A 05, 76 D 30

Dissipative Feedback Synthesis for a Singularly Perturbed Model of a Piston Driven Flow of a Non-Newtonian Fluid

Daniel Ševčovič

Institute of Applied Mathematics, Comenius University, Mlynská dolina, 842 15 Bratislava, Slovak Republic

Communicated by G. F. Roach

The limiting behaviour of solutions of a system of singularly perturbed equations is studied. The goal is to construct a dissipative feedback control synthesis that stabilizes the prescribed output functional along trajectories of solutions. The results are applied to a singularly perturbed Johnson–Sagelman–Oldroyd model of shearing motions of a piston driven flow of a non-Newtonian fluid.

1. Introduction

The aim of this paper is to construct a dissipative feedback control synthesis that stabilizes a given output functional along solutions of the following system of singularly perturbed evolution equations

$$\begin{aligned} x_t &= G_{\varepsilon}(x, y, z), \\ \varepsilon y_t &+ By = F_{\varepsilon}(x, y, z), \end{aligned} \tag{1.1}$$

where $0 \le \varepsilon \le 1$ is a small parameter, $x \in X$, $y \in Y$, X and Y are Banach spaces, B is a sectorial operator in Y. In this paper we consider a specific feedback control mechanism of the form

 $z = \Xi(x),$

where Ξ is a smooth function from X into another Banach space Z. In other words, a synthesis $z = \Xi(x)$ should only depend on the slow variable x. It is well-known that the Cauchy problem for the full system of equations, $\varepsilon > 0$,

$$x_t = G_{\varepsilon}(x, y, \Xi(x)),$$

$$\varepsilon y_t + By = F_{\varepsilon}(x, y, \Xi(x))$$
(1.2)

generates a globally defined semi-flow $\mathscr{S}_{\varepsilon}(t)$, $t \ge 0$, on a phase-space $\mathscr{X} = X \times Y^{\beta}$, provided that the nonlinearities G_{ε} , F_{ε} and Ξ satisfy certain regularity and growth conditions (cf. [6]). Furthermore, under a suitable assumption on a function F_0 ,

© 1997 by B. G. Teubner Stuttgart-John Wiley & Sons, Ltd.

system (1.2) generates a semi-flow $\mathscr{S}_0(t), t \ge 0$, on a phase-space \mathscr{M}_0 which is a Banach submanifold of \mathscr{X} .

Typically, the structure of the reduced system of equations (1.1), $\varepsilon = 0$, allows us to construct a feedback law $z = \Xi_0(x)$ with the property that a prescribed output functional Q_0 asymptotically vanishes along all solutions of (1.2), i.e. $Q_0(\mathscr{S}_0(t)(x_0, y_0)) \to 0$ as $t \to \infty$. We discuss an example of such a reduced dynamics in section 6. Under assumptions made in sections 2 and 3, our goal in this work is to find a feedback synthesis $\Xi = \Xi_{\varepsilon}$ stabilizing the given output functional Q_{ε} along trajectories of the full system of equations (1.2) whenever $\varepsilon > 0$ is sufficiently small. It should be noted that an explicit construction of such a synthesis is not obvious, in many cases, and this is why we have to turn to functional analytic methods in order to prove the existence of a stabilizing feedback law and to examine the limiting behavior of Ξ_{ε} when $\varepsilon \to 0^+$.

Before stating our main result we need several definitions.

Definition 1.1. Let $\mathscr{S}(t)$, $t \ge 0$, be a semi-flow on a metric space (\mathscr{X}, d) . Let \mathscr{M} be an attracting invariant set for \mathscr{S} , i.e. $\mathscr{S}(t)\mathscr{M} = \mathscr{M}$ for any $t \ge 0$ and dist $(\mathscr{S}(t)u, \mathscr{M}) \to 0$ as $t \to \infty$ for any $u \in \mathscr{X}$. Let $Q: \mathscr{X} \to E$ be a prescribed output functional, E is a metric space. We say that the semi-flow $\mathscr{S}(t)$ is *asymptotically Q-constrained on* \mathscr{M} if Q(u) = 0 for any $u \in \mathscr{M}$.

Remark 1.1. Notice that, if $Q: \mathcal{X} \to E$ is continuous then any Q-asymptotically constrained semi-flow $\mathcal{S}(t)$ on the attracting invariant set \mathcal{M} , has the property $Q(\mathcal{S}(t)u) \to 0$ as $t \to \infty$ for any $u \in \mathcal{X}$. Clearly, if a functional Q vanishes on \mathcal{X} then any semi-flow on \mathcal{X} is Q-asymptotically constrained on the whole phase-space \mathcal{X} .

Definition 1.2. Let $\varepsilon \in [0, \varepsilon_0]$ be fixed. Let $Q_{\varepsilon} \colon \mathscr{X} \to E$ be a continuous mapping, \mathscr{X} is the phase-space for (1.1). We say that system of equations (1.1) admits a *dissipative* feedback synthesis $\Xi \colon X \to Z$ if the semi-flow $\mathscr{S}_{\varepsilon}(t)$ generated by solutions of (1.2) possesses an attracting invariant manifold $\mathscr{M}_{\varepsilon}$ and the semi-flow $\mathscr{S}(t)$ is Q_{ε} -asymptotically constrained on $\mathscr{M}_{\varepsilon}$.

We also recall the notion of an inertial manifold.

Definition 1.3. Let $\mathscr{S}(t)$, $t \ge 0$, be a semi-flow in the Banach space \mathscr{X} . We say that a Banach submanifold $\mathscr{M} \subset \mathscr{X}$ is an inertial manifold. for semi-flow \mathscr{S} if:

- (a) it is an invariant, i.e. $\mathcal{S}(t)\mathcal{M} = \mathcal{M}$ for any $t \ge 0$; and
- (b) \mathscr{M} attracts exponentially all solutions, i.e. there is $\mu > 0$ such that dist $(\mathscr{S}(t)u_0, \mathscr{M}) = O(e^{-\mu t})$ as $t \to \infty$ for any $u_0 \in \mathscr{X}$.

In contrast to the classical definition of an inertial manifold due to Foias *et al.* [4], we allow the exponentially attractive invariant manifold to be an infinite-dimensional Banach submanifold of the phase-space \mathcal{X} . (see e.g. [8]).

Given a family of output functionals Q_{ε} , $\varepsilon \ge 0$, the main result can be stated as follows:

Theorem 1.1. Assume hypotheses (H1)–(H4) and the structural condition (5.1) below. Then, for any $\varepsilon > 0$ small enough,

- (a) system (1.1) admits a dissipative feedback synthesis $\Xi_{\varepsilon} \in C^{1}_{bdd}(\mathcal{B}, Z) \cap C^{0,1}(X, Z)$ and, moreover,
- (b) $\lim_{\varepsilon \to 0^+} \Xi_{\varepsilon} = \Xi_0$ in $C^1_{bdd}(\mathcal{B}, Z)$ for any \mathcal{B} bounded and open subset of X.
- (c) The feedback law $z = \Xi_{\varepsilon}(x)$ stabilizes the prescribed output functional Q_{ε} . This means that $\lim_{t\to\infty} Q_{\varepsilon}(x(t), y(t)) = 0$ for any solution (x(.), y(.)) of (1.2).

(d) The semi-flow $\mathscr{S}_{\varepsilon}$ generated by solutions of system (1.2) is Q_{ε} -asymptotically constrained on a C^1 smooth inertial manifold $\mathscr{M}_{\varepsilon}$. The manifold $\mathscr{M}_{\varepsilon}$ is C^1 close to \mathscr{M}_0 for $\varepsilon > 0$ sufficiently small.

The idea of the proof and the organization of the paper is as follows. In section 3 we find a synthesis $z = \theta_{\varepsilon}(x, y)$ depending on the both slow and fast variables. Under suitable assumptions (see (H3)) such a function θ_{ε} can be uniquely determined from the governing equations and the condition that $\varepsilon d/dt Q_{\varepsilon}(x(t), y(t)) + Q_{\varepsilon}(x(t), y(t)) = 0$, i.e. $\|Q_{\varepsilon}(x(t), y(t))\| = O(e^{-t/\varepsilon})$ as $t \to +\infty$ for any solution of system (1.1) with $z = \theta_{\varepsilon}(x, y)$. Incorporating the feedback law $z = \theta_{\varepsilon}(x, y)$ into system (1.1) we then construct an inertial manifold $\mathcal{M}_{\varepsilon}$ for (1.1) as a smooth graph $\mathcal{M}_{\varepsilon} = \{(x, \Phi_{\varepsilon}(x)), x \in X\}$. To this end we make use of the abstract singular perturbation theorem proved in [14]. We recall this result in section 4. Roughly speaking, the existence of such an inertial manifold $\mathcal{M}_{\varepsilon}$ means that the fast variable *y* is governed by the slow variable *x* when restricted on the manifold $\mathcal{M}_{\varepsilon}$. This enables us to construct Ξ as a composite function $\Xi_{\varepsilon}(x) = \theta_{\varepsilon}(x, \Phi_{\varepsilon}(x))$.

In section 6 we are concerned with the problem of the existence of a feedback control law stabilizing a given output of solutions for a system of singularly perturbed equations arising from the non-Newtonian fluid dynamics. Several authors have considered various constitutive models of a non-Newtonian fluid in order to describe flow instability phenomena like e.g. spurt, hysteresis loop under cyclic load for pressure driven flows of a Johnson–Segalman–Oldroyd (JSO) fluid [9, 11, 5], or KBKZ fluid (see [1, 5]). In this paper we consider the JSO model and research which has been motivated by recent rheological experiments due to Lim and Schowalter [7]. Their experimental data suggests that a nearly periodic regime bifurcates from a steady state when the volumetric flow rate was gradually loaded beyond a critical value. In [10] Malkus *et al.* developed a mathematical theory capable of describing bifurcation phenomena in a piston driven flow of shearing motions of a non-Newtonian fluid. They considered the Johnson–Segalman–Oldroyd model of a shear flow of a non-Newtonian fluid leading to a system of three parabolic–hyperbolic equations.

$$\varepsilon v_t - v_{\xi\xi} = \sigma_{\xi} + f,$$

$$\sigma_t + \sigma = (1+n)v_{\xi}, \quad (t,\xi) \in [0,\infty) \times [0,1],$$

$$n_t + n = -\sigma v_{\xi},$$

(1.3)

where v is directional velocity of a planar shear flow, σ is the extra shear stress and n is the normal stress difference. The dimensionless number $\varepsilon > 0$ is proportional to the ratio of the Reynolds number to Deborah number and, in practice, ε is very small compared to other the terms in (1.3), $\varepsilon = O(10^{-12})$. This gives rise to treating $0 < \varepsilon \ll 1$ as a small parameter and to study a reduced system of equations (1.3) in which $\varepsilon = 0$. The problem to be considered here consists in the construction of a driving pressure gradient f as a function of the flow variables σ , n in such a way that the output of the volumetric flow rate per unit cross-section, $Q(t) = \int_0^1 v(t, \xi) d\xi$ is fixed at the prescribed value Q_{fix} . It turns out that f has the form of a non-local functional of σ , $f = \Xi_0(\sigma) = 3\eta Q_{\text{fix}} - 3\int_0^1 \xi \sigma(\xi) d\xi$ (see, [10, (FB)]). Numerical simulations performed in [10] showed that such a quasi-dynamic approximation of the full system (1.3) is capable of capturing an interesting phenomenon of the existence of nearly

periodic oscillations in the pressure gradient f observed recently in rheological experiments due to Lim and Showalter [7].

We apply Theorem 1.1 in order to show that, for small values of $\varepsilon > 0$, there exists a real valued dissipative feedback synthesis $f = f_{\varepsilon}(\sigma, n)$ for the pressure gradient such that $Q(t) \rightarrow Q_{\text{fix}}$ as $t \rightarrow \infty$ along solutions of the full system of equations (1.3). Moreover, there exists an infinite-dimensional inertial manifold $\mathcal{M}_{\varepsilon}$ for system (1.3), $0 < \varepsilon \ll 1$, and the volumetric flow rate Q of a solution belonging to $\mathcal{M}_{\varepsilon}$ is fixed at the prescribed value Q_{fix} . These results are summarized in Theorem 6.3. The vector field governing the motion on the invariant manifold $\mathcal{M}_{\varepsilon}$ is compared to that of the reduced problem. It is shown that they are locally C^1 close for small values of the singular parameter.

2. Preliminaries

Let E_1, E_2 be Banach spaces and $\eta \in (0, 1]$. By $L(E_1, E_2)$ we denote the Banach space of all linear bounded operators from E_1 to E_2 . For an open subset $\mathscr{B} \subset E_1$, $C^k(\mathscr{B}, E_2)$ denotes the vector space of all k-times continuously Frechet differentiable mappings $F: \mathscr{B} \to E_2$. By $C^{k,1}(\mathscr{B}, E_2)$ we denote the vector space consisting of all $F \in C^k(\mathscr{B}, E_2)$ such that all derivatives D^iF , i = 0, 1, ..., k are globally Lipschitz continuous. $C_{bdd}^1(\mathscr{B}, E_2)$ denotes the Banach space consisting of the mappings $F \in C^1(\mathscr{B}, E_2)$ which are Frechet differentiable and such that F, DF are bounded and uniformly continuous, the norm being given by $||F||_1^2 := (\sup |F|)^2 + (\sup |DF|)^2$. Finally, $C_{bdd}^{1+\eta}(\mathscr{B}, E_2)$ will denote the Banach space consisting of the mappings $F \in C_{bdd}^1(\mathscr{B}, E_2)$ such that DF is η -Hölder continuous, the norm being given by $||F||_{1,\eta} := ||F||_1 + \sup_{x \neq y} ||DF(x) - DF(y)|| ||x - y||^{-\eta}$.

Throughout the paper we will assume that

X, Y, Z are real Banach spaces;

(H1) B is a sectorial operator in X; Re $\sigma(B) > \omega > 0$ and $B^{-1}: Y \to Y$ is compact.

It follows from the theory of sectorial operators that -B generates the exponentially decaying analytic semigroup of linear operators $\exp(-Bt)$, $t \ge 0$, on Y. Moreover, there is a constant $M \ge 1$ such that

$$\|\exp(-Bt)\|_{Y^{\beta}} \leq Mt^{-\beta} e^{-\omega t} \quad \text{for any } t > 0 \text{ and } \beta \ge 0.$$
(2.1)

By Y^{β} , $\beta \in \mathbb{R}$ we have denoted a fractional power space with respect to the sectorial operator B, $Y^{\beta} = [D(B^{\beta})]$, $||y||_{Y^{\beta}} = ||B^{\beta}y||_{Y}$. Furthermore, $||B^{\beta-1}|| \leq M\omega^{\beta-1}$ (cf [6, chapter 1]).

3. Construction of an (x, y)-dependent dissipative feedback synthesis

In this section we give a partial answer to the problem of the existence of a dissipative feedback synthesis that stabilizes a given output functional $Q_{\varepsilon}(x, y)$. We present a constructive method on how to obtain a feedback law of the form $z = \theta_{\varepsilon}(x, y)$ from the governing equations. In contrast to the required form of the

synthesis $z = \Xi_{\varepsilon}(x)$ we allow the variable z to be a functional of both the x and y variables. The idea is rather simple and a function $\theta_{\varepsilon}: X \times Y^{\beta} \to Z$ is constructed in such a way that the *E*-valued functional $t \mapsto Q_{\varepsilon}(x(t), y(t))$ decays exponentially along any solution (x(t), y(t)) of system (1.1). Obviously, such an asymptotic behaviour is justified in the case when

$$\varepsilon \frac{\mathrm{d}}{\mathrm{d}t} Q_{\varepsilon}(x(t), y(t)) + \kappa Q_{\varepsilon}(x(t), y(t)) = 0, \quad t > 0$$
(3.1)

for any solution (x(.), y(.)) of (1.1). Here $\kappa > 0$ is a fixed positive constant. Let us assume that G_{ε} and F_{ε} are X and Y valued functions, respectively. Using the chain rule the equation for $z = \theta_{\varepsilon}(x, y)$ can be deduced from equation (3.1), i.e.

$$\mathscr{H}_{\varepsilon}(x, y, z) = 0, \tag{3.2}$$

where x = x(t), y = y(t), t > 0, $z = \theta_{\varepsilon}(x, y)$ and

$$\mathscr{H}_{\varepsilon}(x, y, z) = \varepsilon D_{x} Q_{\varepsilon}(x, y) G_{\varepsilon}(x, y, z) + D_{y} Q_{\varepsilon}(x, y) [F_{\varepsilon}(x, y, z) - By] + \kappa Q_{\varepsilon}(x, y).$$
(3.3)

Suppose that there are constants $\beta \in [0, 1)$, $\eta \in (0, 1]$ such that, for any $\varepsilon \in [0, \varepsilon_0]$,

(H2)
$$Q_{\varepsilon} \in C^{2,1}(X \times Y^{\beta-1}, E), E \text{ is a real Banach space.}$$

The function $\mathscr{H}_{\varepsilon}: X \times Y^{\beta} \times Z \to E$ is well-defined because $F_{\varepsilon}(x, y, z) - By \in Y^{\beta-1}$ for any $(x, y, z) \in X \times Y^{\beta} \times Z$ and $D_{y}Q_{\varepsilon} \in L(Y^{\beta-1}, E)$.

For any bounded and open subset $\mathscr{B} \subset X \times Y^{\beta}$ there is a function $\theta_{\varepsilon} \in C^{1,1}_{bdd}(\mathscr{B}, Z) \cap C^{0,1}(X \times Y^{\beta}, Z)$ such that

$$\mathscr{H}_{\varepsilon}(x, y, z) = 0 \text{ iff } z = \theta_{\varepsilon}(x, y) \text{ for any } (x, y) \in X \times Y^{\beta}, \text{ and} \\ \theta_{\varepsilon} \to \theta_{0} \text{ as } \varepsilon \to 0^{+} \text{ in } C^{1,1}_{bdd}(\mathscr{B}, Z)$$

If, in addition to (H2), hypothesis (H3) is fulfilled then by (3.1) we have

$$Q_{\varepsilon}(x(t), y(t)) = O(e^{-\kappa t/\varepsilon}) \text{ as } t \to \infty \quad \text{for } 0 < \varepsilon \le \varepsilon_0$$

$$Q_0(x(t), y(t)) = 0 \quad \text{for any } t \ge 0.$$
(3.4)

Henceforth, the property

(113)

 $\lim_{\varepsilon \to 0^+} \phi_{\varepsilon} = \phi_0 \text{ in } C^1_{bdd}(\mathscr{B}, E_2) \text{ for any bounded and open subset } \mathscr{B} \subset E_1$

will be referred to as local C^1 closeness of ϕ_{ε} and ϕ_0 .

Up to this point we did not make any precise assumptions on smoothness of non-linearities G_{ε} and F_{ε} appearing in (1.1) as right-hand sides. Henceforth, we will assume that G_{ε} and F_{ε} are such that

$$\begin{aligned} \mathscr{G}_{\varepsilon} &\in C^{1}_{bdd}(X \times Y^{\beta}, X), \quad \mathscr{F}_{\varepsilon} \in C^{1+\eta}_{bdd}(X \times Y^{\beta}, Y), \\ (\text{H4}) & \| \mathscr{G}_{\varepsilon} - \mathscr{G}_{0} \|_{1} + \| \mathscr{F}_{\varepsilon} - \mathscr{F}_{0} \|_{1} = O(\varepsilon) \text{ as } \varepsilon \to 0^{+}, \\ & \text{where } \mathscr{G}_{\varepsilon}(x, y) \coloneqq G_{\varepsilon}(x, y, \theta_{\varepsilon}(x, y)), \quad \mathscr{F}_{\varepsilon}(x, y) \coloneqq F_{\varepsilon}(x, y, \theta_{\varepsilon}(x, y)). \end{aligned}$$

We remark that $G_{\varepsilon}(F_{\varepsilon})$ need not be necessarily a function from $X \times Y^{\beta} \times Z$ into X(Y). We only require that the composite function $\mathscr{G}_{\varepsilon}(\mathscr{F}_{\varepsilon})$ takes $X \times Y^{\beta}$ into X(Y).

According to the theory of abstract parabolic equations due to Henry [6, Theorems 3.3.3, 3.3.4], the initial value problem for the system of equations

$$\begin{aligned} x_t &= \mathscr{G}_{\varepsilon}(x, y),\\ \varepsilon y_t &+ By = \mathscr{F}_{\varepsilon}(x, y) \end{aligned} \tag{3.5}$$

possesses global-in-time strong solutions and system (3.5) generates a global C^1 semiflow $\overline{\mathscr{I}}_{\varepsilon}$, $t \ge 0$, on the phase-space

$$\mathscr{X} = X \times Y^{\beta}.$$

By a global strong solution of (3.5) with an initial condition $(x_0, y_0) \in \mathcal{X}$ we mean a function $(x, y) \in C_{loc}([0, \infty); \mathcal{X}) \cap C^1_{loc}((0, \infty); \mathcal{X})$ such that $(x(t), y(t)) \in X \times D(B)$ for any t > 0, and $(x(\cdot), y(\cdot))$ solves system (3.5) on $(0, \infty)$.

Let us denote

$$\delta(F_0, \theta_0) = \sup_{(x, y)} \|D_y \mathscr{F}_0(x, y)\|, \text{ where } \mathscr{F}_0(x, y) \coloneqq F_0(x, y, \theta_0(x, y)).$$
(3.6)

If $\delta(F_0, \theta_0) < \omega^{1-\beta}/M$ then we have

$$\|B^{-1}D_{y}\mathscr{F}_{0}(x,y)\|_{L(Y^{\beta},Y^{\beta})} \leq \|B^{\beta-1}\|\sup\|D_{y}\mathscr{F}_{0}\| \leq M\omega^{\beta-1}\delta < 1.$$

By the implicit function theorem there exists a C_{bdd}^1 function $\Phi_0: X \to Y^\beta$ such that $By = \mathscr{F}_0(x, y)$ iff $y = \Phi_0(x)$. By a global strong solution of (3.5), $\varepsilon = 0$, with an initial condition $x_0 \in X$ we mean a function $x \in C_{loc}([0, \infty); X) \cap C_{loc}^1(0, \infty); X)$ such that $x(\cdot)$ solves the equation $x_t = \mathscr{G}_0(x, \Phi_0(x))$ on \mathbb{R}^+ . Again due to the above references to Henry's lecture notes this equation generates a global semi-flow $\widehat{\mathscr{G}}_0(t), t \ge 0$, on X. The semi-flow $\widehat{\mathscr{G}}_0$ can be naturally extended to a semi-flow $\overline{\mathscr{G}}_0$ acting on the Banach submanifold

$$\mathcal{M}_0 = \{ (x, \Phi_0(x)), \, x \in X \} \subset \mathcal{X}$$

$$(3.7)$$

by $\overline{\mathscr{G}}_0(t)(x, \Phi_0(x)) := \widehat{\mathscr{G}}_0(t)x$ for any $x \in X$. In what follows, we will identify the semiflow $\widehat{\mathscr{G}}_0$ with $\overline{\mathscr{G}}_0$.

4. Abstract singular perturbation theorem

This section is focused on the C^1 singular limiting behaviour of inertial manifolds $\mathcal{M}_{\varepsilon}$ for semiflows $\bar{\mathcal{G}}_{\varepsilon}$ generated by solutions of the ε -parameterized system of equations (3.5). We recall an abstract result on limiting behaviour of inertial manifolds for a singularly perturbed system of evolution equations (3.5). The theorem below ensures both the existence of $\mathcal{M}_{\varepsilon}$ as well as C^1 closeness of $\mathcal{M}_{\varepsilon}$ and \mathcal{M}_0 for $\varepsilon > 0$ small enough.

Theorem 4.1. ([14, Theorem 3.9]). Assume that hypotheses (H1) and (H4) hold. Then there are constants $\delta_0 > 0$ and $0 < \varepsilon_1 \leq \varepsilon_0$ such that if $\sup_{(x,y)} \|D_y \mathscr{F}_{\varepsilon}(x,y)\|_{L(Y^{\theta},Y)} \leq \delta_0$ then, for any $\varepsilon \in [0, \varepsilon_1]$, there exists an inertial manifold $\mathcal{M}_{\varepsilon}$ for the semi-flow $\overline{\mathscr{F}}_{\varepsilon}$ generated by the system of evolution equations (3.5) and, moreover,

(a) $\mathcal{M}_{\varepsilon} = \{(x, \Phi_{\varepsilon}(x)), x \in X\}, where \Phi_{\varepsilon} \in C^{1}_{bdd}(X, Y^{\beta});$

(b) $\Phi_{\varepsilon} \to \Phi_0$ as $\varepsilon \to 0^+$ in $C^1_{bdd}(\mathscr{B}, Y^{\beta})$ for any bounded open subset $\mathscr{B} \subset X$.

If dim $(X) = \infty$ then $\mathcal{M}_{\varepsilon}$ is an infinite-dimensional Banach submanifold of the phasespace $\mathscr{X} = X \times Y^{\beta}$. If dim $(Y) = \infty$ then codim $(\mathcal{M}_{\varepsilon}) = \infty$.

5. Construction of an x-dependent dissipative feedback synthesis. Proof of Theorem 1.1

Now we are in a position to prove the existence of a dissipative feedback synthesis of the required form $z = \Xi_{\varepsilon}(x)$. We assume that hypotheses (H1)–(H4) hold and, moreover,

$$\delta(F_0, \theta_0) < \delta_0, \tag{5.1}$$

where $\delta_0 > 0$ is the constant of Theorem 4.1. Then $\sup_{(x, y)} || D_y \mathscr{F}_{\varepsilon}(x, y) || < \delta_0$ for any $\varepsilon \in [0, \varepsilon_0], \varepsilon_0 > 0$ small enough. As an immediate consequence of Theorem 4.1 we obtain the existence of an inertial manifold

$$\mathscr{M}_{\varepsilon} = \{ (x, \Phi_{\varepsilon}(x)), x \in X \} \subset \mathscr{X}$$

$$(5.2)$$

for the semi-flow $\bar{\mathscr{I}}_{\varepsilon}$ generated by system (3.5). Moreover, $\Phi_{\varepsilon} \in C^{1}_{bdd}(X, Y^{\beta})$ and

$$\Phi_{\varepsilon} \to \Phi_0 \quad \text{as} \quad \varepsilon \to 0^+ \quad \text{in } C^1_{bdd}(\mathscr{B}, Y^{\beta})$$

$$\tag{5.3}$$

for any bounded and open subset $\mathscr{B} \subset X$. Let us define the feedback law $\Xi_{\varepsilon} : X \to Z$ as follows:

$$\Xi_{\varepsilon}(x) := \theta_{\varepsilon}(x, \Phi_{\varepsilon}(x)) \quad x \in X.$$
(5.4)

Since we have assumed $\theta_{\varepsilon} \in C^{1,1}_{bdd}(\mathscr{B}, Z) \cap C^{0,1}(\mathscr{X}, Z)$ and $\theta_{\varepsilon} \to \theta_0$ in $C^1_{bdd}(\mathscr{B}, Z)$ as $\varepsilon \to 0^+$ for any bounded and open subset $\mathscr{B} \subset \mathscr{X} = X \times Y^{\beta}$ we infer from Theorem 4.1 that

$$\Xi_{\varepsilon} \in C^{0,1}(X,Z) \cap C^{1}_{bdd}(\mathscr{B},Z), \qquad \Xi_{\varepsilon} \to \Xi_{0} \text{ in } C^{1}_{bdd}(\mathscr{B},Z) \text{ as } \varepsilon \to 0^{+}, \tag{5.5}$$

where \mathcal{B} is an arbitrary bounded and open subset of X. Again due to Henry's theory the system

$$x_t = G_{\varepsilon}(x, y, \Xi_{\varepsilon}(x)),$$

$$\varepsilon y_t + By = F_{\varepsilon}(x, y, \Xi_{\varepsilon}(x))$$
(5.6)

generates a global semiflow $\mathscr{S}_{\varepsilon}$ on \mathscr{X} for $0 < \varepsilon \leq \varepsilon_1$ and \mathscr{S}_0 on \mathscr{M}_0 , respectively. Furthermore, we observe that the right-hand side of system (5.6) and that of system (3.5), i.e.

$$x_t = G_{\varepsilon}(x, y, \theta_{\varepsilon}(x, y)),$$

$$\varepsilon y_t + By = F_{\varepsilon}(x, y, \theta_{\varepsilon}(x, y))$$
(5.7)

coincide on the set $\mathcal{M}_{\varepsilon}, \varepsilon \in [0, \varepsilon_1]$. Thus $\mathcal{G}_{\varepsilon}(t)(x_0, y_0) = \overline{\mathcal{G}}_{\varepsilon}(t)(x_0, y_0)$ for any $(x_0, y_0) \in \mathcal{M}_{\varepsilon}$ and $t \ge 0$. Since $\mathcal{M}_{\varepsilon}$ is invariant for the semi-flow $\overline{\mathcal{G}}_{\varepsilon}$ we conclude that the set $\mathcal{M}_{\varepsilon}$ is an invariant manifold for the semi-flow $\mathcal{G}_{\varepsilon}$ as well. Notice that \mathcal{G}_0 and $\overline{\mathcal{G}}_0$ are defined on \mathcal{M}_0 and they are equal. Although the set $\mathcal{M}_{\varepsilon}$ is an attractive invariant manifold (inertial manifold) for $\overline{\mathcal{G}}_{\varepsilon}$ it should be emphasized that it is not obvious that $\mathcal{M}_{\varepsilon}$ is an attractive set for $\mathcal{G}_{\varepsilon}$. The reason is that governing systems (5.6) and (5.7) may differ outside the set $\mathcal{M}_{\varepsilon}$. Nevertheless, we will show that the semi-flows $\mathcal{G}_{\varepsilon}$ and $\overline{\mathcal{G}}_{\varepsilon}$ are exponentially asymptotically equivalent.

Lemma 5.1. There exists a constant $\mu > 0$ such that for any $(x_0, y_0) \in \mathscr{X}$ there is $(x_0^*, y_0^*) \in \mathscr{M}_{\varepsilon}$ with the property

$$\|\mathscr{S}_{\varepsilon}(t)(x_0, y_0) - \bar{\mathscr{S}}_{\varepsilon}(t)(x_0^*, y_0^*)\|_{\mathscr{X}} = O(e^{-\mu t}) \quad \text{as } t \to \infty.$$
(5.8)

Proof. This is just the proof of [3, Theorem 5.1] and it follows the lines of the proof of the existence of exponential tracking to a centre-unstable manifold. A slightly modified version of this proof is also contained in [14, Lemma 3.5]. This version utilizes compactness of the operator B^{-1} .

The idea is as follows. Let us fix $0 < \varepsilon \leq \varepsilon_1$. Given a solution $(x(\cdot), y(\cdot)) = \mathscr{S}_{\varepsilon}(\cdot)$ (x_0, y_0) of (5.6) we will prove the existence of an initial condition $(x_0^*, y_0^*) \in \mathscr{M}_{\varepsilon}$ with the property $(u(\cdot), v(\cdot)) \in C_{\mu}^+(\mathscr{X})$, where $(u(t), v(t)) = \overline{\mathscr{S}}_{\varepsilon}(t)(x_0^*, y_0^*) - \mathscr{S}_{\varepsilon}(t)(x_0, y_0)$ and C_{μ}^+ is the Banach space

$$C^{+}_{\mu}(\mathscr{X}) := \{ f \in C([0, \infty), \mathscr{X}), \| f \|_{C^{+}_{\mu}} = \sup_{t \ge 0} e^{\mu t} \| f(t) \|_{\mathscr{X}} < \infty \}.$$

Obviously, the existence of such an initial condition (x_0^*, y_0^*) implies statement (5.8).

Let us choose $\mu > 0$. Taking into account the decay estimate (2.1) for the semigroup $\exp(-Bt)$ we have that (u, v) belongs to C_{μ}^{+} , if and only if it is a solution of the following pair of integral equations:

$$u(t) = \int_{-\infty}^{t} g(s, u(s), v(s)) ds$$

$$v(t) = \exp(-Bt/\varepsilon)\xi + \frac{1}{\varepsilon} \int_{0}^{t} \exp(-B(t-s)/\varepsilon) f(s, u(s), v(s)) ds, \quad t \ge 0,$$
(5.9)

for some $\xi \in Y^{\beta}$, where

$$g(s, u, v) = G_{\varepsilon}(x^{*}(s), y^{*}(s), \theta_{\varepsilon}(x^{*}(s), y^{*}(s))) - G_{\varepsilon}(x^{*}(s) - u, y^{*}(s) - v, \Xi_{\varepsilon}(x^{*}(s) - u)),$$

$$f(s, u, v) = F_{\varepsilon}(x^{*}(s), y^{*}(s), \theta_{\varepsilon}(x^{*}(s), y^{*}(s))) - F_{\varepsilon}(x^{*}(s) - u, y^{*}(s) - v, \Xi_{\varepsilon}(x^{*}(s) - u)).$$

Since $\mathcal{M}_{\varepsilon}$ is invariant for $\overline{\mathcal{G}}_{\varepsilon}$ we have $y^*(s) = \Phi_{\varepsilon}(x^*(s))$ and hence $\theta_{\varepsilon}(x^*(s), y^*(s)) = \Xi_{\varepsilon}(x^*(s))$ for any $s \ge 0$. Thus, $\|\zeta(s, u, v)\|_X \le C(\|u\|_X + \|v\|_{Y^{\beta}})$ where ζ stands either for g or f and C > 0 is a positive constant depending only on the Lipschitz constants of the mappings $G_{\varepsilon}, F_{\varepsilon}, \theta_{\varepsilon}, \Phi_{\varepsilon}$. Notice that the constant C > 0 can be chosen to be independent of $\varepsilon \in (0, \varepsilon_1]$. The rest of the proof is essentially the same as that of [3, Theorem 5.1] or [14, Lemma 3.5] and therefore is omitted. We only remind ourselves that, using the integral equations (5.9), the main idea is to set-up a suitable fixed point equation for $\xi \in Y^{\beta}$ by requiring that $(x_0^*, y_0^*) = (x_0 - u(0), y_0 - \xi)$ must be an element of the manifold $\mathcal{M}_{\varepsilon} = \text{Graph}(\Phi_{\varepsilon})$. To solve such a fixed point equation $\mu > 0$ must be chosen large enough.

Lemma 5.2. The output functional Q_{ε} vanishes on $\mathcal{M}_{\varepsilon}$, i.e. $Q_{\varepsilon}(x_0, y_0) = 0$ for any $(x_0, y_0) \in \mathcal{M}_{\varepsilon}$.

Proof. The proof utilizes a simple invariance argument. Let $(x_0, y_0) \in \mathcal{M}_{\varepsilon}$ be fixed. Since $\mathcal{M}_{\varepsilon}$ is invariant for the semi-flow $\bar{\mathcal{G}}_{\varepsilon}$, for any $t \ge 0$, there is $(x_{-t}, y_{-t}) \in \mathcal{M}_{\varepsilon}$ such that $\overline{\mathscr{G}}_{\varepsilon}(t)(x_{-t}, y_{-t}) = (x_0, y_0)$. Clearly, $x_0 = x_{-t} + \int_{-t}^0 \mathscr{G}_{\varepsilon}(\overline{\mathscr{G}}_{\varepsilon}(s)(x_{-t}, y_{-t})) ds$. Hence, $\|x_0 - x_{-t}\| \leq \|\mathscr{G}_{\varepsilon}\|_0 t$. Furthermore, as $(x_{-t}, y_{-t}) \in \mathscr{M}_{\varepsilon}$ we have $y_{-t} = \Phi_{\varepsilon}(x_{-t})$ and so $\|y_{-t}\| \leq \|\Phi_{\varepsilon}\|_0$. Solving the linear homogeneous equation (3.1) we obtain $Q_{\varepsilon}(x_0, y_0)$ $= Q_{\varepsilon}(\overline{\mathscr{G}}_{\varepsilon}(t)(x_{-t}, y_{-t})) = Q_{\varepsilon}(x_{-t}, y_{-t})e^{-\kappa t/\varepsilon}, t \geq 0$. We remind ourselves that the output functional is assumed to be globally Lipschitz continuous and this is why

$$\|Q_{\varepsilon}(x_{0}, y_{0})\|(e^{\kappa t/\varepsilon} - 1) = \|Q_{\varepsilon}(x_{-t}, y_{-t}) - Q_{\varepsilon}(x_{0}, y_{0})\| \\ \leq \lim_{t \to \infty} (Q_{\varepsilon})(\|x_{-t} - x_{0}\|_{X} + \|y_{-t} - y_{0}\|_{Y^{\beta}}) \leq \lim_{t \to \infty} (Q_{\varepsilon})(2\|\Phi_{\varepsilon}\|_{0} + \|\mathscr{G}_{\varepsilon}\|_{0}t).$$

Comparing the growth in $t \ge 0$ of the left- and right-hand sides of the above inequality we conclude $Q_{\varepsilon}(x_0, y_0) = 0$. Since $(x_0, y_0) \in \mathcal{M}_{\varepsilon}$ was arbitrary the proof of the lemma follows.

Proof of Theorem 1.1. Under hypotheses (H1)–(H4) and assumption (5.1) we have established the existence of a dissipative feedback synthesis Ξ_{ε} (see (5.4) and Lemma 5.2). The regularity and convergence properties of Ξ_{ε} were shown in (5.5). Since, Q_{ε} is globally Lipschitz continuous the statement c) of Theorem 1.1 follows from Lemmas 5.1 and 5.2. Again with regard to Lemma 5.1, the manifold $\mathcal{M}_{\varepsilon}$ is an inertial manifold for the semi-flow $\mathcal{G}_{\varepsilon}$ generated by system (5.6). By (5.2) $\mathcal{M}_{\varepsilon}$ is a C^1 graph over the space X and the convergence property $\Phi_{\varepsilon} \to \Phi_0$ as $\varepsilon \to 0^+$ follows from (5.3). Hence, the statement (d) also holds.

6. An application to the Johnson-Segalman-Oldroyd model of shearing motions of a piston driven non-Newtonian fluid

6.1. Governing equations

In order to examine the behaviour of a piston driven flow of a non-Newtonian fluid we consider the Johnson-Segalman-Oldroyd constitutive model of shearing motions of a planar Poiseuille flow within a thin channel. The channel is aligned along the y-axis and extends between $x \in [-1, 1]$. The flow is assumed to be symmetric with respect to x = 0 and the fluid undergoes simple shearing. Therefore, we can restrict ourselves to the interval $x \in [0, 1]$. Moreover, the flow variables (velocity and stresses) are independent of y so $\vec{v} = (0, v(t, x))$. To determine the extra stress tensor as a functional of the rate of a deformation tensor we consider the Johnson-Segalman-Oldroyd constitutive law (see [9] for details). In non-dimensional units the system of partial differential equations governing the motion of such a fluid is a system of parabolic-hyperbolic equations:

$$\sigma_t = -\sigma + (1+n)v_x,$$

$$n_t = -n - \sigma v_x,$$

$$\varepsilon v_t = \eta v_{xx} + \sigma_x + f,$$
(6.1)

 $(t, x) \in [0, \infty) \times [0, 1]$, subject to boundary and initial conditions

$$v_x(t, 0) = v(t, 1) = \sigma(t, 0) = 0 \quad \text{for any } t \ge 0$$

$$v(0, x) = v_0(x), \ \sigma(0, x) = \sigma_0(x), \ n(0, x) = n_0(x) \quad \text{for } x \in [0, 1].$$
(6.2)

Here σ is the extra shear stress, *n* is the normal stress difference. It should be noted that in the case of a pressure driven flow studied in [9, 11, 15] the pressure gradient $f \in R$ is fixed. On the other hand, in the case of a piston driven flow (see [10] or [5, chapter 3]) the pressure gradient *f* is assumed to vary with respect to time. The parameters $\varepsilon > 0$ and $\eta > 0$ are proportional to the ratio of the Reynolds number to the Deborah number and the Newtonian viscosity to shear viscosity, respectively. In rheological experiments the number ε is very small compared to other terms in (6.1), $\varepsilon = O(10^{-12})$ (see [9]). This gives rise to treating $0 < \varepsilon \ll 1$ as a small parameter and investigate the singular limiting behavior of system (6.1)–(6.2) when $\varepsilon \to 0^+$. We refer to [9] for the complete derivation of a system of governing equations.

For the purpose of this analysis, let us introduce the following change of variables:

$$(\sigma, n, v) \leftrightarrow (\Sigma, n, u), \quad \Sigma(x) := -\int_{x}^{1} \sigma(\xi) d\xi, \quad u := \eta v + \Sigma.$$
 (6.3)

In terms of the new variables (Σ, n, u) system (6.1) has the form

$$\Sigma_t = G^{(\Sigma)},$$

$$n_t = G^{(n)},$$

$$\varepsilon u_t - \eta u_{xx} = \eta f + \varepsilon G^{(\Sigma)},$$

(6.4)

where the non-linear functions $G^{(\Sigma)}$, $G^{(n)}$ are defined as

$$G^{(\Sigma)} = G^{(\Sigma)}(\Sigma, n, u) = -\Sigma - \frac{1}{\eta} \int_{x}^{1} (1 + \eta(\xi)) [u_{x}(\xi) - \Sigma_{x}(\xi)] d\xi,$$

$$G^{(n)} = G^{(n)}(\Sigma, n, u) = -n - \frac{1}{\eta} \Sigma_{x} [u_{x} - \Sigma_{x}].$$
(6.5)

The corresponding boundary conditions are

 $u_x(t,0) = u(t,1) = \Sigma_x(t,0) = \Sigma(t,1) = 0$ for any $t \ge 0$. (6.6)

Let $Q_{\text{fix}} \in R$ be a prescribed value of the volumetric flow rate. If Q denotes the variation in the volumetric flow rate of a planar flow per unit cross-section, i.e. $Q = \int_0^1 v(\xi) d\xi - Q_{\text{fix}}$ then Q can be rewritten in terms of Σ and u as

$$Q(\Sigma, u) = \frac{1}{\eta} \int_0^1 \left[u(\xi) - \Sigma(\xi) \right] d\xi - Q_{\text{fix}}.$$
 (6.7)

The feedback law $f = \theta_{\varepsilon}((\Sigma, n), u)$ can be then readily deduced from equation (3.2). In our application (3.1) and (3.2) become

$$\begin{split} \varepsilon D_{\Sigma} Q \circ G^{(\Sigma)} &+ D_u Q \circ [\varepsilon G^{(\Sigma)} + \eta f + \eta u_{xx}] \\ &= -\frac{\varepsilon}{\eta} \int_0^1 G^{(\Sigma)} + \frac{1}{\eta} \int_0^1 \left[\eta u_{xx}(\xi) + \eta f + \varepsilon G^{(\Sigma)} \right] \mathrm{d}\xi + \frac{\kappa}{\eta} \int_0^1 \left[u(\xi) - \Sigma(\xi) \right] \mathrm{d}\xi \\ &- \kappa Q_{\mathrm{fix}} = 0. \end{split}$$

Thus, for any $\varepsilon \ge 0$, we obtain

$$f = \theta(\Sigma, u) = -u_x(1) - \frac{\kappa}{\eta} \int_0^1 \left[u(\xi) - \Sigma(\xi) \right] d\xi + \kappa Q_{\text{fix}}.$$
(6.8)

Remark 6.1. It should be noted that in the case of the reduced problem ($\varepsilon = 0$) one can calculate that $u(x) = (1 - x^2)f/2$. Taking into account (6.8) one has $f = 3\eta Q_{\text{fix}} + 3\int_0^1 \Sigma(\xi) d\xi$. In terms of the flow variable σ it means that

$$f = 3\eta Q_{\rm fix} - 3\int_0^1 \xi \sigma(\xi) \,\mathrm{d}\xi$$

which is, up to rescaling, the same formula for the driving pressure gradient as that obtained in [10], formulae (FB).

Incorporating the feedback law $f = \theta(\Sigma, u)$ into system (6.4) we can rewrite the system of governing equations (6.4) in an abstract form

$$\Sigma_{t} = G^{(2)}(\Sigma, n, u),$$

$$n_{t} = G^{(n)}(\Sigma, n, u),$$

$$\varepsilon u_{t} + Bu = \mathscr{F}_{\varepsilon}(\Sigma, n, u),$$
(6.9)

where B is a linear operator, $Bu(x) = -\eta u_{xx}(x) + \eta u_x(1) + \kappa \int_0^1 u(\xi) d\xi$, $x \in [0, 1]$, and

$$\mathscr{F}_{\varepsilon}(\Sigma, n, u) = \kappa \int_{0}^{1} \Sigma + \kappa \eta Q_{\text{fix}} + \varepsilon G^{(\Sigma)}(\Sigma, n, u)$$
(6.10)

and the non-linearities $G^{(\Sigma)}$, $G^{(n)}$ are as defined in (6.5). Notice that the derivative $D_u \mathscr{F}_{\varepsilon}$ vanishes for $\varepsilon = 0$.

6.2. Function space and operator setting

Let *Y* denote the real Hilbert space $L^2(0, 1)$ of square integrable functions; $||u||_Y^2 = \int_0^1 |u|^2$. For fixed positive real numbers η , $\kappa > 0$, we denote by *B* the linear operator $Bu = -\eta u_{xx} + \eta u_x(1) + \kappa \int_0^1 u(\xi) d\xi$ its domain being the Sobolev space $D(B) = \{u \in H^2(0, 1), u_x(0) = u(1) = 0\}$. *B* is a non self-adjoint nonlocal operator. In what follows, we will show that *B* is a sectorial operator in *Y*, and, moreover, $\operatorname{Re} \sigma(B) > 0$. To this end, we decompose the operator *B* as $B = \mathscr{B} + \mathscr{L}$ where $\mathscr{L}u = \eta u_x(1) + \kappa \int_0^1 u(\xi) d\xi$ and \mathscr{B} is a self-adjoint operator in *Y*, $\mathscr{B}u = -\eta u_{xx}$ for any $u \in D(\mathscr{B}) = D(B)$. The operator \mathscr{B} is sectorial in *Y* and $\operatorname{Re} \sigma(\mathscr{B}) \ge \eta \pi^2/4 > 0$ (see [6, chapter 1]). Since the embedding $[D(\mathscr{B}^\beta)] \subseteq C_{bdd}^1(0, 1)$ is continuous for any $\beta > 3/4$ we have $\|\mathscr{L}u\|_Y \le C \|\mathscr{B}^\beta u\|$ for any $u \in D(\mathscr{B})$ and $\beta > \frac{3}{4}$. According to [6, Corollary 1.4.5 and Example 11, p. 28] we conclude that the sum $B = \mathscr{B} + \mathscr{L}$ is a sectorial operator in *Y* as well. Moreover, the norm in the fractional power space $[D(B^\beta)]$ is equivalent to that of $[D(\mathscr{B}^\beta)]$. It remains to estimate the spectrum of *B* from below. First we notice that the operator $B^{-1}: Y \to Y$ exists and is given by $B^{-1}g = \int_0^1 K(.,\xi)g(\xi) d\xi$, where *K* is a Green function.

$$K(x,\xi) = \begin{cases} \frac{1-x}{\eta} + \frac{3}{2\kappa}(1-x^2) - \frac{3}{4\eta}(1-x^2)(1-\xi^2), & 0 \le \xi \le x \le 1, \\ \frac{1-\xi}{\eta} + \frac{3}{2\kappa}(1-x^2) - \frac{3}{4\eta}(1-x^2)(1-\xi^2), & 0 \le x < \xi \le 1. \end{cases}$$

Since, the kernel K is bounded the operator B^{-1} is compact and therefore the spectrum $\sigma(B)$ consists of eigenvalues, i.e. $\sigma(B) = \sigma_P(B)$. Let $\lambda \in \sigma(B)$ be an eigenvalue and $u \neq 0$ be the corresponding eigenfunction. Then $-\eta u_{xx}(x) + \eta u_x(1) + \kappa \int_0^1 u(\xi) d\xi = \lambda u(x), x \in [0, 1]$. Integrating this equation over [0, 1] and taking into account the

boundary condition $u_x(0) = 0$ we obtain $(\kappa - \lambda) \int_0^1 u = 0$. Then either $\lambda = \kappa > 0$ or $\int_0^1 u = 0$. The latter implies $-\eta u_{xx}(x) + \eta u_x(1) = \lambda u(x)$. By taking the inner product in a complexification of Y with \bar{u} we obtain $\eta \int_0^1 |u_x|^2 = \eta \int_0^1 |u_x|^2 + \eta u_x(1) \int_0^1 \bar{u} = \lambda \int_0^1 |u|^2$. Hence λ is a real number and, moreover, $\lambda \ge \inf_{u \ne 0} \eta ||u_x||^2 / ||u||^2 = \eta \pi^2/4$. Summarizing we have shown the following proposition.

Lemma 6.2. Let η , κ be any positive constants. Then the linear operator $Bu = -\eta u_{xx} + \eta u_x(1) + \kappa \int_0^1 u(\xi) d\xi$, $D(B) = \{u \in H^2(0, 1), u_x(0) = u(1) = 0\}$, is sectorial in $Y = L^2(0, 1)$. Furthermore, $\sigma(B) \subset [\omega, \infty)$ where $\omega = \min\{\kappa, \eta \pi^2/4\} > 0$. The fractional power space $Y^{\beta} = [D(\mathscr{B}^{\beta})]$ is imbeded into the Sobolev–Slobodeckii space $H^{2\beta}(0, 1)$ for $1 > \beta > 3/4$. The resolvent operator $B^{-1}: Y \to Y$ is compact.

Let X be the Banach space $X := \{(\Sigma, n) \in C^1_{bdd}(0, 1) \times C^0_{bdd}(0, 1), \Sigma_x(0) = \Sigma(1) = 0\}$. With regard to the continuity of the imbedding $Y^\beta \subseteq C^1_{bdd}(0, 1)$ for $\beta > \frac{3}{4}$, we conclude that the nonlinearities $G := (G^{(\Sigma)}, G^{(n)}) : X \times Y^\beta \to X$ and $\mathscr{F}_{\varepsilon} : X \times Y^\beta \to Y$ are locally Lipschitz continuous. Thus local solvability in $\mathscr{X} = X \times Y^\beta, \frac{3}{4} < \beta < 1$, of system (6.9) follows from [6, Theorem 3.3.3]. To prove global-in-time solvability of solutions we have to find *a priori* estimates of any solution of (6.9).

6.3. A priori estimates of solutions, dissipativeness of a semi-flow, modification of governing equations

If (Σ, n, u) is a local solution of (6.9) in the phase space \mathscr{X} then (σ, n, v) , $\sigma = \Sigma_x$, $v = (u - \Sigma)/\eta$ is a local solution of (6.1) in $C_{bdd}(0, 1) \cap \{\sigma, \sigma(0) = 0\} \times C_{bdd}(0, 1) \times Y^{\beta}$. Let us multiply the first equation in (6.1) by σ and the second one by (1 + n). Their summation leads to the identity $(d/dt)(\sigma^2 + (1 + n)^2) + 2(\sigma^2 + (1 + n)n) = 0$. As $\sigma^2 + (1 + n)^2 \leq 2(\sigma^2 + n(1 + n)) + 1$ we obtain for Σ and n the estimate

$$\|\Sigma(t,\cdot)\|_{1}^{2} + \|1 + n(t,\cdot)\|_{0}^{2} \leq 2 + 2e^{-t}(\|\Sigma_{0}\|_{1}^{2} + \|1 + n_{0}\|_{0}^{2}).$$
(6.11)

To obtain a bound of a solution u we take the inner product in $Y = L^2(0, 1)$ of the equation

$$\varepsilon u_t - \eta u_{xx} + \eta u_x(1) + \kappa \int_0^1 u = \mathscr{F}_{\varepsilon}$$
(6.12)

with $3\kappa u - \eta u_{xx}$. Since $u_x(1) = \int_0^1 u_{xx}$ for any $u \in D(B)$ we have

$$\frac{\varepsilon}{2} \frac{\mathrm{d}}{\mathrm{d}t} (3\kappa \|u\|^2 + \eta \|u_x\|^2) + \eta (3\kappa \|u_x\|^2 + \eta \|u_{xx}\|^2) + \left(\sqrt{3\kappa} \int_0^1 u + \eta u_x(1)/\sqrt{3}\right)^2 = \frac{4}{3} \eta^2 |u_x(1)|^2 + (\mathscr{F}_{\varepsilon}, 3\kappa u - \eta u_{xx})_Y.$$

Clearly, $\frac{4}{3}\eta^2 |u_x(1)|^2 = \frac{8}{3}\eta^2 \int_0^1 u_{xx} u_x \leq \frac{4}{3} \sqrt{\frac{\eta}{3\kappa}} \eta(3\kappa ||u_x||^2 + \eta ||u_{xx}||^2)$. Notice that $\frac{4}{3} \sqrt{\frac{\eta}{3\kappa}} < 1$ iff $\kappa > \frac{16}{27}\eta$. Furthermore, as $||u||_Y \leq ||u_x||_Y \leq ||u_{xx}||_Y$ for any $u \in D(B)$, we have $||3\kappa u - \eta u_{xx}||_Y^2 \leq \max\{6\kappa, 2\eta\}(3\kappa ||u_x||^2 + \eta ||u_{xx}||^2)$. Assuming $\kappa > \frac{16}{27}\eta$ and applying Schwartz's inequality to the inner product $(\mathscr{F}_{\varepsilon}, 3\kappa u - \eta u_{xx})_Y$ one can show the

existence of positive constants δ , C > 0 independent of $\varepsilon \ge 0$, such that the following Lyapunov-type inequality is satisfied

$$\frac{\varepsilon}{2}\frac{d}{dt}(3\kappa \|u\|^2 + \eta \|u_x\|^2) + \delta(3\kappa \|u_x\|^2 + \eta \|u_{xx}\|^2) \leqslant C \|\mathscr{F}_{\varepsilon}\|_Y^2.$$
(6.13)

Henceforth, C, δ will denote any generic positive constant independent of $\varepsilon \ge 0$ and initial conditions. Now, it follows from the definition of $G^{(\Sigma)}$ and $\mathscr{F}_{\varepsilon}$ that

$$\|\mathscr{F}_{\varepsilon}\|_{Y} \leq \|\mathscr{F}_{\varepsilon}\|_{0} \leq C(1 + \|\Sigma\|_{1}^{2} + \|n\|_{0}^{2})(1 + \varepsilon\|u_{x}\|_{Y}).$$
(6.14)

Then differential inequality (6.13) implies that

$$\varepsilon \frac{dU}{dt} + \delta U \leqslant C(1 + \|\Sigma\|_{1}^{4} + \|n\|_{0}^{4})(1 + \varepsilon U),$$
(6.15)

where $U(t) := 3\kappa \|u(t, \cdot)\|_Y^2 + \eta \|u_x(t, \cdot)\|_Y^2$. To obtain a bound for $\|u_t\|_Y$ we differentiate equation (6.12) with respect to time. Denoting $w = u_t$, w is a solution of

$$\varepsilon w_t - \eta w_{xx} + \eta w_x(1) + \kappa \int_0^1 w = \frac{\mathrm{d}}{\mathrm{d}t} \mathscr{F}_{\varepsilon}$$
(6.16)

subject to the boundary conditions $w_x(t, 0) = w(t, 1) = 0$. Since,

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathscr{F}_{\varepsilon} = \kappa \int_{0}^{1} \Sigma_{t} + \varepsilon \left(-\Sigma_{t} - \frac{1}{\eta} \int_{x}^{1} \left[(1+\eta)(w_{x} - \Sigma_{tx}) + n_{t}(u_{x} - \Sigma_{x}) \right] \right)$$

and

$$\begin{split} \|\Sigma_t\|_0 &\leq C(1+\|\Sigma\|_1^2+\|n\|_0^2+\|u_x\|_Y^2) \\ |\Sigma_{tx}(\cdot,x)| &\leq C(1+\|\Sigma\|_1^2+\|n\|_0^2+\|1+n\|_0|u_x(\cdot,x)|) \\ |n_t(\cdot,x)| &\leq C(1+\|\Sigma\|_1^2+\|n\|_0^2+\|\Sigma\|_1|u_x(\cdot,x)|) \end{split}$$

for a.e. $x \in [0, 1]$, we have

$$\left\|\frac{\mathrm{d}}{\mathrm{d}t}\,\mathscr{F}_{\varepsilon}\right\|_{Y} \leqslant \left\|\frac{\mathrm{d}}{\mathrm{d}t}\,\mathscr{F}_{\varepsilon}\right\|_{0} \leqslant C(1+\|\Sigma\|_{1}^{4}+\|n\|_{0}^{4})(1+\|u_{x}\|_{Y}^{2}+\varepsilon\|w_{x}\|_{Y}). \quad (6.17)$$

Now one can proceed similarly as in the proof of inequality (6.15). By taking the inner product in Y of (6.16) with $3\kappa w - \eta w_{xx}$ we obtain a differential inequality

$$\varepsilon \frac{\mathrm{d}W}{\mathrm{d}t} + \delta W \leqslant C(1 + \|\Sigma\|_{1}^{8} + \|n\|_{0}^{8})(1 + U^{2} + \varepsilon W), \tag{6.18}$$

where $W(t) := 3\kappa \| w(t, \cdot) \|_{Y}^{2} + \eta \| w_{x}(t, \cdot) \|_{Y}^{2}$. Now it follows from the evolution equation for *u* that $\| u \|_{Y^{1}} = \| Bu \|_{Y} \le \varepsilon \| u_{t} \|_{Y} + \| \mathscr{F}_{\varepsilon} \|_{Y}$. Since Re $\sigma(B) > 0$ the norm $\| u \|_{Y^{\beta}}$, $3/4 < \beta < 1$ is dominated by $\| Bu \|_{Y}$. Taking into account estimates (6.11), (6.14), (6.15) and (6.18) and using a simple Gronwall's lemma argument we obtain *a priori* estimate

$$\|\Sigma(t,\cdot)\|_1 + \|n(t,\cdot)\|_0 + \|u(t,\cdot)\|_{Y^{\beta}} \leq \text{const} \text{ for any } t \in (0, T_{\max}),$$

where T_{\max} is the maximal time of existence of a solution $(\Sigma(t, \cdot), n(t, \cdot), u(t, \cdot))$. Hence, $T_{\max} = \infty$ and the global-in-time existence of solutions in the phase space $\mathscr{X} = X \times Y^{\beta}$, $3/4 < \beta < 1$, is established.

In what follows, we will prove the existence of a ball in the phase-space \mathscr{X} that dissipates any solution of (6.9). Let $(\Sigma_0, n_0, u_0) \in \mathscr{X}$ be an initial condition. With regard to (6.11) there exists time $T_1 = T_1(\Sigma_0, n_0) > 0$ such that

$$1 + \|\Sigma\|_{1}^{p} + \|n\|_{0}^{p} \le 1995$$
 for any $t \ge T_{1}$ $p = 4, 8$.

One can choose $0 < \varepsilon_0 \ll 1$ such that $1995C\varepsilon_0 < \delta$ where constants $C, \delta > 0$ appear in inequalities (6.15) and (6.18). Then

$$\begin{split} \varepsilon \frac{\mathrm{d}U(t)}{\mathrm{d}t} + \delta U(t) &\leq C, \\ \varepsilon \frac{\mathrm{d}W(t)}{\mathrm{d}t} + \delta W(t) &\leq C(1 + U^2(t)) \quad \text{for any } t \geq T_1, \end{split}$$

where $C, \delta > 0$ are constants independent of $\varepsilon \in [0, \varepsilon_0]$ and the initial condition (Σ_0, n_0, u_0) . It should be noted that the first differential inequality does not involve W. Then solving the above differential inequalities one can show the existence of a time $T = T(\Sigma_0, n_0, u_0) \ge T_1$ such that $U(t) + W(t) \le C$ for any $t \ge T$. Recall that $||u_t(t, \cdot)||_Y^2 \le W(t)$ and $||\mathscr{F}_{\varepsilon}||_Y$ can be estimated in terms of U(t) for $t \ge T$ (see (6.15)). Thus, $||Bu(t, \cdot)||_Y \le C$ for $t \ge T$. In summary, we have shown the existence of a constant $\varrho_0 > 0$ independent of $\varepsilon \in [0, \varepsilon_0]$ and initial data, such that

$$\|u(t,\cdot)\|_{Y^{\beta}}^{2} + \|(\Sigma(t,\cdot), n(t,\cdot))\|_{X}^{2} \le \varrho_{0} \quad \text{for any } t \ge T(\Sigma_{0}, n_{0}, u_{0}).$$
(6.19)

This means that the ball in $X \times Y^{\beta}$ of radius $\rho_0^{1/2}$ is a dissipative set for solutions of (6.9), i.e. any solution enters this ball after a certain amount of time. In other words, the long-time behavior of solutions takes place inside this ball.

As is usual, we will modify the governing equation outside the ball of radius $\varrho_0^{1/2}$. Let $\zeta \in C_{bdd}^2(\mathbb{R}^+, \mathbb{R}^+)$ by any smooth cut-off function with the property $\zeta \equiv 1$ on $[0, 2\varrho_0]$, $\zeta \equiv 0$ on $[3\varrho_0, \infty)$. We define the modified functions $\overline{G} = \overline{G}^{(\Sigma)}, \overline{G}^{(n)}: X \times Y^{\beta} \to X$ and $\mathcal{F}_{\varepsilon}: X \times Y^{\beta} \to Y$ as follows:

$$\bar{G}^{(i)}(\Sigma, n, u)(x) \coloneqq \zeta(|\Sigma(x)|^2 + |\Sigma_x(x)|^2 + |n(x)|^2 + ||u||_{Y^{\beta}}^2)G^{(i)}(\Sigma, n, u)(x),$$

$$\bar{\mathscr{F}}_{\varepsilon}(\Sigma, n, u)(x) \coloneqq \zeta(|\Sigma(x)|^2 + |\Sigma_x(x)|^2 + |n(x)|^2 + ||u||_{Y^{\beta}}^2)\mathscr{F}_{\varepsilon}(\Sigma, n, u)(x)$$

for $x \in [0, 1]$, *i* stands either for Σ or *n*. We remind ourselves that the mapping $u \mapsto ||u||_{Y^{\beta}}^{2}$ is a twice continuously Frechet differentiable function from Y^{β} to *R*. The modified functions $\overline{\mathscr{G}}$ and $\overline{\mathscr{F}}_{\varepsilon}$ obey hypothesis (H4). With regard to the definitions of Q and θ (see (6.7), (6.8)) it is easy to verify that hypotheses (H2) and (H3) are also fulfilled. Since \mathscr{F}_{0} does not depend on u, the structural condition (5.1) is satisfied for any $\delta_{0} > 0$. Taking into account Lemma 6.2 and (6.3) we have shown that all the conclusions of Theorem 1.1 hold for system (6.9) except for the statement that $\mathscr{M}_{\varepsilon}$ is an invariant manifold for the semi-flow generated by solutions of (6.9). This is due to the fact that we have modified the governing equations far from the vicinity of a dissipative ball of the radius $\varrho_{0}^{1/2}$. Hence, $\mathscr{M}_{\varepsilon}$ need not be invariant outside this ball. On the other hand, it should be emphasized that the long-time behaviour of solutions of (6.9) takes place inside this ball as it was shown in (6.19). Henceforth, we will therefore refer to $\mathscr{M}_{\varepsilon}$ as a local invariant manifold for solutions of (6.9).

Now we can rewrite the feedback law in terms of the flow variables σ , n, v as follows: $f = f_{\varepsilon}(\sigma, n)$ where $f_{\varepsilon}(\sigma, n) = \Xi_{\varepsilon}(\Sigma, n)$. For the velocity field on the manifold $\mathcal{M}_{\varepsilon}$ we obtain the expression $v = \Psi_{\varepsilon}(\sigma, n) = (u - \Sigma)/\eta = (\Phi_{\varepsilon}(\Sigma, n) - \Sigma)/\eta$ where $\Sigma(x) = -\int_{x}^{1} \sigma(\xi) d\xi$. We infer from the continuity of the imbedding $Y^{\beta} \subseteq C^{1}_{bdd}(0, 1), \frac{3}{4} < \beta$, (see Lemma 6.2) that

$$\Psi_{\varepsilon}: C^{0}_{bdd}(0,1) \cap \{\sigma, \sigma(0)=0\} \times C^{0}_{bdd}(0,1) \to C^{1}_{bdd}(0,1)$$

is C^1 smooth and Ψ_{ε} is locally C^1 close to Ψ_0 . Similarly, one has

$$f_{\varepsilon}: C^0_{bdd}(0,1) \cap \{\sigma, \sigma(0)=0\} \times C^0_{bdd}(0,1) \to \mathbb{R}$$

is C^1 smooth and f_{ε} is locally C^1 close to Ψ_0 . Furthermore, with regard to Remark 6.1 we have an explicit formula for f_0 and Ψ_0 ,

$$f_0 = 3\eta Q_{\text{fix}} + 3 \int_0^1 \Sigma(\xi) \, \mathrm{d}\xi$$
$$v(x) = \Psi_0(\sigma, n)(x) = \left((1 - x^2) f_0 / 2 + \int_x^1 \sigma(\xi) \, \mathrm{d}\xi \right).$$

Summarizing the results of section 6 we can state the following theorem.

Theorem 6.3. There exists $0 < \varepsilon_0 \ll 1$ such that, for any $\varepsilon \in [0, \varepsilon_0]$, the system of equations governing the Poiseuille flow of the Johnson–Segalman–Oldroyd fluid (6.1)–(6.2) admits a dissipative feedback synthesis of the pressure gradient

$$f = f_{\varepsilon}(\sigma, n), \quad \sigma, n \in C^0_{bdd}(0, 1)$$

that stabilizes the volumetric flow rate at the prescribed value Q_{fix} . The mapping $f_{\varepsilon}: C^0_{bdd}(0, 1) \cap \{\sigma, \sigma(0) = 0\} \times C^0_{bdd}(0, 1) \to \mathbb{R}$ is C^1 -smooth and f_{ε} is locally C^1 close to f_0 whenever $\varepsilon > 0$ is small enough. The feedback law f_0 for the reduced system of equations has the form

$$f_0(\sigma, n) = 3\eta Q_{\text{fix}} - 3 \int_0^1 \xi \sigma(\xi) \,\mathrm{d}\xi.$$

The initial-value problem (6.1)–(6.2) with $f = f_{\varepsilon}(\sigma, n)$ possesses an infinite dimensional locally invariant attractive manifold $\mathcal{M}_{\varepsilon}$. The volumetric flow rate for solutions belonging to $\mathcal{M}_{\varepsilon}$ is fixed at the prescribed value Q_{fix} . The manifold $\mathcal{M}_{\varepsilon}$ is a C^1 smooth graph,

$$\mathscr{M}_{\varepsilon} = \{ (\sigma, n, v), v = \Psi_{\varepsilon}(\sigma, n), \sigma, n \in C^{0}_{bdd}(0, 1), \|\sigma\|_{0}^{2} + \|n\|_{0}^{2} < \varrho_{0} \},\$$

where $\Psi_{\varepsilon}: C^0_{bdd}(0, 1) \cap \{\sigma, \sigma(0) = 0\} \times C^0_{bdd}(0, 1) \rightarrow C^1_{bdd}(0, 1)$ is a C^1 function which is locally C^1 close to Ψ_0 ,

$$\Psi_0(\sigma, n)(x) = \frac{1}{\eta} \left((1 - x^2) f_0(\sigma, n)/2 + \int_x^1 \sigma(\xi) \, \mathrm{d}\xi \right), \quad x \in [0, 1].$$

Finally, the flow when restricted to the manifold $\mathcal{M}_{\varepsilon}$ is governed by the following system of functional differential equations:

$$\sigma_t = -\sigma + (1+n)\Psi_{\varepsilon}(\sigma, n)_x,$$

$$n_t = -n - \sigma\Psi_{\varepsilon}(\sigma, n)_x,$$
(FDE)

 $(t, x) \in [0, \infty) \times [0, 1]$, subject to boundary and initial conditions (6.2). For small values of $\varepsilon > 0$, the vector field defined by the right-hand side of (FDE) is locally C^1 close to that of the reduced system of equations

$$\sigma_t = -\sigma + (1+n)(T-\sigma)/\eta,$$

$$n_t = -n - \sigma(T-\sigma)/\eta,$$
where $T = -f_0(\sigma, n)x.$
(QFDE)

Acknowledgement

The author wishes to thank Prof. J. Nohel for stimulating discussions concerning non-Newtonian fluid mechanics.

References

- 1. Aarts, A. and Van De Ven, A., 'Transient behaviour and instability points of the Poiseuille flow of a KBKZ fluid', *J. Eng. Math.*, **29**, 371–392 (1995).
- Brunovský, P. and Ševčovič, D., 'Explanation of spurt for a non-Newtonian fluid by a diffusion term', *Quart. Appl. Math.*, 52, 401–426 (1994).
- 3. Chow, S.-N. and Lu, K., 'Invariant manifolds for flows in Banach spaces,' J. Differential Equations, 74, 285–317 (1988).
- 4. Foias, C., Sell, G. R. and Temam, R., 'Inertial manifolds for nonlinear evolutionary equations', J. *Differential Equations*, **73**, 309–353 (1988).
- 5. Grob, M., 'Flow instabilities in a polymer extrusion process' *Ph.D. thesis*, Eidhoven Institute of Technology, Nov. 1994.
- 6. Henry, D., 'Geometric theory of semilinear parabolic equations.' Lecture Notes in Math. 840, Springer, Berlin, 1981.
- 7. Lim, F. J. and Schowalter, W. R., Wall slip of narrow molecular weight distribution polybutadienes, *J. Rheology*, **33**, 1359–1382 (1989).
- Marion, M., 'Inertial manifolds associated to partly dissipative reaction diffusion systems', J. Math. Anal. Appl., 143, 295–326 (1989).
- Malkus, D. S., Nohel, J. A. and Plohr, B. J., 'Analysis of new phenomena in shear flow of non-Newtonian fluids', SIAM J. Appl. Math., 51, 899–929 (1991).
- Malkus, D. S., Nohel, J. A. and Plohr, B. J., 'Approximation of piston-driven flows of a non-Newtonian fluid', in: *Control Theory, Dynamical Systems and Geometry of Dynamics*, 1993 (Elworthy, Everitt, and Lee, eds.), Marcel Dekker, New York, 1993; pp. 173–192.
- 11. Nohel, J. A., Pego, R. L. and Tzavaras, A. E., Stability of discontinuous steady states in shearing motion of a non-newtonian fluid', *Proc. of the Royal Society of Edinburgh*, **115A**, 39–59 (1990).
- 12. Nohel, J. A. and Pego, R. L., 'Nonlinear stability and asymptotic behavior of shearing motions of a non-Newtonian fluid, SIAM J. Math. Anal., 24, 911-942 (1993).
- 13. Ševčovič, D., 'Limiting behaviour of invariant manifolds for a system of singularly perturbed evolution equations', *Math. Methods in the Appl. Sci.*, **17**, 643–666 (1994).
- 14. Ševčovič, D., 'The C¹ stability of slow manifolds for a system of singularly perturbed evolution equations', *Comment. Math. Univ. Carolinae*, **36**, 89–107 (1995).
- 15. Ševčovič, D., 'Smoothness of the singular limit of inertial manifolds of singularly perturbed evolution equations', *Nonlinear Anal. TMA.*, **28**, (1996).