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Abstract
We investigate the motion of a family of closed curves evolving according to the
geometric evolution law on a given two dimensional manifold which is embed-
ded or immersed in the three-dimensional Euclidean space. We derive a system of
nonlinear parabolic equations describing the motion of curves belonging to a given
two-dimensional manifold. Using the abstract theory of analytic semiflows, we prove
the local existence, uniqueness of Hölder smooth solutions to the governing system
of nonlinear parabolic equations for the position vector parametrization of evolv-
ing curves. We apply the method of flowing finite volumes in combination with the
methods of lines for numerical approximation of the governing equations. Qualitative
analytical results are illustrated by various numerical experiments.

Keywords Curvature-driven flow · Binormal flow · Analytic semi-flows · Hölder
smooth solutions · Flowing finite-volume method
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1 Introduction

In this article, we investigate the motion of a family {�t , t ≥ 0} of closed curves
evolving in the three-dimensional Euclidean space R3 according to a subclass of the
following geometric evolution law:
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∂tX = vNN + vBB + vTT, (1)

where the unit tangent T, normal N and binormal B vectors form moving Frenet
frame. In this paper, we restrict our interest to the investigation of the dynamics of
three-dimensional closed curves on embedded and immersed manifolds in R

3.
The three-dimensional motion of closed curves is motivated by various physical

applications arising in materials sciences, fluid dynamics, or molecular biology. In
fluid dynamics, the motion of a curve in space is often applied to the analysis of vortex
structures first studied by Helmholtz [19]. For a detailed summary of recent advances
in the analysis of three-dimensional motion of curves, we refer the reader to Kolář,
Beneš and Ševčovič [7] and references therein.

Among many important physical and engineering applications of flows of space
curves evolving on prescribed surfaces, we mention the dislocation dynamics. A
geodesic description of space curves is a convenient mathematical framework to simu-
late a dislocation cross-slip phenomenon in the crystalline structure of solids (cf. Kolář
et al. [24]). The dislocation curves evolve on a prescribed two-dimensional manifold
in R

3. Moreover, the dynamics of dislocation climbs [33, 34] investigated by Niu
et al. motivates us to study the problem of diffusion and transport along a moving
space curve (cf. Beneš et al. [8]). In nanomaterials manufacturing, a procedure called
electrospinning is frequently used, i.e., by jetting polymer solutions in high electric
fields into ultrafine nanofibers. The extruded fluid forms a curve evolving on the so-
called Taylor conic surface. The jet oriface (outlet) is the vertex of the Taylor cone
(cf. Reneker [36], Yarin et al. [16], He et al. [18] and particular references therein).
Structures arising from the electrospinning procedure move in space according to (1)
and under the effect of electric forces [38] to form nanofibers. Recently, Kolář and
Ševčovič [25] analyzed, from the perspective of local existence and uniqueness, a
motion of systems of space curves in the normal and binormal directions, mutually
coupled by a Biot–Savart-type interaction. In [23], an area-preserving flow was sub-
sequently investigated using a geodesic formulation of the curves. The structure of
the Helfrich flow of curves with non-local constraints was recently investigated by
Kenmochi, Miyatake, and Sakakibara in [21].

In [11], Deckelnick and Nürnberg proposed a novel framework for the evolution of
parametric curves driven by the anisotropic curve shortening flow inR3. Furthermore,
in [9], Binz investigates optimal error estimates for semidiscrete and fully discrete
schemes that approximate isotropic curve shortening flow in three dimensions. Their
formulation relies on a careful choice of the tangential component of the velocity
in parameterization, which transforms the evolution problem into a strictly parabolic
differential equation. This equation is written in divergence form, enabling the con-
struction of a natural variational discretization. For a fully discrete finite element
scheme based on piecewise linear elements, optimal error bounds are established.
Numerical experiments support the theoretical findings and illustrate the effectiveness
of the method.

The paper is organized as follows. In the second section, a parametric description
of evolving curves is introduced. In the third section, we restrict our interest to the
motion on a closed surface without boundary. We derive a force term that attaches
the curve to the surface and formulate the system of governing equations for such a
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restricted 3D motion. In the fourth section, we discuss the conditions for the existence
and uniqueness of classical Hölder solutions. We also recall the role of the tangen-
tial velocity when using the parametric description. In the fifth section, we propose
the numerical approximation scheme based on the flowing finite-volume approach.
Finally, several computational examples are presented in the sixth section.

2 Lagrangian description of evolving curves

Our methodology for solving (1) is based on the so-called direct Lagrangian approach
investigated by Dziuk [12], Deckelnick [10], Gage and Hamilton [13], Mikula and
Ševčovič [29–32], and references therein. We explore the direct Lagrangian approach
for an analytical and numerical solution of the geometric motion law (1). The evolving
family of curves �t is parametrized by smooth mapping X : I × [0,∞) → R

3, such
that �t = {X(u, t), u ∈ I }, t ≥ 0. In what follows, we denote by I = R/Z � S1

the periodic interval I = [0, 1] isomorphic to the unit circle S1. We assume that the
scalar velocities vN , vT , vB are smooth functions of the position vector X ∈ R

3, the
curvature κ , the torsion τ , and possibly depend nonlocally on the quantities associated
with the curve �t itself, for example, its length. That is,

vK = vK (X, κ, τ,T,N,B, �t ), K ∈ {T , N , B}.

The unit tangent vector T to �t is defined as T = ∂sX, where s is the unit arc-length
parameterization defined by ds = |∂uX|du. Here, |x| and xᵀy ≡ x · y denote the
Euclidean norm and the inner product of the vectors x, y ∈ R

3. The curvature κ of
a curve �t is defined as κ = |∂sX × ∂2s X| = |∂2s X|. If κ > 0, we can define the
Frenet frame along the curve �t with unit normal N = κ−1∂2s X and binormal vectors
B = T × N, respectively. Recall the Frenet-Serret formulae:

d

ds

⎛
⎝
T
N
B

⎞
⎠ =

⎛
⎝

0 κ 0
−κ 0 τ

0 −τ 0

⎞
⎠

⎛
⎝
T
N
B

⎞
⎠ ,

where τ is the torsion of �t .
We study a coupled system of evolutionary equations that describes the evolution

of closed 3D curves evolving in normal and binormal directions. More specifically, we
focus on the motion of a family of curves evolving in 3D and satisfying the geometric
law

∂tX = a∂2s X + F(X, ∂sX) + α∂sX, (2)

where a = a(X, ∂sX) > 0, and F = F(X, ∂sX) are bounded and smooth functions of
their arguments. Here, F is an external force term that restricts the movement of�t to a
given manifold. The forcing term is discussed further in Theorem 1. Since ∂2s X = κN
and B = T × N the relationship between the geometric equations (1) and (2) is as
follows:

vN = a κ + FᵀN, vB = FᵀB, vT = FᵀT + α. (3)

123



   16 Page 4 of 21 M. Koláˇ r, D. Ševčovič

Fig. 1 A knotted curve (a) belonging to the embedded torus surface (b)

The system of equations (2) is subject to the initial condition

X(u, 0) = X0(u), u ∈ I = R/Z � S1, (4)

representing parameterization of the initial curve �0.

3 Evolution of closed curves on a closed surface without boundary

In this section, we analyze the evolution of closed curves on a two-dimensional surface
without boundary. First, we discuss the evolution of curves in embedded manifolds.

3.1 Evolution of curves on embeddedmanifolds

Assume M ∈ R
3 is an embedded manifold given by M = {X = (X1, X2, X3)

ᵀ ∈
R
3, f (X) = 0} where f (X) : R3 → R is a C4 smooth regular map. This means that

∇ f (X) 	= 0 for X ∈ M.
Let φ(u, t) = f (X(u, t)). Then

∂tφ = ∇ f (X)ᵀ∂tX

= ∇ f (X)ᵀ
(
a∂2s X + F + α∂sX

)
= a∇ f (X)ᵀ∂2s X + ∇ f (X)ᵀF + α∇ f (X)ᵀ∂sX

= a∂s
(∇ f (X)ᵀ∂sX

) − a∂sXᵀ∇2 f (X)∂sX + ∇ f (X)ᵀF + α∂sφ

= a∂2s φ − a∂sXᵀ∇2 f (X)∂sX + ∇ f (X)ᵀF + α∂sφ

because ∂sφ = ∇ f (X)ᵀ∂sX.

Theorem 1 Suppose that the external force F is given by

F(X,T) = a
Tᵀ∇2 f (X)T + h( f (X))

|∇ f (X)|2 ∇ f (X), (5)
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T = ∂sX. Here h : R → R is a smooth function, h(0) = 0. If the initial curve�0 ⊂ M
then the family of curves �t , for t > 0, evolving with respect to the geometric equation
(2) belongs to the manifold M = {X ∈ R

3, f (X) = 0}. Furthermore, the tangential
velocity vT = α.

Proof If the initial curve �0 ⊂ M then φ(·, 0) = f (X(·, 0)) = 0. The function φ is
a solution to the parabolic equation:

∂tφ = a∂2s φ + ah(φ) + α∂sφ, (6)

with a zero initial condition φ(·, 0) = 0. Since h(0) = 0 we have φ(·, t) = 0
for all t > 0. That is �t ⊂ M. The projection FᵀT of F to the tangent direc-
tion is vanishing. In fact, as 0 = ∂sφ = ∇ f (X)ᵀT, we have F(X,T)ᵀT =
a Tᵀ∇2 f (X)T+h( f (X))

|∇ f (X)|2 ∇ f (X)ᵀT = 0.
��

Theorem 2 Suppose that the external force F is defined by equation (5), and the initial
curve �0 ⊂ M. Then the geometric flow of the curves, which satisfies the law (2), is
the length-shortening flow on the surfaceM, i.e., d

dt L(�t ) ≤ 0, where L(�t ) denotes
the total length of the curve �t .

Proof Suppose that the initial curve �0 ⊂ M. With regard to Theorem 1 we have
�t ⊂ M for any t ≥ 0. That is, φ(s, t) ≡ f (X(s, t)) = 0 for all s ∈ [0, L(�t )] and
t ≥ 0. Hence 0 = ∂sφ = ∇ f (X)ᵀT, and

0 = ∂2s φ = Tᵀ∇2 f (X)T + ∇ f (X)ᵀ∂sT = Tᵀ∇2 f (X)T + κ∇ f (X)ᵀN.

The projection of the velocity ∂tX in the normal direction N is given by

vN = (a ∂2s X + F)ᵀN = a κ + a
Tᵀ∇2 f (X)T
|∇ f (X)|2 ∇ f (X)ᵀN = a κ − a κ

(∇ f (X)ᵀN)2

|∇ f (X)|2

= a κ − a κ
(∇ f (X)ᵀN)2

|∇ f (X)|2 = a κ
(∇ f (X)ᵀB)2

|∇ f (X)|2 (7)

because |∇ f (X)|2 = (∇ f (X)ᵀN)2+(∇ f (X)ᵀT)2+(∇ f (X)ᵀB)2 = (∇ f (X)ᵀN)2+
(∇ f (X)ᵀB)2.

d

dt
L(�t ) = −

∫
�t

κvNds = −
∫

�t

a κ2 (∇ f (X)ᵀB)2

|∇ f (X)|2 ds ≤ 0. (8)

��

Any monotonically increasing modification of the normal velocity vN given by (7)
again represents a length-shortening flow.
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Fig. 2 a) An initial knotted curve belonging to the immersed Klein bottle surface b)

Remark 1 The geodesic curvature κg of a curve � ⊂ M can be defined as a projection
of the derivative ∂sT to the unit vector Ng perpendicular to T and belonging to the
tangent space TX (M) at the point X ∈ M. Both vectors belong to the tangent space
TX (M) that is perpendicular to the outer normal vector ∇ f (X) to the surface M.
The unit normal vector to the surface M is given by the vector ∇ f (X)/|∇ f (X)|.
Therefore, Ng = (∇ f (X) × T)/|∇ f (X)|. Hence,

κg = ∂sTᵀNg = κNᵀNg = κNᵀ(∇ f (X) × T)/|∇ f (X)|
= κ∇ f (X)ᵀ(T × N)/|∇ f (X)| = κ(∇ f (X)ᵀB)/|∇ f (X)|.

This means that the flow driven by the geodesic curvature with normal velocity
vNg = aκg is the same as the flow of a surface with vN given by (7).

According toMikula andŠevčovič [32,Eq. (12)]wehave d
dt L(�t )=− ∫

�t
κgvNgds.

If the normal velocity vNg is proportional to the geodesic curvature, vNg = aκg then
we obtain

d

dt
L(�t ) = −

∫
�t

κgvNgds = −
∫

�t

a(κg)2ds = −
∫

�t

a κ2 (∇ f (X)ᵀB)2

|∇ f (X)|2 ds ≤ 0,

(9)
which is the relation (8).

3.2 Evolution of curves on immersedmanifolds

In this section, we discuss the evolution of 3D curves on immersed manifolds. We
consider an immersedmanifoldM = {X = X (Y), Y ∈ I× I }whereY = (Y1,Y2)ᵀ
and X = (X1, X2, X3)

ᵀ are parameterized by immersion X : I × I → R
3, where

I = R/Z � S1 is the periodic interval.
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Proposition 1 Suppose that the function Y(·, t) ⊂ I × I is a 1-periodic solution to
the parabolic equation:

∂tY = a∂2s Y + G(Y, ∂sY) + α∂sY, Y(·, 0) = Y0(·), (10)

where ds = |∇X (Y)ᵀ∂uY|du, a = a(X (Y),∇X (Y)ᵀ∂sY), and G : R2 ×R
2 → R

2

is a C4 smooth function.
Then the closed curve �t = {X(s, t), s ∈ [0, L(�t )]} ⊂ M, X(·, t) = X (Y(·, t))

evolves according to the second order parabolic geometric equation:

∂tX = a∂2s X + F(X, ∂sX) + α∂sX, X(·, 0) = X0(·), (11)

where F(X, ∂sX) = ∇X (Y)ᵀG(Y, ∂sY) − a∂sYᵀ∇2X (Y)∂sY. Here Y ∈ I × I is
such that X = X (Y) ∈ M and ∂sY = (∇X (Y)∇X (Y)ᵀ)−1∇X (Y)∂sX where the
2 × 3 matrix

(∇X (Y)∇X (Y)ᵀ)−1∇X (Y) is the left Moore-Penrose pseudoinversion of 3 × 2
matrix ∇X (Y)ᵀ.

The curve �t , t ≥ 0, evolves according to the geometric equation (1) with the
normal, binormal and tangential velocities given by (3).

Proof Sin‘ce X = X (Y) we have ∂tX = ∇X (Y)ᵀ∂tY, ∂sX = ∇X (Y)ᵀ∂sY,
∂2s X = ∇X (Y)ᵀ∂2s Y+ ∂sYᵀ∇2X (Y)∂sY, where ∇X = ∇X (Y) is the 2× 3 matrix:

∇X =
(

∂X1
∂Y1

∂X2
∂Y1

∂X3
∂Y1

∂X1
∂Y2

∂X2
∂Y2

∂X3
∂Y2

)
.

The vector ∂sYᵀ∇2X (Y)∂sY ∈ R
3 is constructed as follows:

∂sYᵀ∇2X (Y)∂sY=(∂sYᵀ∇2Xk(Y)∂sY)k=1,2,3 ∈ R
3, ∇2Xk =

(
∂2Xk

∂Yi∂Y j

)

i, j=1,2
.

The 2 × 3 matrix ∇X (Y) has full rank because the mapping X is assumed to be an
immersion. Furthermore, as X = X (Y) we have ds = |∂uX|du = |∇X (Y)ᵀ∂uY|du.
Therefore, the derivative of Y with respect to the arc-length parameterization s of the
curve X can be written as

∂Y
∂s

= 1

|∇X (Y)ᵀ∂uY|
∂Y
∂u

.

Then

∂tX = ∇X (Y)ᵀ∂tY = ∇X (Y)ᵀ
(
a∂2s Y + G(Y, ∂sY) + α∂sY

)

= a∂2s X + α∂sX − a∂sYᵀ∇2X (Y)∂sY + ∇X (Y)ᵀG(Y, ∂sY)

= a∂2s X + α∂sX + F(X, ∂sX),

as claimed. ��
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As an example of a non-orientable immersed manifold in R
3, we can consider the

Klein bottle surface parameterized by X = (X1,X2,X3)

where

X1(u, v) = −(2/15) cos(2πu)(3 cos(2πv) − 30 sin(2πu) + 90 cos(2πu)4 sin(2πu)

−60 cos(2πu)6 sin(2πu) + 5 cos(2πu) cos(2πv) sin(2πu)),

X2(u, v) = −(1/15) sin(2πu)(3 cos(2πv) − 3 cos(2πu)2 cos(2πv)

−48 cos(2πu)4 cos(2πv)

+48 cos(2πu)6 cos(2πv) + 60 sin(2πu) + 5 cos(2πu) cos(2πv) sin(2πu)

−5 cos(2πu)3 cos(2πv) sin(2πu) − 80 cos(2πu)5 cos(2πv) sin(2πu)

+80 cos(2πu)7 cos(2πv) sin(2πu)),

X3(u, v) = (2/15)(3 + 5 cos(2πu) sin(2πu)) sin(2πv).

The surface of theKlein bottle is shown in Fig. 2b. The initial curveX0 is parameterized
by

X0(u) = X (ku, lu), u ∈ I ,

where k = 1, l = 4. It is shown in Fig. 2a. The Klein bottle is an immersed manifold
in R

3. It is well known that it can be embedded in R
4 but it cannot be embedded in

R
3.

Remark 2 The 2× 2 matrix ∇X (Y)∇X (Y)ᵀ is positive definite because the mapping
X is immersion. For the torus surface, we have

det(∇X (Y)∇X (Y)ᵀ) = 16π4r2(R + r cos(2πv))2 ≥ 16π4r2(R − r)2 > 0.

On the other hand, for the Klein bottle surface shown in Fig. 2, b) we observe large
spectral variations in the 2 × 2 positive definite matrix ∇X (Y)∇X (Y)ᵀ. That is,

det(∇X (Y)∇X (Y)ᵀ) ∈ (0.0145, 32020).

4 Existence and uniqueness of classical Hölder smooth solutions

In this section, we present theoretical results on the existence and uniqueness of the
classical Hölder smooth solution to the system of equations (2) for the motion of the
time-dependent family of curves �t = {X(u, t), u ∈ I }, t ≥ 0, evolving in R

3.
Furthermore, we prove the existence and uniqueness of solutions Y = Y(u, t) of the
non-linear equation (10) (see Proposition 1). We employ the analytical framework
developed by Beneš, Kolář, Ševčovič [7] in the context of curve evolution in R

3 and
Mikula and Ševčovič [29–32] for the evolution of planar curves. The proof of the
existence and uniqueness of solutions in Hölder spaces is based on the abstract theory
of analytic semiflows in Banach spaces, as established by DaPrato and Grisvard [17],
Angenent [1, 2] and Lunardi [26]. In the proof technique, the position vector equation
(2) with uniform tangential velocity vT is analyzed.
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The nonlinear parabolic equation (2), and similarly (10), can be rewritten as the
abstract parabolic equation: ∂tX = F (X), X(0) = X0, on a scale of suitable Banach
spaces. Suppose 0 < ε < 1, and k ∈ N. The little Hölder space hk+ε(S1) is the
Banach space defined as the closure of C∞ smooth functions defined in the periodic
domain S1. The norm is the sum of the Ck norm and the ε-Hölder semi-norm of the
k-th derivative. Next, we define the following scale of Banach spaces consisting of
(2k + ε)-Hölder continuous functions in the periodic domain I � S1:

E X
k = h2k+ε(S1) × h2k+ε(S1) × h2k+ε(S1), EY

k = h2k+ε(S1) × h2k+ε(S1), k = 0,
1

2
, 1.

(12)

For the application of the theory of nonlinear analytic semiflovs due to DaPrato and
Grisvard [17], Angenent [1, 2], and Lunardi [26], it is sufficient to prove that, for
any X̃ linearization A = F ′(X̃) generates an analytic semigroup in the space in E Z

0 ,
and it belongs to the maximal regularity class between Banach spaces E Z

1 and E Z
0 for

Z ∈ {X ,Y }. Now we can state the following result, stating the local existence and
uniqueness of solutions to the system of nonlinear geometric equations (2).

Theorem 3 Assume M ∈ R
3 is an embedded manifold given by M = {X ∈

R
3, f (X) = 0} where f : R3 → R is a C4 smooth regular map, i.e., ∇ f (X) 	= 0 for

X ∈ M, and a = a(X,T) > 0 is a C4 smooth function, a : R2 × R
2 → R. Assume

that h : R → R is a C4 smooth function, h(0) = 0. Suppose that the parameteri-
zation X0 of the initial curve �0 belongs to the Hölder space E X

1 , and is uniformly
parameterized |∂uX0(u)| = L(�0) > 0 for all u ∈ I . Assume that the total tangential
velocity vT preserves the relative local length. Then there exists T > 0 and the unique
solution X to the initial value problem:

∂tX = a∂2s X + F(X, ∂sX) + α∂sX, X(·, 0) = X0(·), u ∈ I , t ∈ [0, T ),

where the external force F is given by (5). Moreover, X ∈ C([0, T ], E X
1 ) ∩

C1([0, T ], E X
0 ).

Proof We rewrite the non-linear parabolic equation (2) in the form: ∂tX = F (X),
whereF (X) = a∂2s X+F(X, ∂sX)+α∂sX. Under the assumptions made on functions
a, f , and h, the mapping

E X
1
2

� X �→ F(X, ∂sX) + α∂sX ∈ E X
0

is C1 mapping from the Banach space E X
1
2
to E X

0 .

Assume X̃ belongs to theHölder spaceE X
1 , and is uniformly parameterized, |∂uX̃| =

L(�̃) > 0 for all u ∈ I . Then the linearization A = F ′(X̃) can be decomposed as
follows: A = A0 + A1, where the principal part A0 containing the second order
derivative has the form A0X = ã

L(�̃)2
∂2uX, where ã = a(X̃, T̃), T̃ = ∂sX̃. It is

known that A0 generates an analytic semigroup in space E X
0 , and it belongs to the
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maximal regularity class between Banach spaces E X
1 and E X

0 (cf. [1, 2]). Furthermore,
the operator A1 = A − A0 contains the first order derivative of X. It is a bounded
linear operator A1 : E 1

2
→ E0. Therefore, the operator A1 considered as a mapping

from E1 → E0 has the relative zero norm with respect toA0 . Therefore, linearization
A belongs to the maximal regularity class M(E1,E0) because this class is closed
with respect to perturbation with the relative zero norm (cf. [2, Lemma 2.5], DaPrato
and Grisvard [17], Lunardi [26]). The proof now follows [2, Theorem 2.7] due to
Angenent. ��
Theorem 4 Assume M is a manifold immersed in R

3 given by M = {X =
X (Y), Y ∈ I × I } where X : I × I → R

3, is a C4 smooth immersion,
rank(∇X (Y)) = 2 for all Y ∈ I × I , and a = a(X,T) > 0 is a C4 smooth
function, a : R

3 × R
3 → R. Suppose that the initial condition Y0 belongs to the

Hölder space EY
1 , and |∂uY0(u)| > 0 for all u ∈ I . Then there exists T > 0 and the

unique solution Y ∈ C([0, T ], EY
1 ) ∩ C1([0, T ], EY

0 ) to the initial value problem:

∂tY = a∂2s Y + G(Y, ∂sY) + α∂sY, Y(·, 0) = Y0(·), u ∈ I , t ∈ [0, T ),

where ds = |∇X (Y)ᵀ∂uY|du, a = a(X (Y),∇X (Y)ᵀ∂sY) and G : R2 × R
2 → R

2

is a C4 smooth function.

Proof Based on the assumptions made on the immersion mapping X : I × I → R
3,

we have the following:

EY
1
2

� Y �→ G(Y, ∂sY) + α∂sY ∈ EY
0

is a C1 mapping from the Banach space EY
1
2
to EY

0 . The rest of the proof is essentially

the same as that of Theorem 3. ��
In general, we cannot take T = +∞. Indeed, a closed curve on a torus or plane

surface may shrink to a point in finite time.

5 Flowing finite volumes numerical discretization scheme

In this section, we present a numerical discretization scheme for solving the system
of equations (2) with tangential velocity α. The discretization utilizes the method of
lines with spatial discretization achieved through the finite-volume method. We focus
on the evolution of the curves �t , t ≥ 0, satisfying the governing equation:

∂tX = a∂2s X + F(X, ∂sX) + αT. (13)

We consider M discrete nodes Xk = X(uk), k = 0, 1, 2, . . . M , uk = kh ∈ [0, 1],
where h = 1/M , X0 = XM along the curve �t . The dual nodes are defined as
Xk± 1

2
= X(uk ± h/2) (see Fig. 3) and (Xk + Xk+1)/2 is the midpoint of the line

segment connecting nodes Xk and Xk+1. This midpoint differs from Xk± 1
2

∈ �t . The
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Fig. 3 Discretization of a
segment of a 3D curve on a
surface by the method of flowing
finite volumes

k-th segment Sk of�t between the nodesXk+ 1
2
andXk− 1

2
represents the finite volume.

Integration of equation (13) over such a volume yields

∫ u
k+ 1

2

u
k− 1

2

∂tX|∂uX|du =
∫ u

k+ 1
2

u
k− 1

2

a
∂

∂u

(
∂uX
|∂uX|

)
du +

∫ u
k+ 1

2

u
k− 1

2

F|∂uX|du +
∫ u

k+ 1
2

u
k− 1

2

α∂uXdu.

(14)

To discretize the governing system of equations, we assume that ∂tX, ∂uX,F, α, κ,

a, b,T, and N remain constant on the finite volume Sk bounded by the nodes Xk− 1
2

and Xk+ 1
2
. These variables assume the values ∂tXk, ∂uXk,Fk, αk, κk,Tk , and Nk ,

respectively. In the approximation of the nonlocal vector function Fk , the curve �t

used to defineF is replaced by a polygonal curve having vertices at (X0,X1, . . . ,XM ).
The numerical approximation of the tangential velocity αk is summarized at the end
of this section.

Let us denote dk = |Xk − Xk−1| for k = 1, 2, . . . , M, M + 1, where XM = X0
and XM+1 = X1 for the closed curve � and we approximate the integral expressions
in (14) by means of the flowing finite volume method as follows:

∫ u
k+ 1

2

u
k− 1

2

∂tX|∂uX|du ≈ dXk

dt

dk+1 + dk
2

,

∫ u
k+ 1

2

u
k− 1

2

a∂u
∂uX
|∂uX|du ≈ ak

(
Xk+1 − Xk

dk+1
− Xk − Xk−1

dk

)
,

∫ u
k+ 1

2

u
k− 1

2

F|∂uX|du ≈ Fk
dk+1 + dk

2
,

∫ u
k+ 1

2

u
k− 1

2

α∂uXdu ≈ αk
Xk+1 − Xk−1

2
.

Here ak = a(Xk,Tk) is the diffusion coefficient evaluated at (Xk,Tk). The estimation
of the nonnegative curvature κ along with the tangent vector T and the normal vector
N, where κN = ∂sT, can be expressed as follows:

Nk ≈ 1

δ + κk

2

dk + dk+1

(
Xk+1 − Xk

dk+1
− Xk − Xk−1

dk

)
, Tk ≈ Xk+1 − Xk−1

dk+1 + dk
,
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κk ≈
∣∣∣∣

2

dk + dk+1

(
Xk+1 − Xk

dk+1
− Xk − Xk−1

dk

)∣∣∣∣ ,

where 0 < δ � 1 is a small regularization parameter.
The semidiscrete scheme for resolving (13) is expressed as follows.

dXk

dt
= ak

2

dk+1 + dk

(
Xk+1 − Xk

dk+1
− Xk − Xk−1

dk

)
+ Fk + αk

Xk+1 − Xk−1

dk+1 + dk
,

Xk(0) = Xini (uk), for k = 1, . . . , M . (15)

Recall that the tangential component α of the velocity vector for evolving closed
curves {�t , t ≥ 0} maintains their shape unchanged (cf. Epstein [14]). However, for
a numerical solution of (13), the careful selection of the tangential velocity func-
tional α is key to preserve the stability of the computational procedure (cf. Mikula
and Ševčovič [29–31]). The significance of tangential velocity is also substantial in
theoretical analyzes of curve evolution, as shown by the works of Hou et al. [20],
Kimura [22].

Barrett et al.[3, 4] and Elliott and Fritz [27], explored gradient and elastic flows
for closed and open curves in R

d , where d ≥ 2, and formulated a numerical approx-
imation method to effectively redistribute the tangential component. Furthermore,
the relevance of tangential velocity is recognized in material science investigations
by Beneš, Kolář, and Ševčovič [5] and in the context of interactive evolving curves
[6]. In a different field, Garcke, Kohsaka, and Ševčovič [15] applied uniform tangen-
tial redistribution to theoretically confirm the nonlinear stability of curvature-induced
flows with triple junctions in planes. Remešíková et al. [28] analyzed the tangential
redistribution effects for the flows of closed manifolds in R

n .
Calculating the time change of the ratio of the relative local length |∂uX(u, t)| and

the total curve length L(�t ) = ∫ 1
0 |∂uX(u, t)|du, it is possible to derive an equation

for the unknown α (cf. [37]):

∂
∂t

|∂uX(u,t)|
L(�t )

= |∂uX(u,t)|
L(�t )

(∂sα − κvN + 〈κvN 〉) ,

where 〈κvN 〉 = 1
L(�t )

∫
�t

κvNds. (16)

The meaning of 〈·〉 is the average value of a scalar quantity along the curve �t .
Therefore, the ratio |∂uX(u, t)|/L(�t ) is constant with respect to the time t , i.e.

|∂uX(u, t)|
L(�t )

= |∂uX(u, 0)|
L(�0)

, for any t ≥ 0, (17)

provided that the tangential velocity satisfies ∂sα = κvN − 〈κvN 〉. Another suitable
choice of the tangential velocity α is the so-called asymptotically uniform tangential
velocity proposed and analyzed by Mikula and Ševčovič in [30, 31].
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Taking into account a positive damping parameter ω and tangential velocity α as
the solution of the following equation

∂sα = κvN − 〈κvN 〉 +
(

L(�t )

|∂uX(u, t)| − 1

)
ω, (18)

then, using (16) we obtain limt→∞ |∂uX(u,t)|
L(�t )

= 1 uniformly with respect to u ∈ [0, 1]
provided that ω > 0 is a positive constant. This means that the redistribution becomes
asymptotically uniform. The numerical approximation of the tangential velocity (18)
follows from [37]. It requires discrete values of curvature κk , normal velocity vN ,k ,
and segment lengths dk , and a straightforward trapezoidal integration is used (cf. [37]).
The values α0 = αM are chosen so that

∑M
i=1 αi (di+1 + di )/2 = 0. Then the values

αk for k = 0, 1, . . . , M are uniquely given and the direct integration of (18) leads to
the following formulae

αi = α1 +
i∑

k=2

[
κivN ,i di − 〈κvN 〉di +

(
L(�t )

M
− di

)
ω

]
, i = 2, . . . , M,

α1 = − 1
∑M

i=1
(di+1+di )

2

⎧⎨
⎩

M∑
i=2

(di+1 + di )

2

⎛
⎝

i∑
k=2

[
κivN ,i di − 〈κvN 〉di +

(
L(�t )

M
− di

)
ω

]⎞
⎠

⎫⎬
⎭ .

(19)

Remark 3 We present a finite difference numerical approximation of the parabolic
equation (10) that governs the flow on an immersed manifold. The second derivative
∂2s Yk appearing in (10) is approximated as follows:

|Yk+1 − Yk | + |Yk − Yk−1|
2

∂2s Yk ≈
u
k+ 1

2∫

u
k− 1

2

1

|∇X (Y)ᵀt(Y)|
∂

∂u

(
1

|∇X (Y)ᵀt(Y)|
∂uY
|∂uY|

)
du

≈ 1

|∇X (Yk)ᵀt(Yk)|
(

1

|∇X (Yk+1)ᵀt(Yk+1)|
Yk+1 − Yk

|Yk+1 − Yk | − 1

|∇X (Yk)ᵀt(Yk)|
Yk − Yk−1

|Yk − Yk−1|
)

where t(Yk) ≈ (Yk −Yk−1)/|Yk −Yk−1|. Similarly, the first derivatives ∂sY and ∂tY
in (10) are approximated by means of finite differences as follows:

∂sYk = 1

|∇X (Yk)ᵀt(Yk)|∂rYk ≈ 1

|∇X (Yk)ᵀt(Yk)|
Yk − Yk−1

|Yk − Yk−1| ,

∫ u
k+ 1

2

u
k− 1

2

∂tY|∂uY|du ≈ dYk

dt

dk+1 + dk
2

, dk = |Xk − Xk−1|.

We approximate the partial derivatives ∂Xi
∂Y j

, i = 1, 2, 3, j = 1, 2, by means of finite
diferences. The 2 × 2 matrix ∇X (Y)∇X (Y)ᵀ can be explicitly inverted. Notice that
this matrix is regular because X is assumed to be an immersion.
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Fig. 4 Time evolution of a knotted Fourier curve belonging to the orientable torus surface with parameters
r = 1, R = 4, and k = 2, l = 3 (see 25). Initial curve t = 0 Intermediate curve t = 2.5 Limiting stationary
curve t = 22.5
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Fig. 5 Time evolution of initially inflated knotted curve belonging to the orientable torus surface with
parameters r = 1, R = 4. Topologically more complex case corresponding to the choice k = 3, l = 5 in
initial condition (25)
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Fig. 6 Lengths L(�t ) of shrinking curves on the torus (20) - (a) and attaching to the torus (20) - (b)

6 Examples

In our examples, we consider the evolution of an initial Fourier curve parameterized
by a finite trigonometric series in the parameter u ∈ I . Here we remind the reader
that I is identified with the unit circle and I = R/Z � S1. In all of our numerical
experiments, we use M = 200 discretization nodes, uniform tangential redistribution,
and the regularization parameter δ in the discrete approximation of curvature was
set to δ = 10−5. The resulting system of ODEs (15) is numerically solved using the
fourth-order explicit Runge–Kutta-Merson method, incorporating automatic time step
control with a tolerance level of 10−3 (refer to [35]). The initial time step was selected
as 4h2, where h = 1/M denotes the spatial mesh size.

6.1 Evolution of knotted curves on torus

As an example of a torus, we can consider immersion X : I × I → R
3 defined as:

X (u, v) = ((r cos(2πv) + R) sin(2πu), (r cos(2πv) + R) cos(2πu), r sin(2πv))ᵀ , (20)

where 0 < r < R and u, v ∈ I . The torus surface can also be defined as an embedded
manifold M = {X = (X1, X2, X3)

ᵀ ∈ R
3, f (X) = 0} where

f (X) = ((X2
1 + X2

2)
1
2 − R)2 + X2

3 − r2.

Its gradient ∇ f (X) and the Hesse matrix ∇2 f (X) are given by

∇ f (X) = 2X − 2R
(
X1/(X

2
1 + X2

2)
1
2 , X2/(X

2
1 + X2

2)
1
2 , 0

)ᵀ
, (21)

|∇ f (X)| = 2
(
X2
1 + X2

2 + X2
3 − 2R(X2

1 + X2
2)

1
2 + R2

) 1
2
, (22)

∇2 f (X) = 2I − 2
R

(X2
1 + X2

2)
3
2

(X2,−X1, 0)(X2,−X1, 0)
ᵀ, (23)
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Fig. 7 Evolution of a simple curve belonging to the orientable surface of genus 0 with humps
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Tᵀ∇2 f (X)T = 2 − 2
R

(X2
1 + X2

2)
3
2

(T1X2 − T2X1)
2, (24)

where the unit tangent vector T = (T1, T2, T3)ᵀ. The torus surface is shown in Fig. 1.
The initial curve X0 derived from the mapping (20) is parameterized by

X0(u) = X (ku, lu), u ∈ I , (25)

where k = 2, l = 3, r = 1 and R = 4. Its time evolution is shown in Fig. 4. The
curve shrinks and converges to the stationary state with constant length as suggested
in Fig. 6 a).

6.2 Attraction of curves by a torus surface

In this part, we present an example of the evolution of initial closed curves belonging
to a small neighborhood of the given surfaceM.

The following computational example demonstrates how an initially knotted curve
evolves according to the geometric evolution equation (2) driven by the force term (5).
The reference surface is the torus given by immersion (20) with r = 1, R = 4. The
initial curve X0 is parameterized by mapping (20) as

X0(u) = X (ku, lu), u ∈ I ,

where k = 3, l = 5, r = 2 and R = 4. The time evolution of such an inflated initial
curve is shown in Fig. 5. The curve continues to shrink until it attaches to the torus
surface and eventually finds its stationary state with constant length, as suggested in
Fig. 6b.

6.3 Evolution of simple curves on surface with genus 0 with humps

The last example is shown in Fig. 7. M = {X = (X1, X2, X3)
ᵀ ∈ R

3, f (X) = 0}
where

f (X) = X2
1 + X2

2 + c2(X3 − φ(X1, X2))
2 − r2,

φ(X1, X2) = h(X1 − 1, X2) + h(X1 + 1, X2).

Here h is a smooth bump function, h(X1, X2) = v 2−1/(1−X2
1−X2

2) for X2
1 + X2

2 < 1,
and h(X1, X2) = 0, otherwise. In the example shown in Fig. 7 we set r = 2.5, c = 4,
and v = 3. The initial curve is an ellipse projected onto the surface, i.e.

�0 = {X = (X1, X2, X3), X2
1/2 + X2

2 = 2, X3 = c−1(r2 − X2
1 − X2

2)
1
2 + φ(X1, X2)}.
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7 Conclusion

In this paper, we investigated the curvature-driven flow of a family of closed curves
evolving on an embedded or immersed manifold in the three-dimensional Euclidean
space. We analyzed the qualitative behavior of this flow. Using the abstract theory
of analytic semi-flows in Banach spaces, we prove the local existence and unique-
ness of Hölder smooth solutions to the governing system of evolution equations for
the curve parametrization. We demonstrate the behavior of sulutions in several com-
putational examples constructed by means of the flowing finite-volume method and
asymptotically uniform tangential redistribution of discretization points.
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