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Abstract

The evolution of plane curves obeying the equatiea 8 (k), wherev is normal velocity and curvature of the
curve is studied. Morphological image and shape multiscale analysis of Alvarez, Guichard, Lions and Morel and
affine invariant scale space of curves introduced by Sapiro and Tannenbaum as well as isotropic motions of plane
phase interfaces studied by Angenent and Gurtin are included in the model. We introduce and analyze a numerica
scheme for solving the governing equation and present numerical experimé®39 Elsevier Science B.V. and
IMACS. All rights reserved.
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0. Introduction

The goal of this paper is to investigate the evolution of closed smooth plane dUnRAZ — R2. By
contrast to the curve shortening flow studied in [1,7,14,17,18], we assume that the normal velocity of the
curveI” at its pointx is a nonlinear function of the curvatukeof I" at x. More precisely, we study the
evolution of plane curves obeying the geometrical equation

v=p(k), (0.1)

wherev is the normal velocity of evolving curves amid R§ — R{ is a smooth function. As a typical
example one can consider a functigiik) = k™, wherem > 0. Throughout this paper we adopt a
convention according to which the curvaturef a curverl” is always nonnegative whereas the normal
vector N may change its orientation with respect to the tangent vector
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The geometrical equations like (0.1) are capable of describing various phenomena in physics, material
sciences, computer vision, robotics and artificial intelligence. There are two main fields, in which the
evolution of a plane curve plays an important role: (a) the multiscale analysis of images and shapes
closely related to signal smoothing, edge detection and image representation (see, e.g., [3,19,27]); (b) the
Stefan problem with surface tension and related interface motion models (see, e.qg., [8,24,29]).

In the context of image processing, so-calledrphological image multiscale analyssswidely used.

This analysis is represented by a viscosity solution [13,16,12] of the following nonlinear degenerate
parabolic equation in a two-dimensional rectangular domain

v, = |Vulg(div(Vu/|Vu])), (0.2)

whereg is a nondecreasing function [2,3,21]. It is a generalization of the so-dalletiset equatiof25,
30] used for the classical mean curvature flow. The initial condition for (0.2) corresponds to the
processed image and the solutiorio its scaling version. In many situations, silhouettes (boundaries
of distinguished shapes) in the image correspond to level linesTdie morphological image multiscale
analysis then leads to the silhouettes motion obeying the equation of the form (0.1). In the vision
theory, affine invariant scale spadeas special conceptual and practical importance [2,28]. It is natural
generalization of the linear curve shortening flow, and is given by (0.1) gith = k3. The active
contoursmodels §nakeyandcurvature-based multiscale shape representatietated to edge detection,
image segmentation and recognition, are other important fields in which geometrical equations are widely
used [20,22].

In the context of multiphase thermomechanics with interfacial structure the plane curve evolution is
a natural model for thenotion of phase interface3he isotropic version of the theory of Angenent and
Gurtin [8,9] has the form of equation (0.1). In this case, the nonlinearity expresses the dependence of the
kinetic coefficient on the normal velocity (see [8, (4.11)]). For example, if the dependence is linear then
we haves (k) = k2. Under additional assumptions, a model corresponding to classical (i.e., anisotropic)
curve shortening flow is derived and studied in [8, (4.13)]; for numerical approximation in this case we
refer to [15,24]. If8 is a strictly increasing function equation (0.1) has been studied in [5,6] as a model
of curve evolution on arbitrary surfaces.

In the present paper, we suggesteav computational methddr solving geometrical equation (0.1).
The aim is to represent equation (0.1) by a so-called intrinsic heat equation governing the evolution
of plane curves with the normal velocity obeying equation (0.1). Such a representation of the curve
evolution is found for a general functigh using an appropriate curve parameterization. In Section 1
we make use of the “Eulerian transformation” of the intrinsic heat equation (1.3) into a degenerate
evolution partial differential equation (1.10) with spatial variable being independent on time and varying
on a fixed interval. This equation is a generalization of the corresponding equation studied by Dziuk
in [14]. The “intrinsic property” of the governing equation (1.10) causes that the spatial parameterization
step is not involved in the approximation scheme and therefore only the spatial position of points of a
curvel” and the curvature af’ play the role in the discretization scheme suggested in Section 4. In other
words, given a discrete polygonal curve one can compute its evolution without knowing the normalized
parameterization of the initial curve. The behavior of homothetic solutions is studied in Section 2. In
Section 3 we prove some a-priori estimates of a smooth solution, which, in particular, implyrihe
shorteningproperty of the governing equation (1.10) which ensures, in some way, the stability of the
method. The same property is proven for the time discretization scheme (4.1) in Section 4. In Section 5
the proposed numerical scheme is carefully tested by various examples of the nonlinear curvature drivern
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evolution (0.1). We present a comparison of the numerical results with the exact homothetic solutions.
In this section we also perform a comparison with previous results obtained by a conceptually different
method introduced in [23]. It is worthwhile noting that the method of [23] can be applied only for the
evolution of convex curves whereas the new method suggested in this paper is capable of capturing the
nonlinear evolution of both convex as well as nonconvex curves.

Notice that coefficients in Eq. (1.10) may develop singularities either due to vanishing of,
by contrast to the casg(k) = k studied in [14], also due to the presence of the extremal values of
the curvaturek = 0 or k = co. Moreover, Eq. (1.10) is written in a non-divergence form. This feature
make the analysis particularly difficult. Therefore the careful analysis of the convergence as well as error
estimates of the suggested approximation scheme are still open problems.

1. Governing equations
1.1. Parameterization of a plane curve

Let I be a smooth curve in the plaiR?. By this we mean thal” can be parameterized byG?
smooth functiont : R/Z — R? such that

I'={x(), uel0,1]}. (1.2

We will henceforth writel” = Image&x). To describe the time evolutiofi™*}, ¢ € [0, Tmax), Of a curve
I'° we adopt the notation

I'={x(u,t), uel0,1]}, t€l0, Tma,

wherex € C3(R/Z x [0, Tmay), R?). Obviously, any plane curv& admits various other parameteriza-
tions. Henceforth, the parametewill always refer to the arc-length parameter of a plane curve

Example 1.1. Consider another parameterizatiop of a curve I' = Imagex). Then it is easy to
verify that defox/ds., 92x/ds2] = ¢'(s)~3defdx/ds, 3%x/ds?], wheres, = ¢(s). As k = |defdx/ds,
8%x/9s?]| we have

| det[dx/ds., 3%x/ds?]| = 1 (1.2)

provided that the new parameterization= ¢(s) has the property 5§ = ¥ (s)ds where 9 = k'/3.
A parameterization of a plane curve satisfying Eq. (1.2) is referred tiveaaffine arc-lengtlisee [28]).

Throughout the paper we will use both notationsas well asdx/9¢ in order to denote the partial
derivative ofx with respect to a variablg.

1.2. Intrinsic heat equation

The aim of this paper is to investigate the evolution of plane cuf¥&s undergoing the intrinsic heat
equation
ax 9%

dx _ 9% 13
ar  9s? (13
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wheres,, is a new parameterization of a curyg obeying the law
ds, = 9 (s) ds.
We will seek for a functiond such that the normal component of the curve-flow velocitgatisfies
the equatiorv = B(k). To this end, let us transform Eq. (1.3) using the arc-length parameterization. We
obtain
ax 1 8(18x>_ 1 ¥ (s)
3t D(s)ds \O(s)ds ) 02(s) B3(s)
whereT is the unit tangent vectofi, = x; and N is the unit normal vector satisfying Frenet's formula
T, = kN. Hence the normal velocity = (x,, N) fulfills Eq. (0.1) iff

O =kY?B(k)~Y2. (1.5)
If the function 8 has the formg(k) = k¥, « > 0, we obtainy = k@ 9/ |f ¢ =1 thenx, = kN.
On the other hand, it = 3 we have? = k*/® andx, = k3N — 1(k,/k%3)T. Taking into account
Example 1.1 we may conclude that for the affine arc-length parameterization satisfying (1.2) the normal
velocity v of a curvel” with the curvature at a pointx satisfiesv = k%2 (see also [28]).

T, (1.49)

1.3. Eulerian form of the governing equation

It is worthwhile noting that the parameterizationoccurring in (1.3) may depend on timeand its
initial positionu atr = 0. This is because of the requirement that the normal velocity should depend
on the curvature only as it was prescribed by Eq. (0.1). Thus the evolution of the new parameterization
s« = s, (u, 1) as well as the arc-length parameterizatios s(u, r) depend on the solution itself. This
feature is similar, in spirit, to the transformation between Lagrangian (material) and Eulerian (spatial)
coordinates in the classical mechanics. This is why the intrinsic heat equation (1.3) is not convenient
when treating evolution of plane curves numerically. To overcome this difficulty, we rewrite (1.3) into a
form involving a parameterizatiom independent of the time variabieand varying on the fixed interval
[0, 1].

Letu € [0, 1] be a time independent parameterization of a curv&hen the arc-length parameteriza-
tions of I' is related ta: by ds = |x, | du. Furthermore, aé = |x,,| and

32x 1a<1ax) 1( 1( ))
N o — . ) = T X — 5 X Xy ) Xy
ds2 x| du \|x,| du |x.12 |, |?

we havek = k(x,, x,,), where

_ 1/2
k(p.)=1pI (1Pl = (p.9*)"", p.qeR? (1.6)
where(-, -) denotes the Euclidean scalar produciRifiand the corresponding norm is denoted| by.
Here and after we will assume that a function

®) B:10, c0) — [0, co) is Ct-smooth on(0, oo) and is continuous ofD, co),
B(k) > 0fork > 0.
Let us consider a new parameterizatiQreatisfying @, = 9 (s) ds, wherev (s) is defined as in (1.5),

i.e.,® = k¥/?B(k)~Y/2. To facilitate the notation, let us define scalar valued functipns s : R? x R? —
R,

05(p.q) =k(p. )2 Bk(p.)) 2, Gp(p.q) =1plOs(p.q). (1.7)
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It is easy to verify that(p, ¢) = |p|~3|delp, ]| and this is why the function&;; and k have the
following scaling and affine properties:

Gg(p,ap+q) =Gg(p, q), k(p,ap+q)=k(p,q), k(ap,bq) = a~?bk(p, q) (1.8)

foranyp,q € R? a,beR.
If B(k) =kY*, a >0, then

_ (a—1)/(4a)
Gy (p.q) = IpI® @ (1pRlg2 — (p, 9?) ™,
and, in addition to (1.8), one has
Gglap, bq) = |a|Y*|b|“ /@ Gy(p,q) foranyp,q eR? a,beR. (1.9)

Now we are in a position to rewrite the intrinsic heat equation (1.3) into so-called “Eulerian form”
with a parameterization varying on fixed interval0, 1] as follows:

ax 1 0 < 1 0x
0t Gp(Xus Xuu) Bu \ G p(Xys X)) It

The fully nonlinear system of PDEs (1.10) is subject to the initial condition 0) = x°(u), u € [0, 1],
and periodic boundary conditions@at= 0, 1, i.e.,x € C>Y(R/Z x [0, Tmay), R?).

>, (u,1) €[0,1] x [0, Trmax- (1.10)

2. Special solutions

Throughout this section we will restrict ourselves to the case wigh= k%, « > 0. We will seek
for a solutionx (u, ) of (1.10) having the form

x(u, ) =¢(0)X (u). (2.1)
Suppose that € C2(R/Z; R?), x # 0, is a solution of the nonlinear eigenvalue problem
1 a 1 X
v _( 1 _"):u, u € [0, 1]. 2.2)
Gﬁ (-xu, xuu) u Gﬁ (xu, xuu) u

Clearly, if ¥ # 0 is a solution of (2.2) then by taking the scalar produdtZiA(0, 1)) of (2.2) with Ggx
we obtain

L o @W/GplEl o

Jo G512
Let ¢ be a solution of the initial value problem
d
Do 9O =g0>0 (23)

Then it should be obvious from the scaling property (1.9) that the functi@an:z) = ¢ (1)x(u) is a
solution of (1.10) satisfying the initial condition(u, 0) = ¢ox (1), u € [0, 1]. The explicit form of a
solution of (2.3) is given by

1 a/(a+1)
P(t) = |pST — %Az . (2.4)



196 K. Mikula, D. Seedvic / Applied Numerical Mathematics 31 (1999) 191-207

The life-span of a homothetic solution of the form (2.1) is the intef®al’,,ax), Where

a¢c()1+a)/a

Example 2.1. An eIIipsef = {(acos2ru), bsin(2ru))", u [0, 1]} is a solution of (2.2). Then
Gy (% o) = 27 (ab) @0/ (g2 sin (27 u) + b2 o (2ru)| &

In the caser = b (i.e., I is a circle) andr > 0 we haveG = 27a@+9/* and saf is a solution of (2.2)
iff A =a~@tD/2 |f we choose the initial conditiopy = 1 (i.e., I"° = I") then the life-span of a solution
iS Tmax= (&/(a + 1))a**P/%. On the other hand, i # b anda = 3 we obtainGz = 2 (ab)*/® and so
A = (ab)?/. ThenTmax= 3(ab)?3.

By using the phase-space analysis argument, one can show that the only solution of Eq. (2.1)
with normalizedir = 1 is either a circle for O< o # 3, or an ellipse fora = 3. Thus a function
x € C2Y(R/Z x [0, T), R?) of the formx(u, ) = ¢(¢)%(u) is a solution of (1.10) iff the family of its
imagesI™t = Imag€gx(-,t)), t € [0, T), are either homothetically shrinking circles for<Oa = 3 or
homothetically shrinking ellipses for the case= 3. This is consistent with the result obtained by Sapiro
and Tannenbaum [28] for the cagék) = k3.

3. A-priori estimates of solutions

The goal of this section is to derive a-priori estimates of solutions of the intrinsic heat equation (1.10).
We will provide these estimates for the original equation (1.10) as well as for the modified equation

a 1 0 1 d

ox _ _( _x), 3.1)
ot Gﬂ,s(xuv Xuu) OU Gﬁ,s(xuv Xyu) OU

whereGg ., ¢ > 0, is a modification ofG4 such that

G R? x R? - Ris Ct-smooth, 0< G4.(p, q) < 0o,
(B) Gge(p,ap+q)=Gps.(p,q), foranyp,q € R?,a,b € R ande > 0, and
Gp.e(p.q) > Ggo(p,q) =Gg(p,q) ase — 0" forany p, g € R?,

Definition 3.1. By anondegenerate evolving curwe mean a function € C>*(R/Z x [0, T), R?) such
that 0< Gg . (x,(u, 1), x,,(u, 1)) < oo for anyu e R, t € [0, T). By anondegenerate classical solution
of Eqg. (3.1) we mean a nondegenerate evolving curgeC%1(R/Z x [0, T), R?) satisfying (3.1).

Proposition 3.1. Let x be a nondegenerate classical solution of E8.1), ¢ > 0. Then, for each
re (07 Tmax)1

1 1
d
= / (1)) + / W B K)|xu (- 1)] = O, (3.2)
0 0

wherek = k(x,, x,,) andw, = Gg(xy, X))/ Gp.e (X, x4y,) fOr e >0, wo = 1.
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Since d = |x,| du we have
1

/a)fkﬁ(k) ds =/a)§kﬁ(k)|xu|du.
rt 0
Herek stands for the curvature @f’ at a pointx € I'*. Therefore, Eq. (3.2) can be rewritten as

d
FLength +/ w?kB (k) ds =
Corollary 3.2. LetI", t € [0, Tmax), WherelI'" = Imag€gx (-, t)) be a flow of plane curves whexeis a

nondegenerate classical solution @.1). Then(d/dr)|I"'| < 0. In other words, the length™| of the
curveI'" decreases along the time, i.€l;'}, t € [0, Tmax), iS @ curve shortening flow.

Proof of Proposition 3.1. Denotek = k(x,, Xuu), G = Gg ¢ (xy, Xu,) ANAO = |x,|"1G. Then
1 Xy d Xy d x,
|xuls = Ix u|(xutvxu) (xutv G) _9{ du (xt’ E) - (xt’ 56)}
ol d (iix—“ o) = . G | = 0%, P +91{( L d x )
du\G du G’ G ’ ! d 02|x,| du 0xy| |xul
=l P+ o [ (e S ) (S )
due L 6%, | \ [x,] " |x,| 03 x, | \ due x| x|

d/ 6,
:—92|xu||x,|2—9d—(—) 3.3)
u

0%xu|

because

d x, =x,
—— — | =0.
(du || |Xu|)

With regard to (1.6) we havi, |2 x..|? — (X, Xu)? = k?|x,|®. Therefore,

2 2

| | 1 d Xy 0| | 9 | | G(XM’ xuu)
Xl = = Xy [ Xyu — Ty | Xy | Xy — u
C 02k du Olx,l| T 6%, 1° x|
2
— 2 2 2
- 96' 6 {9 [lxuu| |xu| - (xua xuu) ] + 0 |xu| } k 9 + 96| | * (34)

Taking into account (1.7), (3.3) and (3.4) we obtain

d )
ult — uk2 2__< “ )
[l = — e

Finally, as

_ o klx
2 2 _ 12 2 2 2 2
k2072 = k%, °G52 = 500 G2kB(k) = G2G 52k (k) = w?kB (k)

we conclude that
d 0,
ale = —eZ x|k BCR) — (—) (35)

03], |
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Since bothx(u, ) as well asé(u, ) are 1-periodic functions im Eq. (3.2) follows from (3.5) by
integrating over the intervdD, 1]. O

4. Numerical scheme

In this section we present a time semi-discretization scheme for solving Eq. (3.1D, Z8tbe an
interval and letr = T'/n, n € N, denote the time discretization step. By i =0, 1, ..., n, we denote
the approximation of a true solution of (3.1) at time-it, i.e.,x'(:) = x(-,it). Lete > 0 be fixed. The
idea of the construction of a time discretization scheme is based on approximation of the intrinsic heat
equation (1.3) by the backward Euler method

i i—-1 82xi

2 9 & 9 by
T dS

where the parameterization is computed from the previous time stejp'. The “Eulerian form” of the
above scheme reads as follows:

. 9/ 1 ox! .
xz_;_(__i>=le, i=12....n, (4.1)
gl—l u gt—l ou

whereg'~t = Gg . (x/ 71, x{~1) andx? is the initial condition.

In what follows we will investigate the discretization scheme (4.1). We will prove the existence of
a sequence’, i =1,2,...,n, as well as we will show that such a discretization of the governing
equation (3.1) generates the curve shortening discrete semiflow.

Lemma 4.1. Suppose thag € C1(R/Z;R), g >0, T > 0, andx € C(R/Z; R?). Then there exists a
unique solutiont € C2(R/Z; R?) of the equation

d /10
x_E_(_l):i (4.2)
gou\gou
Moreover,
1 1 1 1

[eni+2r [ i< [ (4.3)

0 0 ¢ 0
and, in particular,x = 0 whenever = 0. Finally, if x € C*(R/Z; R?) then

kx|
8

Zuu+rj<

wherek = k(x,, x,.).

2 l
) < [ 15l (4.4)
0



K. Mikula, D. Sewdvic / Applied Numerical Mathematics 31 (1999) 191-207 199

Proof. We first prove the uniqueness of a solution of (4.2). Since (4.2) is a linear nonhomogeneous
equation forx the proof follows from (4.3) withk = 0. To prove (4.3) one can take ttié inner product
of (4.2) with gx to obtain the estimate

1 11 1 1 1
2/g|x|2+2r/—|xu|2=2/g<x,x> </g|x|2+/g|i|2
0 0 g 0 0 0

from which inequality (4.3) easily follows.

To prove the existence of a solution of (4.2) one can argue by Fredholm’s alternative. Indeed, let
A:C(R/Z;R? — C?(R/Z;R? be a solution operator for the equatiep, + 72x = f, i.e.,.x = Af.
Then

1 u
Af(u) = —% /Sin(nu —ms)f(s)ds + %/Sin(nu —7s) f(s)ds
0

0

and this is why the linear operater is bounded when operating fro@ — C? and is compact as an
operator fromC — C?. Let L be a linear operator o60*(R/Z; R?) defined asLx = A(g,g *x, +
g’t x + 72x). ThenL:C! — C' is compact and thereforé — L is a Fredholm mapping of zero
index. As a consequence of (4.3) we have that the kernél-ofL is trivial. Therefore, the equation
x — Lx = —A(g%t~1x) has a solution: € C*. In fact,x € C? andx solves (4.2).

Finally we prove (4.4). The proof is similar, in technique, to that of Proposition 3.1. Let us denote
6 = |x,|"tg, 8;x = (x — x)/t. Then, following the lines of the proof of Proposition 3.1 one obtains

<5rxu,|x—u|) 0%, “>=e{d‘1(ax g)_<5x dix;)}

:—92|xu||5fx|2—91( Ou )
du \ 6%|x,|

Using the same argument as in (3.4) yields

8 | B 1 d x, 2_ 2._a Quz
i 62|x, 12| du 6]x,]| 6%x,1%
Hence,

Xy 2.2 d 0,
SeXu, — | = —kO0 x| — — .
| | du \ 63| x,|

On the other hand,

Xy 1 _ Xy Xy
thuv— =\ Xu = Xy, 7/ | ul xuv— .
|| T EAVARR: | |

Therefore,

/|xu|+r/( ) |xu|—0/(xu,m) /|xu

and the proof of the lemma follows.O
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We claim that we have assured the existence of a sequeneeC?(R/Z;R?), i =0,1,...,n,
generated by the iteration scheme (4.1) provided #lat C3(R/Z; R?). Indeed, fore > 0 we have
g% > 0 andg® e C*. Now, if g'=! € C?* then according to Lemma 4.1 there exists the unique solution
x' e C? of (4.1). Then
i—1 i—1\2
i = 8u i 4 ) (xi _xi—l>‘

uu i—17u T

8

By the hypothesis (E) and the property (1.8) we may conclude that the fungtienGs . (x!, x! ) =
Gpo(x, (g H2r7(x! —x'~1)) is, in effect,Ct-smooth ang’ > 0. Then an induction argument enables
to conclude that the sequengg i =0,1,...,n, is well defined and alk’, i =0,1,...,n, areC?-
smooth.

Summarizing the above considerations we obtain the following result.

Proposition 4.2. Let x° € C3(R/Z;R?) and ¢ > 0. Then there exists a unique sequence i =
0,1,...,n, generated according to the iteration schefdel). Moreover,

/|x|+ /(klw) /|x’ 1 fori=1,2,. (4.5)

wherek’ =k(x,x! ) andg' =t = G .(xi71, xI-1). In particular, the length of the curvE’ = Imagex’)
decreases along the discrete evolution generate@ ).

We end this section by discussing the full space-time discretization scheme to be used in all numerical
simulations below. To derive the fully discrete analogue of (4.1) we use the uniform spatial; gtigh
(j =0,...,m) with h = 1/m. The smooth solution: is then approximated by the discrete valug
corresponding tac(jh, it). Using quite natural finite difference approximations of spatial differential
terms in (4.1) we end up with the following semi-implicit difference scheme

1 xi Xl~ 1 '+l i xi} xl 1
—(g»_ —i—gA_l) A - = i=1...,n, j=1,...,m, (4.6)
2™ " T 834—% g; !

where

i1 _ i1 k§‘71+8
g =hj i1
:3(]‘ +¢)

and
i-1_j.i-1 -1
h; —|xj Xj-1

9

i1 i1y i1 i-1
Kl ’arccoe{(x]+l xlfl’xj —xj 2)/(|x1+1 Xl = X))
: .

i—1
-

The scheme is subject to the periodic boundary conditk}asﬁ = x;i (j = —1,0,1). In each discrete
computational time stepr the scheme (4.6) leads to solving of two tridiagonal systems for the new
curve position, which are computed in a very fast way. Let us mention that (4.6) does not involve the
spatial grid parametér and in the linear casg(k) = k it coincides with Dziuk's scheme [14].
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5. Discussion on numerical experiments

Now, we present numerical results obtained by the approximation scheme (4.1) in the fully discrete
version (4.6).

It follows from (2.4) that a special solution of (0.1) wif(k) = k™, m > 0, is a circle homothetically

shrinking to the center; its radiuB(¢) being given byR(t) = (R(0)"** — (m + 1)r)¥Y™+D, Using
this formula we obtain exact blow up time for curvature. Table 1 shows relationship between exact
and numerically computed blow up times for the power like funciigh) = k™ for variousm > 0. It
shows the exact blow up tim&s,.« (see (2.5)), and numerically computed ones for time step€.01,
7 = 0.001,7 = 0.0001, respectively. The equidistant time step is used until the curvature begins to growth
beyond a threshold value. After this moment we adaptively refine the time step to obtain numerical blow
up (curvature of order ). We use the mesh containing 100 space grid points in order to represent the
position of the curve.

In the cases (k) = k%3, arbitrary ellipse is a homothetic solution (see [2,28] and Section 2 of this
paper). This property is also confirmed by our numerical simulations. During the time evolution the ratio
a/b of halfaxes stays constant up to the moment very close to the exact time of shrinking. The shape
selfsimilarity during the evolution is justified by computing the isoperimetric ratio=dsb?/ (4 S),

S
2

B

-1

-1 -0.5

=)

0.5 1

Fig. 1. Shrinking of the unit circle by nonlinear curve shortening vdith) = k%/2; numerical blow up time for the
curvature is 0.671, plotting time step is 0.1.

Table 1
Relationship between exact and numerically computed curvature blow up
times for initial unit circle,8 (k) = k™

1 1 1 1
m 1 Z 3 p 1 0
Tmacexact 0909 08 075 ® 05 1.0

=001 0942 0835 0.785 0.701 0536 1.02
7=0001 0913 0.8047 0.754 0.671 0.5048 1.003
7=0.0001 0.9098 0.8007 0.7506 0.6673 0.5005 1.0007
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Fig. 2. Affine invariant evolution of the ellipse, initial halfaxes= 3, b = 1; halfaxes ratio and isoperimetric ratio
are conserved during the computations.

Table 2
Relationship between exact and numerically computed curva-
ture blow up times for initial ellipseg (k) = k1/3

Halfaxes ratio 2:1 3:1 4:1
Tmax-exact 1.191 1.560 1.890
7 =0.001 1.195 1.564 1.893
Iso 1.188 1.508 1.864
Table 3

Evolution of the isoperimetric ratio
Time/Iso 0 0.6 1.4 15 1519
Bk)y=kY2 1508 1.36 1.25 1.11 1.07 1.04
Bk)y=kY* 1508 1.63 1.79 2.39 3.36 4.12

=

where L is the length of the curve anl is the enclosed area. It turns out that also this quantity is
practically constant for the numerical solution.

Form = % the exact blow up time for a shrinking ellipse can be computed (see Example 2.1) and is
equal to§1 (ab)?3. In the next table we compare the numerical and exact blow up times for several ellipses.
The ratio of halfaxes is printed in the headline of Table 2. The mesh containing 200 space grid points has
been used for discretization of the curve. We also print the isoperimetric ratio which is conserved up to
4 digits during numerical evolution.

In spite of conservation of the isoperimetric ratio for= % it tends to 1 in numerical computations
with m = % and tooo for m = %, respectively. We print values of Isor € [0, Tmax), in these two cases
for initial ellipse with halfaxes ratio 31.

In Figs. 3 and 4 we present the comparison of the numerical results obtained by two rather different
methods. Namely, the tested method (4.1), based on the computing of the curve’s position vector, and the
method introduced in [23], based on the computing of the curvature of evolving curve. In the second case,
the real motion is reconstructed from the computed curvature in discrete time steps. This method is basec



K. Mikula, D. Sewdvic / Applied Numerical Mathematics 31 (1999) 191-207 203

1

(772
BN

-2 -1 0 1 2

o

Fig. 3. Comparison of two different methods for evolution of convex curve: tick marks—method (4.1); solid
lines—method from [23].

-2 -1 0 1 2

Fig. 4. Comparison of two different methods for evolution of selfintersecting “convex” curve: tick marks—method
(4.1); solid lines—method from [23]. The evolving curve is plotted at the same discrete time moments until the
“hair” singularity is formed. The method from [23] cannot continue beyond singularity.

on solving the nonlinear parabolic equation of porous-medium type and its convergence for (0.1) is the
consequence of the results of [24]. However, it is restricted to convex cases (including selfintersections).
In Fig. 3 one sees suitable redistribution (from initial to the first plotted step) of computational grid
points due to the presence of the tangential component of the velocity (see (1.4)). Due to the ghape of
the points with high curvatures are moving along the curves:(1) and it works against the degeneracy
of equation. In spite of this, the effect is oppositedor 1 and leads to serious computational difficulties
in that case. This phenomenon can be explained, in a satisfactory manner, by Eq. (1.4). It follows from
(2.4) and (1.5) that the tangential velocity is proportionattéimes the sign ofn — 1. Therefore in the
casem < 1 the tangential component of the velocity drives the grids away from the pieces of the curve
with increasing curvature whereas its action is opposite in themasd..
The results discussed above are very accurate already for reasonable large computational time step:
It indicates the usefulness and effectiveness of the method even in cases when no exact solutions ar
known. In Figs. 5-8 we show evolutions of several initially nonconvex curves with the different choices
of 8. We also present the passage through singularities in some examples of immersed curves. A simple
point removing algorithimhas been built into the scheme preventing the |“= 0” kind of singularity
and, moreover, it is very useful tool in order to pass through singularities and other situations when the
grid points representing the curve move very close to each other.
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Fig. 6. The initial nonconvex curve.

Fig. 6b. The cases(k) = k/3. Time interval is
[0, 0.56].

Fig. 6a. The cased(k) = k. Time interval is

[0, 0.26].
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Fig. 6¢. The casg(k) = k¥/°. Time interval is

[0, 0.56].
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Fig. 7. The initialoo-like selfintersecting curve.

-2 -1 0 1 2

Fig. 7b. The case8(k) = k¥/3. Time interval is Fig. 7c. The case8(k) = k2. Time interval is
[0, 0.3]. [0, 0.08].

Figs. 6a—6¢c show the time evolution of the initial curve depicted in Fig. 6. The plotting step is 50.
The initial curve has the parameterizatipftos2ru), 2 sin(2ru) — 1.99sin27u)3), u € [0, 1]} and
the spatial mesh contained 100 equally distributed points. In Fig. 6a, respectively 6kg (wjtk- k,
respectivelyf(k) = k3, one can see the evolution of a nonconvex curve to a circle-rounded point,
respectively to an ellipse-rounded point, in Fig. 6¢ we have plotted evolution of the nonconvex curve
with the blow up of isoperimetric ratio for the cagék) = k'/°.

Figs. 7a—7c show the time evolution of the initial curve depicted in Fig. 7. The plotting step is 40
(Figs. 7a, 7b) and 30 (Fig. 7c¢). The initial curve has the parametrizétboog2ru), sin(4ru)), u €
[0, 1]} and the spatial mesh contained 100 equally distributed points. In Fig. 7cAwkth= k® one
sees very different behavior for the parts of curve with curvature close or equal to O in comparison with
Fig. 7b, whereg (k) = k3. We did not trace the evolution of curves f8k) = k?> beyond the time
interval [0, 0.1] as it becomes unstable for large time intervals of simulation. The pieces of the curve
with the curvature close to zero do not move for a long time in the g&e= k? (see Fig. 7c) whereas
they move quickly apart from each other in the cgge) = k'3 (see Fig. 7b). This phenomenon can be
related to the effect of the the slow and fast diffusion diffusion effect known from the analysis of porous
medium equations.

Another example of the time evolution of an irregular initial curve with the large variation in the
curvature is demonstrated by Figs. 8a—8c with initial curve depicted in Fig. 8. We have used the time step
7 = 0.001, plotting step 50, and the mesh contained 200 grids.
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Fig. 8b. The casg (k) = k/3. Time interval is
[0, 0.9].

Fig. 8c. The caseS8(k) = arctartk). Time
interval is[0, 1.1].
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