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Abstract

Weakly nonlinear analysis is adopted in order to study a model of magnetoconvection in a rotating horizontal fluid layer.
The layer is supposed to be non-uniformly stratified and is permeated by an azimuthal magnetic field. The only nonlinearity
brought in this convecting system is due to presence of Ekman layers along the horizontal mechanical boundaries. The
governing equations for this model together with the expression for geostrophic flow, i.e., modified Taylor’s constraint are
analysed with help of perturbation methods. As a result, the bifurcation structure in the vicinity of the critical Rayleigh
number is revealed. q 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

In a large class of MHD models, the assumption
is often made that the primary force balance in the
Earth’s core is entered by Lorentz, Coriolis, buoy-
ancy and pressure forces in the equation of motion.
Such a force balance, familiar also as magne-
tostrophic approximation, has a solution, if and only

Žif so-called Taylor’s constraint is satisfied Taylor,
.1963 . In the case of small but non-zero viscosity,

the magnetostrophic approximation still holds as a

) Corresponding author. E-mail: brestensky@fmph.uniba.sk

primary force balance, but Taylor’s constraint has to
be modified to include viscous effects. In this case,
modified Taylor’s constraint can be taken as a pre-
dictive formula for evaluation of geostrophic flow

Ž .which is thus expressed explicitly Fearn, 1994 .
In this paper, we focus our attention on a finite

amplitude rotating magneto-convection in a horizon-
tal layer permeated by azimuthal magnetic field. The
linearized version of this problem for the model of
uniformly stratified rotating layer with infinite hori-

Ž .zontal extension has been studied by Soward 1979
ˇ Ž .and Brestensky and Sevcık 1994 . In the model of´ ˇ́

Ž .rotating annulus Skinner and Soward, 1988, 1991 ,
the effect of geostrophic flow was incorporated mak-
ing the whole problem nonlinear. Here, conditions
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for the onset of instability in the regime of so-called
Taylor state 1 were found.

Unlike the above mentioned references, in our
Ž .recent studies made in Brestensky et al. 1997 and´

Ž . 2Revallo et al. 1997 , we restricted our attention on
the early evolution of instability in the vicinity of the
basic static state, i.e., in the vicinity of critical
Rayleigh number R . This leads to a specific weaklyc

nonlinear problem where the ensuing magnetocon-
vection is affected by the presence of geostrophic
flow. The interested reader is referred to BRS for
some mathematical aspects as well as for the method
of solution. In RSB we considered a simple model of
radially bounded horizontal rotating layer with free
infinitely electrically and thermally conducting
boundaries. We found that the oscillatory convection
in this system sets in via Hopf bifurcation which is
typically supercritical for qs0.005. Furthermore the
convective instability has a form of travelling waves
whose frequency has a decreasing tendency as the
Rayleigh number is increased beyond its critical
value.

In this paper, we pursue the weakly nonlinear
analysis made in BRS and RSB for a more compli-
cated model of magnetoconvection where non-uni-
form stratification of the layer is incorporated. Our
modification of the model is based upon an idea

Ž .originally proposed by Bod’a 1988 and later devel-
ˇ 3Ž .oped by Sevcık 1989 . In these references a linearˇ́

problem of magnetoconvection in a horizontally un-
bounded geometry was set up in which the density

Žgradient changes its sign across the layer non-uni-
.form stratification . The concept of a non-uniformly

stratified layer appears to be reasonable as it incor-
porates more realistic conditions in the Earth’s inte-
rior which is known to be non-uniformly stratified.

Note that several interesting features were isolated
Ž .in the model introduced by Bod’a 1988 , e.g., exis-

tence of the magnetic mode in the layer gravitation-
ally stable in the top half and unstable in the bottom
half. Moreover, under the assumption of non-uni-

1 In this asymptotic regime the magnitude of geostrophic flow
is such that viscous forces no longer have major influence on the
convection and the net torque on geostrophic cylinders vanishes.

2 Henceforth referred to as BRS and RSB.
3 Henceforth referred to as S89.

form stratification, the excitation of thermal mode
was observed in S89 even for the layer cooled from

Žbelow and heated from above the case of negative
.Rayleigh number .

The paper is organised as follows. In Section 2
we formulate the nonlinear problem and we state the
expression for the geostrophic flow. In Section 3 we
present a system of nonlinear PDE’s governing mo-
tion. Such a motion is periodic in both time and in
the azimuthal variable. Section 4 refers back to the
original linear problem for a non-uniformly stratified
layer solved in S89. In Section 5 we briefly outline
the solution of PDE’s by a perturbation technique
and we quote resulting amplitude equation. The re-
sults of bifurcation analysis are presented in Section
6. The corresponding bifurcation diagrams are also
shown in this section. Section 7 is devoted to conclu-
sions.

2. Description of the nonlinear model

The model under consideration is a weakly
4 ² :bounded cylinder of width d, zg 0, d and

² :radius s , sg 0, s , rotating rapidly with angularn n

velocity V z about the vertical rotation axis. Theˆ0

cylinder contains an electrically conducting Boussi-
nesq fluid permeated by an azimuthal magnetic field
B linearly growing with the distance from the rota-0

tion axis. The instability of this system can be caused
by the vertical temperature gradient. Therefore, we
consider the temperature difference DT maintained
between the lower, T , and the upper boundaries,l

T yDT. Non-uniform stratification can be modelledl

by negative heat sources, H-0, distributed within
the layer. This has a consequence of non-linear
Ž .quadratic dependence of basic temperature profile,
T .0

Assuming small but non-zero viscosity leads to-
Žwards formation of viscous boundary layers the

.Ekman layers along the horizontal boundaries. As a
Ž .result, non-zero geostrophic flow V s is induced by

Ekman suction, which couples the interaction be-
tween boundary layer and the rest of the fluid,
making the whole problem nonlinear.

4 The radial extension of the layer is much greater than its
thickness.
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The ensuing convective instability manifests itself
by perturbations of the velocity u, the magnetic field

˜b and the temperature q which relate to the basic
state represented by

U s0,0

s
B sB w ,ˆ0 M d 1Ž .

z zyd
T sT yDT 1y .0 l ž /d 2 z )ydM

Ž .The quantity z )syr c kDTr dH qdr2, re-M 0 p

ferred to as stratification parameter, is the z-coordi-
nate of the level dividing the layer into the stably
and unstably stratified sublayers; r c k is the ther-0 p

Ž .mal conductivity. The temperature T z reaches0

minimum and its gradient changes direction at the
level zsz ). Note that the cases of uniform strati-M

fication can be obtained as the limiting cases z )M

™"`.
We non-dimensionalise the basic equations with

the use of characteristic length d, magnetic diffusion
time d2rh, magnetic field B , and temperatureM

difference across the layer DT. The equations in the
Ž .cylindrical polar coordinates s, w, z governing the

˜evolution of perturbations u, b, q are cast as fol-
lows

z=usy= pqL ==sw =bq ==b =swŽ . Ž .ˆ ˆ ˆ

˜qRq z , 2Ž .ˆ

E b
y== sV s w=b s== u=swŽ . Ž .Ž .ˆ ˆ

E t

q= 2 b , 3Ž .

˜Eq
2˜ ˜q q sV s wP= q syuP= T q= q ,Ž .Ž .ˆ 0ž /E t

4Ž .

=Pbs0, =Pus0 5Ž .

where z and w are the axial and azimuthal unitˆ ˆ
vectors, respectively.

Ž . Ž .In Eqs. 2 – 5 the dimensionless parameters, the
modified Rayleigh number R, the Elsasser number

L, the Ekman number E and the Roberts number q,
are defined by

gdDTa B2 nM
Rs , Ls , Es ,22V k 2V r hm 2 d V0 0 0 0

k
qs

h

where k and h are the thermal and magnetic diffu-
sivities, n is the kinematic viscosity, a is the coeffi-
cient of thermal expansion, g is the acceleration due
to gravity, m is the permeability and r is the0

density.
In the case of non-uniform stratification, the tem-

Ž .perature gradient entering Eq. 4 can be expressed
in terms of the dimensionless parameters in the

Ž .following form S89

dT0
sy 2 azyaq1 for DT)0,Ž .

d z
6Ž .

dT0
sq 2 azyaq1 for DT-0Ž .

d z

where the coefficient a relates to the dimensionless
stratification parameter z viaM

1
as . 7Ž .

1y2 zM

Here z sz )rd. Note that taking the coefficientM M

as0 corresponds to uniform stratification.
Ž .The angular velocity V s of geostrophic flow

entering the convective non-linearities in the above
set of equations is determined by modified Taylor’s
constraint

zL T w w² : ² :V s s F dz with FŽ . H Mw Mw1r2
z2 E sŽ . B

w² :s ==b =b 8Ž . Ž .w

where z and z delimit the horizontal boundariesB T
² :w Ž . 2pof the layer, the . . . '1r 2p H . . . dw stands0

wŽ . xfor averaging over w and F ' ==B =B de-Mw w

notes an azimuthal component of Lorentz force.
Ž . Ž .Eqs. 2 – 5 have to be solved subject to bound-

ary conditions corresponding to rigid 5 perfectly

5 Only due to the effect of Ekman secondary flow.
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electrically and thermally conducting horizontal
boundaries, i.e.,

E b
˜u sqsb s0, z= s0 at zs0, d. 9Ž .ˆz z E z

In addition, we will assume that on the sidewall
boundaries, delimited by sss the perturbations aren

Ž .vanishing see following section .

3. Formulation of the nonlinear problem

It is convenient to rearrange the system of nonlin-
Ž Ž . Ž ..ear equations Eqs. 2 – 5 with help of the

Žpoloidal–toroidal decomposition of vector fields for
.details see BRS . For the velocity perturbation u and

magnetic field perturbation b we assume

y2usk == ==wz q==v z ,Ž .˜ ˆ ˜ ˆ
10Ž .y2 ˜ ˜bsk == ==bz q== jz .Ž .ˆ ˆ

Here, k is a radial wave number and the representing
˜ ˜functions w, v, b, j depend on coordinates z, s, w˜ ˜

Ž̃ .and time t and will be symbolized by f z, s, w, t ,
˜ ˇ Ž .or shortly f , as in Brestensky and Sevcık 1994 . The´ ˇ́

same notation applies for the temperature perturba-
˜tion, i.e., q .

˜The representing functions of f can be sought in
the form

˜ pf z ,s,w ,t sR e A ´ t f z ,s exp imwqlt .� 4Ž . Ž . Ž . Ž .m

11Ž .

Ž .Hereafter the symbol f z,s stands for one of them
Ž . Ž . Ž .complex functions w z, s , v z, s , b z, s ,m m m

Ž . Ž .j z,s and q z,s dependent on coordinates z andm m

s. Unlike the assumption often made in the linear
ˇŽ .case, e.g, Soward, 1979; Simkanin et al., 1997 ,

Ž .each of the functions f z,s above is modulated bym
Ž p .a complex amplitude A ´ t varying in the so-called

slow time scale ´ p t where ´ is a small unfolding
parameter and p is a natural number to be specified
later. Furthermore, m is an azimuthal wave number
Ž . Žinteger and l is a complex frequency related to a

.real frequency via ls is .
Upon the above assumption, the reduced system

of nonlinear equations can be derived from Eqs.
p ˙Ž . Ž . Ž .2 – 5 . Hereafter, the notation ts´ t and A t s

Ž .d A t rdt will be used. The partial differential
equations for representing functions take the follow-
ing forms

0syDw z ,s q2 LDb z ,s y imL j z ,s ,Ž . Ž . Ž .m m m

0syDv z ,s q2 LDj z ,sŽ . Ž .m m

q imL D2 yk 2II b z ,s yRk 2q z ,s ,Ž . Ž .Ž .m m m

p ˙l A t b z ,s q´ A t b z ,sŽ . Ž . Ž . Ž .m m

< < 2qA t A t P z ,s simA t w z ,sŽ . Ž . Ž . Ž . Ž .m m

qA t D2 yk 2II b z ,s ,Ž . Ž .Ž .m m

p ˙l A t j z ,s q´ A t j z ,sŽ . Ž . Ž . Ž .m m

< < 2qA t A t T z ,s simA t v z ,sŽ . Ž . Ž . Ž . Ž .m m

qA t D2 yk 2II j z ,s ,Ž . Ž .Ž .m m

p ˙1rq l A t q z ,s q´ A t q z ,sŽ . Ž . Ž . Ž . Ž .Ž m m

< < 2qA t A t S z ,s s A t z zŽ . Ž . Ž . Ž . Ž ..m

=II w z ,s qA t D2 yk 2II q z ,sŽ . Ž . Ž .Ž .m m m m

12Ž .
Ž .where z z sydT rd z.0

The representing functions for nonlinearities
Ž . Ž . Ž .P z,s , T z,s , S z,s are expressed in terms ofm m m

P z ,s s imV s b z ,sŽ . Ž . Ž .m m

y im IIy1 PP b z ,s ,� 4Ž .m V m

T z ,s s imV s j z ,sŽ . Ž . Ž .m m

qIIy1 TT Db z ,s ,� 4Ž .m V m

S z ,s s imV s q z ,s . 13Ž . Ž . Ž . Ž .m m

Here DsErEz and IIy1 is the inverse operator tom

the linear Bessel differential operator IIm

1 E 2 1 E m2

II 'y q ym 2 2 2ž /s E sk E s s

and P , T are differential operatorsV V

21 E V s EV s E 1Ž . Ž .
PP sy q 2 q ,V 2 2½ 5E s E s sk E s

1 E 2V s E EV sŽ . Ž .
TT sy s qsV 2 2½ E s E sk E s

=

2 2m 2 E E
q q . 14Ž .2 2 5s E ss E s
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Ž .The expression for the geostrophic flow V s in
Ž . Ž .terms of b z,s and j z,s can be derived directlym m

Ž . Ž .from Eq. 8 see RSB . Assuming the separability
Ž . Ž . Ž .f z,s s f z J ks , it simplifies tom m

1 d
2V s sZZ J ks where ZZŽ . Ž .ms ds

zL T

s R e j z Db z dz 15Ž . Ž . Ž .H1r2 2 z8 E kŽ . B

Ž .is a functional depending on the functions b z and
Ž .j z known from the linear study.

Ž .For the representing functions f z,s , the corre-m

sponding boundary conditions can be obtained from
Ž .Eq. 9

w z ,s sq z ,s sb z ,s sDj z ,s s0,Ž . Ž . Ž . Ž .m m m m

for all zs0, d and sg 0,s . 16Ž . Ž .n

In a radial direction we impose the following bound-
ary conditions

q z ,s sb z ,s s j z ,s s0,Ž . Ž . Ž .m m m

for all ss0, s , and zg 0,d . 17Ž . Ž .n

In our model, the parameter s , which delimitsn

the layer in a radial direction, has to be chosen to
coincide with the n-th root of the Bessel function

Ž .i.e., J ks s0 for sufficiently large integer n.m n

Since the values of radial wave number k are taken
from the linear analysis, the above condition is met
for certain values of s only.n

4. Linearized problem and its solution

Considering small perturbations the whole prob-
Ž .lem can be linearized see e.g., Bod’a, 1988; S89 .

Specifically, in our model the linearization can be
Ž .fixed by the condition V s s0. The linear case

allows for the separation of representing functions

f z ,s s f z J ks 18Ž . Ž . Ž . Ž .m m

Ž .where J ks is the Bessel function of the first kind,m
Ž . Ž .k is a radial wavenumber real and f z is the

complex function of z-coordinate. Respecting the

Ž .boundary conditions, for each particular f z we
have

`

w z s w sin p nz ,Ž . Ž .Ý n
ns1

`

v z sv q v cos p nz ,Ž . Ž .Ý0 n
ns1

`

b z s b sin p nz ,Ž . Ž .Ý n
ns1

`

j z s j q j cos p nz ,Ž . Ž .Ý0 n
ns1

`

q z s q sin p nz . 19Ž . Ž . Ž .Ý n
ns1

Inserting the above expansions into the linearized
equations, after a series of standard operations we
obtain a set of algebraic equations for complex coef-
ficients w , v , b , j , q . In S89, the criticaln n n n n

Rayleigh number R , the critical frequency l thec c

critical radial wave number k and the complexc

coefficients were computed for various sets of pa-
Ž .rameters L, q, m, a .

5. Solution of the nonlinear problem

A standard way is to represent nonlinear equa-
Ž Ž .. Žtions Eq. 12 in a matrix form in BRS referred to

.as an abstract nonlinear problem

˙A t LLcsN A t , A t ,c 20Ž . Ž . Ž . Ž .Ž .
Ž .where A t is the complex amplitude, LL is the

linear operator and c is the vector function

c T ' w z ,s ,v z ,s ,b z ,s , j z ,s ,Ž . Ž . Ž . Ž .Ž m m m m

q z ,s 21Ž . Ž ..m

˙Ž Ž . Ž . .and the right-hand side vector N A t , A t , c
contains the nonlinearities.

Due to the structure of the geostrophic term, a
cubic nonlinearity appears in the system. Taking the
symmetry properties into account, the integer param-
eter p has to be set ps2 and the increment R–Rc

of the Rayleigh number will be fixed by the condi-
tion

RyR s"´ 2 22Ž .c
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which ensures the supercritical or subcritical charac-
ter of bifurcation. Here ´ has the meaning of a small
unfolding parameter. The vector of representing

Ž .functions c as well as the complex amplitude A t

Ž .have to be expanded in terms of ´ , ´<1

csc q´c q´ 2c q PPP ,1 2 3

A t s´ A t q´ 2A t q´ 3A t q PPP ,Ž . Ž . Ž . Ž .1 2 3

23Ž .
where t is the slow time associated with the physical
time through the relation ts´ 2 t.

Ž .Inserting the above expansions into 20 and col-
lecting terms of the same power of ´ , yields a series
of non-homogeneous matrix equations. In order to
ensure their solvability, the complex amplitudes A ,i
Ž .is1, 2, . . . must be adjusted at each stage of
expansion, giving rise to amplitude equations. At the
leading order the final form of amplitude equation
reads

d A ´ 2 tŽ .
2s RyR a A ´ tŽ . Ž .cd t

2 < < 2yb A ´ t A t , 24Ž . Ž . Ž .
Ž .which describes the evolution of the amplitude A t

in the physical time t instead of t .
The equation quoted above is the normal form for

the Hopf bifurcation in RsR . Stability analysis ofc

this normal form enables us to identify the super- or
subcriticality, stability and the frequency response of
the convecting system in the vicinity of RsR . Wec

are able to discuss these properties in terms of the
complex coefficients a and b which depend on the
parameters m, L, E, q as well as on the critical

Fig. 1. T, MW and ME modes for ms1, z s0.6 and qs0.005.M

Fig. 2. T and ME modes for ms1, z s0.6 and qs0.5.M

parameters R , k and s as shown in Appendix A.c c c

Motivated by RSB we introduce the following nota-
tion

b br r
R s , s sa yb . 25Ž .2 2 i i

a ar r

The above expressions are directly associated with
the Hopf bifurcation properties, namely if R )0 the2

Hopf bifurcation at R is supercritical, otherwise itc

is subcritical. The sign of a causes the change ofr

stability of the solutions in the vicinity of R . In casec

s )0 the frequency response of the nonlinear sys-2

tem is such that frequency of the oscillations grows;
in case s -0 frequency of the oscillations de-2

Ž .creases if s )0 .c

6. Results

In the numerical experiments to follow the values
of the critical Rayleigh number R , the critical radialc

wave number k and the critical complex frequencyc

l s is were obtained from the linear stabilityc c

analysis made in S89. We have evaluated the coeffi-
cients R and s numerically for various sets of2 2

parameters m, q, L.
Namely, we studied two particular cases related to

the azimuthal wave numbers ms1 and ms2 with
the Elsasser number L ranging from 10y3 to 2500.
The values of the Roberts number were chosen
qs0.005 and qs0.5. Note that the choice of the
Ekman number is irrelevant in this case. It can be
scaled out of the problem when the nonlinearity is
only due to geostrophic flow.
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Fig. 3. T and ME modes for ms1, z s0.4 and qs0.005.M

The figures below are bifurcation diagrams in the
Ž .space of parameters R Rayleigh number and L

Ž .Elsasser number where the marked curve R sc
Ž .R L shows the dependence of the critical Rayleighc

number on the Elsasser number for each particular
convective mode. Knowing the coefficients a and b

of the amplitude equation enables us to classify the
Ž .domains separated by R sR L . In each of thec c

diagrams, the domains below the curves correspond
to trivial conductive solutions whilst the domains
above correspond to oscillatory convective solutions.

Here T and MW symbolize thermally and magnet-
ically driven waves propagating westwards, respec-
tively and ME denotes magnetically driven waves
propagating eastwards. Other notation adopted here
differs from that used in RSB. Hereafter q and y in
the diagrams stand for supercritical and subcritical
Hopf bifurcation. In both cases the trivial solution
loses stability when the parameter R passes its criti-

Fig. 4. T and ME modes for ms1, z s0.4 and qs0.5.M

Fig. 5. T modes for ms2, z s0.6 and qs0.005.M

cal value R . Recalling properties of the Hopf bifur-c

cation, the arising subcritical and supercritical oscil-
lations are unstable and stable, respectively. It must
be emphasized, however, that all of what was said of
the stability holds in the case when a )0. Analyz-r

ing the normal form for a -0, we deduce that ther

stability of the trivial and nontrivial solutions is
reversed. Specifically, the case of supercritically bi-

Žfurcated oscillations which are unstable only ME
.modes for qs0.5 will be denoted by qU. The

arrow symbols ≠ and x in the graphs below denote
increase or decrease in frequency of nonlinear con-
vective oscillations.

At this stage, we must realize that also negative
values of the Rayleigh number can be considered in
the underlying model. This is actually the case when
the lower horizontal boundary of the layer is cooled
and the upper one is heated. From the physical point

Fig. 6. T and MW modes for ms1, z s0.9 and qs0.005.M
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Fig. 7. T modes for ms1, z s0.9 and qs0.5.M

of view only the absolute value of the Rayleigh
number is of relevance as it is directly related to the
energy input into the system. Realizing this fact in
what follows, we classify the type of bifurcation
Ž .supercritical or subcritical with respect to the abso-
lute value of the Rayleigh number.

Figs. 1–5 are bifurcation diagrams where the
stratification parameter was set z s0.6 and z sM M

0.4. This choice of z relates to the cases of posi-M

tive and negative Rayleigh number, respectively. The
weakly nonlinear behaviour of particular kinds of
modes shows some characteristic features. In Figs.
1–5, it can be seen that the value of dimensionless
stratification parameter z , measuring the thicknessM

of unstably stratified sublayer, is directly related to
the sub- or supercriticality of the T, MW and ME
modes. Typically, the T modes bifurcate supercriti-
cally and the ME modes bifurcate subcritically for
z s0.6, i.e., when thickness of the unstably strati-M

Fig. 8. ME modes for ms1, z s0.1 and qs0.005.M

Fig. 9. ME modes for ms1, z s0.1 and qs0.5.M

fied sublayer is larger than that of the stably strati-
fied sublayer. On the other hand, for z s0.4 the TM

modes appear to be subcritical and the ME modes
are supercritical.

The same applies for different configuration of
stratification when z was chosen z s0.9 or zM M M

s0.1, as it is presented in Figs. 6–10. This choice
of z means that the unstably and stably stratifiedM

sublayers become more distinct from each other as
for their thickness. That is why only one kind of the
convective oscillatory mode was isolated for each
particular stratification. As for Figs. 8 and 9, only
ME modes are depicted. Here, the T modes are off
the scale due to the high Rayleigh number R. For

Ž .ms1, z s0.9 and qs0.005 see Fig. 1 an ob-M

servation has been made in the linear study that at
L;50 the T mode is continuously transformed into
MW mode.

Fig. 10. T modes for ms2, z s0.9 and qs0.005.M
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Table 1
The values of the functional ZZ for T modes for ms1, qs0.005
and various L and zM

z s0.1 z s0.4 z s0.6 z s0.9M M M M

Ls100 0.0245 0.13 0.019 0.0128
Ls500 0.0056 0.023 0.0243 0.0016
Ls1000 0.0031 0.029 0.0199 0.0032
Ls2500 0.0024 0.043 0.032 0.0025

Realizing that frequency of the nonlinear convec-
tive oscillations changes at L;50, the weakly non-
linear analysis is capable of identifying this interface
as well. It is also remarkable that for ms1, qs0.5
and for z s0.4 or z s0.1 the supercritical oscil-M M

lations corresponding to ME modes were found to be
Žunstable the domain below the dotted curve in Figs.
.4 and 9 . This was the only case when the unstable

supercritical convection was observed in our magne-
toconvection model.

In Table 1 we show the dependence of the func-
tional ZZ on the Elssaser number L and the stratifi-
cation parameter z . Recall that ZZ enters the ex-M

Ž . Ž .pression 15 for the geostrophic flow V s , i.e., it
Ž .can be thought as the amplitude of V s . It turned

out that the dependence of ZZ on L is non-monoto-
nous. More interestingly, for fixed L, the factor ZZ

exhibits local maximum as a function of z locatedM

near z s0.5.M

7. Concluding remarks

In this paper we studied the weakly nonlinear
effect of geostrophic flow on the marginal convec-
tion in the non-uniformly stratified horizontal fluid
layer. Under the assumption of weak boundedness of
the layer, the analysis presented here is based on the
data available for the unbounded linear version of
the model. We found out that the convective instabil-
ity in our model sets in via Hopf bifurcation and
classified its properties.

For the azimuthal wave number ms1, it is ap-
parent from the bifurcation diagrams that the weakly
nonlinear behaviour of T and ME modes under the
action of geostrophic flow is different while T and
MW modes are not distinguished from each other.
The global observation says that, for each considered

value q, L, z and for R)0, the T modes bifurcateM

supercritically and the ME modes bifurcate subcriti-
cally. On the other hand, for R-0 the bifurcations
corresponding to T and ME modes are subcritical
and supercritical, respectively. Varying the values of
the parameters q, L, z may only cause changes inM

stability of solutions or change in frequency re-
sponse.

Two interesting features were isolated for particu-
lar modes in certain parametric regimes. Firstly,
when qs0.005 and stably stratified sublayer is thin
enough as it is expressed in terms of stratification
parameter equal z s0.9, the continuous transitionM

between T and MW modes occur. This phenomenon,
Ž .known from linear study of Soward 1979 and S89,

was observed also in our nonlinear problem as a
change of frequency of instabilities. Secondly, for
qs0.5 and the stratification parameter z s0.4, theM

ME modes though being preferred to T modes at the
linear stage, were identified as unstable supercriti-
cally bifurcated ones. Irrespective of the choice of
parameters, the convective oscillatory modes with
the azimuthal wave number ms2, which are always
thermally driven, set in via supercritical bifurcation
and their frequency grows.

We also found that respect to the choice of the
stratification parameter z , the maximal amplitudeM

of the geostrophic flow can be expected for the
stratification characterised by z s0.5, i.e., whenM

the stably and unstably stratified sublayers have the
same thickness.

In the following, we comment briefly on some
mathematical aspects of our analysis. Inserting the
perturbation expansions into the modified Taylor
constraint, the resulting formula for geostrophic flow
Ž . Ž Ž ..V s gains quite a simple form Eq. 15 which is

usable for analytical calculations. Moreover, the
Ž .structure of the expression for V s implies that in

this nonlinear problem there is no interaction of
oscillatory modes with different azimuthal wave
numbers m. Note also that growing the radial exten-
sion of the layer, measured in terms of s , makesn

only the amplitude of perturbations vanish, having
no impact on the bifurcation properties. This fact
emerges from the assumption of weak boundedness
of the layer.

Another notable feature is that the Hopf bifurca-
tion is a direct consequence of symmetry of the
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governing equations which is due to the presence of
cubic nonlinearities. Therefore, the same type of
bifurcation would appear in spherical geometry where
more realistic problem of this kind could be formu-
lated.
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Appendix A

Ž .The normal form Eq. 24 coefficients a and b

are

² q :z
q z v zŽ . Ž .

2asyk ,c M

² q :zI Db z j zŽ . Ž .2
bs4 ZZ

I M1

where

² q :z ² q :zMs b z b z q j z j zŽ . Ž . Ž . Ž .
² q :zq 1rq q z q zŽ . Ž . Ž .

Ž .and ZZ is a functional defined by Eq. 15 .
The bracketed terms denote the integrals over the

z coordinate

zTzq q² :f z f z s f z f z d zŽ . Ž . Ž . Ž .H
zB

qŽ .where the functions f z solve the corresponding
adjoint problem.

The coefficient b involves the integrals over the
radial coordinate

sn 2I s J k s sd s,Ž .H1 m c
0

2
s dn 2I s J k s J k s sd s.Ž . Ž .H2 m c m cž /d s0

Being positive for each choice of s and irrespec-n

tive of k , these integrals do not affect the propertiesc

of the Hopf bifurcation and their ratio I rI ™0 as2 1

s ™`. The consequence of this asymptotics is thatn

the amplitude of solution decreases as s becomesn

larger, as would be naturally expected from configu-
ration of the model.
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