
Euro. Jnl of Applied Mathematics (2001), vol. 12, pp. 25-37. Printed in the United Kingdom

c© 2001 Cambridge University Press

25

Analysis of the free boundary for the pricing

of an American call option

DANIEL ŠEVČOVIČ
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The purpose of this paper is to analyse the free boundary problem for the Black–Scholes

equation for pricing the American call option on stocks paying a continuous dividend.

Using the Fourier integral transformation method, we derive and analyse a nonlinear sin-

gular integral equation determining the shape of the free boundary. Numerical experiments

based on this integral equation are also presented.

1 Introduction

In the past years, the Black–Scholes equation for pricing derivatives has attracted a

lot of attention from both theoretical as well as practical point of view. One of the

interesting problems in this field is the analysis of the early exercise boundary and the

optimal stopping time for American options on stocks paying a continuous dividend. It

can be easily reduced to a problem of solving a certain free boundary problem for the

Black–Scholes equation (cf. Black & Scholes [2]). However, the exact analytical expression

for the free boundary profile is not known yet. Many authors have investigated various

approximate models leading to approximate expressions for valuing American call and

put options [5, 6, 9, 10, 11, 12, 15, 16]. For the purpose of studying the free boundary

profile near expiry, many different integral equations have been derived [1, 3, 8, 14, 17].

We refer to the book by Salopek [17] for a comprehensive survey of both theoretical and

computational aspects of valuing American options.

In this paper, we present an alternative integral equation which will provide an accurate

numerical method for calculating the early exercise boundary near expiry. The derivation

of the nonlinear integral equation is based on the Fourier transform. A solution to this

integral equation is the free boundary profile. The novelty of this approach consists in

three steps:

(1) The fixed domain transformation.

(2) Derivation of a nonlocal nonlinear PDE for the so-called synthetic portfolio.

(3) Construction of a solution by means of Fourier sine and cosine integral transforms.

Let us recall that the equation governing the time evolution of the price V (S, t) of the
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American call option is the following parabolic PDE:

∂V

∂t
+ (r − D)S

∂V

∂S
+

σ2

2
S2 ∂2V

∂S2
− rV = 0 , 0 < t < T, 0 < S < Sf (t) ,

V (0, t) = 0, V (Sf (t), t) = Sf (t) − E ,
∂V

∂S
(Sf (t), t) = 1 , (1.1)

V (S, T ) = max(S − E, 0) ,

defined on a time-dependent domain S ∈ (0, Sf (t)), where t ∈ (0, T ). Here S > 0 is the

stock price, E > 0 is the exercise price, r > 0 is the risk-free rate, D > 0 is the continuous

stock dividend rate and σ > 0 is the volatility of the underlying stock process.

In this paper, we restrict our attention to the case when r > D > 0. It is well known

that, for r > D > 0, the free boundary ̺(τ) = Sf (T − τ) starts at ̺(0) = rE/D, whereas

̺(0) = E for the case r ≤ D (cf. Dewynne et al. [4]). Thus, the free boundary profile

develops an initial jump in the case r > D > 0. Notice that the case 0 < r ≤ D can be

also treated by other methods based on integral equations. Kwok [13] derived another

integral equation which covers both cases 0 < r ≤ D, as well as r > D > 0 (see equation

(3.13) and Remark 3.1). However, in the latter case equation (3.13) becomes singular as

t → T−, leading to numerical instabilities near expiry.

It is the purpose of this paper to investigate the behaviour of the free boundary Sf (t).

We present a method of reducing the free boundary problem for (1.1) to a nonlinear

integral equation with a singular kernel. Notice that our method of reducing the free

boundary problem to a nonlinear integral equation can be also successfully adopted for

valuing the American put option paying no dividends (cf. Stamicar et al. [18]).

The paper is organized as follows. In § 2 we present a fixed domain transformation

of the Black–Scholes equation. The method to reduce the free boundary problem to a

nonlinear integral equation is discussed in § 3. We derive a PDE for the synthetic portfolio

Π = V − S∂V/∂S, and transform the resulting PDE into a parameterized system of a

nonautonoumous ODE for sine and cosine Fourier transforms of Π. Using the inverse

Fourier transforms, we derive a nonlinear integral equation for the free boundary Sf (t).

In § 4 we present numerical results of the free boundary problem obtained by means of

solving the nonlinear integral equation. We compare our results with results obtained by

several classical methods for computing values of an American call option.

2 Fixed domain transformation of the free boundary problem

In this section we will perform a fixed domain transformation of the free boundary

problem (1.1)–(1.3) into a parabolic equation defined on a fixed spatial domain. As will

be shown below, imposing of the free boundary condition will result in a nonlinear time-

dependent term involved in the resulting equation.

To transform equation (1.1) defined on a time dependent spatial domain (0, Sf(t)), we

introduce the following change of variables:

τ = T − t, x = ln

(

̺(τ)

S

)

where ̺(τ) = Sf (T − τ). (2.1)

Clearly, τ ∈ (0, T ) and x ∈ (0,∞) whenever S ∈ (0, Sf (t)). Let us furthermore define the
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auxiliary function Π = Π(x, τ) as follows:

Π(x, τ) = V (S, t) − S
∂V

∂S
(S, t). (2.2)

Notice that the quantity Π has an important financial meaning as it is a synthetic port-

folio consisting of one long option and ∆ = ∂V
∂S underlying short stocks. It follows from

(2.1) that

∂Π

∂x
= S2 ∂2V

∂S2
,

∂2Π

∂x2
+ 2

∂Π

∂x
= −S3 ∂3V

∂S3
,

∂Π

∂τ
+

˙̺

̺

∂Π

∂x
= S

∂2V

∂S∂t
− ∂V

∂t
, (2.3)

where ˙̺ = d̺/dτ . Now assuming that V = V (S, t) is a sufficiently smooth solution of

(1.1), we may differentiate (1.1) with respect to S. Plugging expressions (2.3) into (1.1),

we finally obtain that the function Π = Π(x, τ) is a solution of the parabolic equation

∂Π

∂τ
+ a(τ)

∂Π

∂x
− σ2

2

∂2Π

∂x2
+ rΠ = 0, (2.4)

with a time-dependent coefficient

a(τ) =
˙̺(τ)

̺(τ)
+

(

r − D − σ2

2

)

.

It follows from the boundary condition V (Sf (t), t) = Sf (t)−E and VS(Sf (t), t) = 1 that

Π(0, τ) = −E, Π(+∞, τ) = 0 . (2.5)

The initial condition Π(x, 0) can be deduced from the pay-off diagram for V (S, T ). We

obtain

Π(x, 0) =

{

−E for x < ln
(

̺(0)
E

)

0 otherwise.
(2.6)

Notice that equation (2.4) is a parabolic PDE with a time-dependent coefficient a(τ).

In what follows, we will show the function a(τ) depends upon a solution Π itself. This

dependence is non-local in the spatial variable x. Moreover, the initial position of the

interface ̺(0) enters the initial condition Π(x, 0). Therefore we first have to determine the

relationship between the solution Π(x, τ) and the free boundary function ̺(τ) first. To

this end, we make use of the boundary condition imposed on V at the interface S = Sf (t).

Since Sf (t) − E = V (Sf (t), t) we have

d

dt
Sf (t) =

∂V

∂S
(Sf (t), t)

d

dt
Sf (t) +

∂V

∂t
(Sf (t), t) .

As ∂V
∂S (Sf (t), t) = 1 we obtain ∂V

∂t (S, t) = 0 at S = Sf (t). Assuming the function Πx

has a trace at x = 0, and taking into account (2.3), we may conclude that, for any

t = T − τ ∈ [0, T ),

S2 ∂2V

∂S2
(S, t) → ∂Π

∂x
(0, τ), S

∂V

∂S
(S, t) → ̺(τ) as S → Sf (t)− .

If ∂V
∂t (S, t) → ∂V

∂t (Sf (t), t) = 0 as S → Sf (t)−, then it follows from the Black–Scholes
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equation (1.1) that

(r − D)̺(τ) +
σ2

2

∂Π

∂x
(0, τ) − r(̺(τ) − E)

= lim
S→Sf (t)−

(

∂V

∂t
(S, t) + (r − D)S

∂V

∂S
(S, t) +

σ2

2
S2 ∂2V

∂S2
(S, t) − rV (S, t)

)

= 0,

and hence

̺(τ) =
rE

D
+

σ2

2D

∂Π

∂x
(0, τ) for 0 < τ ≤ T. (2.7)

It remains to determine the initial position of the interface ̺(0). According to Dewynne

et al. [4], the initial position ̺(0) of the free boundary is rE/D for the case 0 < D < r.

Alternatively, we can derive this condition from (2.4)–(2.6) by assuming the smoothness

of Π in the x variable up to the boundary x = 0 uniformly for τ → 0+. More precisely,

we assume that

lim
τ→0+

∂Π

∂x
(0, τ) = lim

τ→0+,x→0+

∂Π

∂x
(x, τ) = lim

x→0+

∂Π

∂x
(x, 0) = 0

because Π(x, 0) = −E for x close to 0+. By (2.7) we obtain

̺(0) =
rE

D
. (2.8)

In summary, we have shown that, under suitable regularity assumptions imposed on a

solution Π to (2.4),(2.5),(2.6), the free boundary problem (1.1) can be transformed into

the initial boundary value problem for parabolic PDE

∂Π

∂τ
+ a(τ)

∂Π

∂x
− σ2

2

∂2Π

∂x2
+ rΠ = 0,

Π(0, τ) = −E, Π(+∞, τ) = 0, x > 0, τ ∈ (0, T ), (2.9)

Π(x, 0) =

{

−E for x < ln
(

r
D

)

0 otherwise
,

where a(τ) = ˙̺(τ)
̺(τ) + r − D − σ2

2 and

̺(τ) =
rE

D
+

σ2

2D

∂Π

∂x
(0, τ), ̺(0) =

rE

D
. (2.10)

We repeat that the problem (2.9) is a nonlinear parabolic equation with a nonlocal

constraint given by (2.10).

Remark 2.1 In our derivation of the free boundary function ̺(τ) and its initial condition

̺(0) we did not assume that the solution V (S, t) is smooth up to the free boundary

S = Sf (t). Such an assumption would lead to an obvious contradiction Γ := ∂2V/∂S2 = 0

at S = Sf (t). On the other hand, the jump in Γ at the free boundary is the only driving

force for the evolution of the free boundary function ̺ (see (2.7)). Construction of a

PDE for the synthetic portfolio function Π is a crucial step in our approach because the

derivative ∂xΠ admits a trace at the boundary x = 0 and the unknown free boundary

function ̺ can be determined via (2.10) (see also Remark 3.2).
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3 Reduction to a nonlinear integral equation

The main purpose of this section is to show how the fully nonlinear nonlocal problem

(2.9)–(2.10) can reduced to a single nonlinear integral equation for ̺(τ) giving the explicit

formula for the solution Π(x, τ) to (2.9). The idea is to apply the Fourier sine and cosine

integral transforms (cf. Stein & Weiss [19]).

Recall that for any Lebesgue integrable function f ∈ L1(R+) the sine and cosine

transformations are defined as follows:

FS(f)(ω) =

∫

∞

0

f(x) sin ωxdx, FC(f)(ω) =

∫

∞

0

f(x) cosωxdx.

Their inverse transforms are given by

F−1
S (g)(x) =

2

π

∫

∞

0

g(ω) sin ωxdω, F−1
C (g)(x) =

2

π

∫

∞

0

g(ω) cosωxdω.

Clearly, for any function f such that f, f ′, f ′′ ∈ L1(R+) and f(+∞) = f ′(+∞) = 0 we

have

FS(f ′) = −ωFC(f), FC(f ′) = −f(0+) + ωFS(f),

FS(f ′′) = ωf(0+) − ω2FS(f), FC(f ′′) = −f ′(0+) − ω2FC(f).
(3.1)

Now we suppose that the function ̺(τ) and subsequently a(τ) are already know. Let

Π = Π(x, τ) be a solution of (2.9) corresponding to a given function a(τ). Let us denote

p(ω, τ) = FS(Π(., τ))(ω), q(ω, τ) = FC(Π(., τ))(ω) (3.2)

where ω ∈ R+, τ ∈ (0, T ). By applying the sine and cosine integral transforms formulae

(3.1) to equation (2.9) and taking into account (2.10), we finally obtain a linear non-

autonomous ω-parameterized system of ODEs

d

dτ
p(ω, τ) − a(τ)ωq(ω, τ) + α(ω)p(ω, τ) = −Eω

σ2

2
,

d

dτ
q(ω, τ) + a(τ)ωp(ω, τ) + α(ω)q(ω, τ) = −Ea(τ) − D̺(τ) + rE, (3.3)

for the sine and cosine transforms of Π (see (3.2)) where

α(ω) =
1

2
(σ2ω2 + 2r).

The system of equations (3.3) is subject to initial conditions at τ = 0, p(ω, 0) =

FS(Π(., 0)(ω), q(ω, 0) = FC(Π(., 0)(ω). In the case of the call option, we deduce from

the initial condition for Π (see (2.9)) that

p(ω, 0) =
E

ω

(

cos
(

ω ln
r

D

)

− 1
)

, q(ω, 0) = −E

ω
sin
(

ω ln
r

D

)

. (3.4)

Taking into account (3.4) and by using the variation of constants formula for solving linear

non-autonomous ODEs, we obtain an explicit formula for p(ω, τ) = −Eω−1 + p̃(ω, τ)

where

p̃(ω, τ) =
E

ω
e−α(ω)τ cos(ω(A(τ, 0) + ln(r/D)))

+

∫ τ

0

e−α(ω)(τ−s)

[

rE

ω
cos(ωA(τ, s)) + (rE − D̺(s)) sin(ωA(τ, s))

]

ds. (3.5)
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Here we have denoted by A the function defined as

A(τ, s) =

∫ τ

s

a(ξ) dξ = ln
̺(τ)

̺(s)
+

(

r − D − σ2

2

)

(τ − s) . (3.6)

As F−1
S (ω−1) = 1 we have Π(x, τ) = F−1

S (p(ω, τ)) = −E+ 2
π

∫

∞

0
p̃(ω, τ) sin(ωx) dω. From

(2.10) we conclude that the free boundary function ̺ satisfies the following equation:

̺(τ) =
rE

D
+

σ2

Dπ

∫

∞

0

ωp̃(ω, τ) dω. (3.7)

To compute the right-hand side of (3.7) we recall that
∫

∞

0

e−α(ω)τ cos(ωA) dω =

√

π

2σ2τ
exp

(

−rτ − A2

2σ2τ

)

,

∫

∞

0

e−α(ω)τω sin(ωA) dω =
A

σ2τ

√

π

2σ2τ
exp

(

−rτ − A2

2σ2τ

)

,

for any A ∈ R, τ > 0 where α(ω) = (σ2ω2 + 2r)/2. Using the above integrals and taking

into account (3.5) and (3.7) we end up with the following nonlinear singular integral

equation for the free boundary function ̺(τ):

̺(τ) =
rE

D

(

1 +
σ

r
√

2πτ
exp

(

−rτ − (A(τ, 0) + ln(r/D))2

2σ2τ

)

(3.8)

+
1√
2π

∫ τ

0

[

σ +
1

σ

(

1 − D̺(s)

rE

)

A(τ, s)

τ − s

]exp
(

−r(τ − s) − A(τ,s)2

2σ2(τ−s)

)

√
τ − s

ds

)

,

where the function A depends upon ̺ via equation (3.6). To simplify this integral equa-

tion, we introduce a new auxiliary function H : [0,
√

T ] → R as follows:

̺(τ) =
rE

D

(

1 + σ
√

2H(
√

τ )
)

. (3.9)

Using the change of variables s = ξ2 cos2 θ, one can rewrite the integral equation (3.7) in

terms of the function H as follows:

H(ξ) = fH(ξ) +
1√
π

∫ π
2

0

[ξ cos θ − 2cotg θ H(ξ cos θ)gH(ξ, θ)] e−rξ2 sin2 θ−g2
H(ξ,θ) dθ,

(3.10)

where

gH(ξ, θ) =
1

σ
√

2

1

ξ sin θ
ln

(

1 + σ
√

2H(ξ)

1 + σ
√

2H(ξ cos θ)

)

+
Λ√
2
ξ sin θ (3.11)

for ξ ∈ [0,
√

T ], θ ∈ (0, π/2),

Λ =
r − D

σ
− σ

2
and

fH(ξ) =
1

2r
√

πξ
e
−rξ2

−

(

gH(ξ, π
2 )+ 1

ξ
1

σ
√

2
ln(r/D)

)2

. (3.12)

Notice that equations (3.8) and (3.10) are integral equations with a singular kernel (cf.

Gripenberg et al. [7]).
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Remark 3.1 Kwok [13] derived another integral equation for the early exercise bound-

ary for the American call option on a stock paying continuous dividend. According to

Kwok [13, Section 4.2.3], ̺(τ) satisfies the integral equation

̺(τ) = E + ̺(τ)e−DτN(d) − Ee−rτN(d − σ
√

τ )

+

∫ τ

0

D̺(τ)e−DξN(dξ) − rEe−rξN(dξ − σ
√

ξ)dξ (3.13)

where

d =
1

σ
√

τ
ln

(

̺(τ)

E

)

+ Λ
√

2τ, dξ =
1

σ
√

ξ
ln

(

̺(τ)

̺(τ − ξ)

)

+ Λ
√

2ξ

and N(u) is the cumulative distribution function for the normal distribution. The above

integral equation covers both cases: r ≤ D as well as r > D. However, in the case r > D

this equation becomes singular as τ → 0+. It is worth noting that the above integral

equation and equation (3.8) differ, and it is not obvious – at least to the author – how

to transform (3.8) into (3.13) and vice versa.

In the rest of this section we derive a formula for pricing American call options based

on the solution ̺ to the integral equation (3.10). With regard to (2.2), we have

∂

∂S

(

S−1V (S, t)
)

= −S−2Π
(

ln
(

S−1̺(T − t)
)

, T − t
)

.

Taking into account the boundary condition V (Sf (t), t) = Sf (t)−E and integrating the

above equation from S to Sf (t) = ̺(T − t), we obtain

V (S, T − τ) =
S

̺(τ)

(

̺(τ) − E +

∫ ln
̺(τ)

S

0

exΠ(x, τ) dx

)

(3.14)

Remark 3.2 Suppose that H is a C1 smooth solution to (3.10) whose derivative H ′ is

bounded uniformly in the interval [0,
√

T ]. Let us construct the free boundary function

Sf (t) = ̺(T − t) where ̺ is given by (3.9). Then there exists a classical solution V to

(1.1) satisfying the Dirichlet boundary conditions V (0, t) = 0, V (Sf (t), t) = Sf (t) − E

for 0 < t < T . The function V (., t) is smooth on the interval (0, Sf (t)) for 0 < t < T and

this is why the synthetic portfolio function Π can be constructed via (2.2), Π satisfies

(2.9) and V is given by (3.14). Moreover, ∂xΠ has a trace at x = 0. Now, the fact

that ̺ is assumed to be solution to (3.8) together with (2.10) enables us to conclude

that ∂SV (S, t) = 1 at the free boundary S = Sf (t). Hence, V is a solution to the free

boundary problem (1.1).

To evaluate the integral part of the right-hand side of (3.14), let us introduce the

following auxiliary functions:

I1(A, L, τ) =
2

π

∫ L

0

∫

∞

0

ex−α(ω)τ sin(ωA) sin(ωx) dωdx,

I2(A, L, τ) =
2

π

∫ L

0

∫

∞

0

ex−α(ω)τω−1 cos(ωA) sin(ωx) dωdx. (3.15)

It is a straightforward calculation that I1 = I1(A, L, τ) and I2 = I2(A, L, τ) can be
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computed as

I1 =
e−(r−σ2/2)τ

2

[

eAM

(

−A − σ2τ

σ
√

2τ
,

L

σ
√

2τ

)

− e−AM

(

A − σ2τ

σ
√

2τ
,

L

σ
√

2τ

)]

,

I2 =
e−rτeL

2
M

(

A − L

σ
√

2τ
,

2L

σ
√

2τ

)

(3.16)

−e−(r−σ2/2)τ

2

[

eAM

(

−A − σ2τ

σ
√

2τ
,

L

σ
√

2τ

)

+ e−AM

(

A − σ2τ

σ
√

2τ
,

L

σ
√

2τ

)]

where

M(x, y) = erf(x + y) − erf(x) =
2√
π

∫ x+y

x

e−ξ2

dξ.

Using the auxiliary functions defined in (3.15) and (3.16) and inserting the expressions

(3.5) and (3.7) (recall that Π(x, τ) = −E + 2
π

∫

∞

0
p̃(ω, τ) sin ωxdω) into (3.14), we end

up with the formula for pricing the American call option:

V (S, T − τ) = S − E +
S

̺(τ)
E I2(A(τ, 0) + ln(r/D), ln(̺(τ)/S), τ)

+
S

̺(τ)

∫ τ

0

[

rE I2(A(τ, s), ln(̺(τ)/S), τ − s) (3.17)

+(rE − D̺(s)) I1(A(τ, s), ln(̺(τ)/S), τ − s)

]

ds

for any S ∈ (0, Sf (t)) and t ∈ [0, T ], where A(τ, s) = ln ̺(τ)
̺(s) +(r−D− σ2

2 )(τ −s). We will

refer to (3.17) as the semi-explicit formula for pricing the American call option. We use the

term ‘semi-explicit’ because (3.17) contains the free boundary function ̺(τ) = Sf (T − τ)

which has to be determined first by solving the nonlinear integral equation (3.10).

4 Numerical experiments

In this section we focus on numerical experiments. We will compute the free boundary

profile

Sf (t) = ̺(T − t) =
rE

D

(

1 + σ
√

2H(
√

T − t)
)

(4.1)

(see (3.4)) by solving the nonlinear integral equation (3.10). We also present a comparison

of the results obtained by our methods to those obtained by other known methods for

solving the American call option problem.

The computation of a solution of the nonlinear integral equation is based on an iterative

method. We will construct a sequence of approximate solutions to (3.10). Let H0 be an

initial approximation of a solution to (3.10). If we suppose H0(ξ) = h1ξ, then, plugging

this ansatz into (3.10) yields the well-known first order approximation of a solution H(ξ)

in the form

H0(ξ) = 0.451381 ξ

i.e. ̺0(τ) = rE
D (1 + 0.638349 σ

√
τ ) (cf. Dewynne et al. [4]). For n = 0, 1, ... we will define

the n + 1 approximation Hn+1 as follows:

Hn+1(ξ) =
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fHn(ξ) +
1√
π

∫ π
2

0

[ξ cos θ − 2cotg θ Hn(ξ cos θ)gHn(ξ, θ)] e−rξ2 sin2 θ−g2
Hn (ξ,θ) dθ (4.2)

for ξ ∈ [0,
√

T ]. With regard to (3.11) and (3.12), we have

gHn(ξ, θ) =
1

σ
√

2

1

ξ sin θ
ln

(

1 + σ
√

2Hn(ξ)

1 + σ
√

2Hn(ξ cos θ)

)

+
Λ√
2
ξ sin θ

fHn(ξ) =
1

2r
√

πξ
e
−rξ2

−

(

gHn (ξ, π
2 )+ 1

ξ
1

σ
√

2
ln( r

D )
)2

.

Notice that the function gH is bounded provided that H is nonnegative and Lipschitz

continuous on [0,
√

T ]. Recall that we have assumed r > D > 0. Then the function

ξ 7→ fH(ξ) is bounded for ξ ∈ [0,
√

T ] and it vanishes at ξ = 0. Moreover, if H is smooth

then fH is a flat function at ξ = 0, i.e. fH(ξ) = o(ξn) as ξ → 0+ for all n ∈ N . From the

numerical point of view such a flat function can be omitted from computations.

To compute the integral part of the right-hand side in (4.1) we have to decompose

the integral
∫ π

2

0
into two parts:

∫ π
2

ε
and

∫ ε

0
. The first regular part can be computed by a

simple trapezoidal integration rule. The singular integral
∫ ε

0
must be treated separately.

For small values of θ we approximate the function cotg θ gHn(ξ, θ) by its limit as θ → 0+.

It yields the approximation of the singular term in (4.1) in the form

cotg θgH(ξ, θ) ≈ 1

2

H ′(ξ)

1 + σ
√

2H(ξ)
+

Λ√
2
ξ for 0 < θ ≤ ε ≪ 1,

where H = Hn. In the following numerical simulations we chose ε ≈ 10−5.

Example 1. In Figure 1 we show five iterates of the free boundary function Sf (t),

where the auxiliary function H(ξ) is constructed by means of successive iterations of

the nonlinear integral operator defined by the right-hand side of (3.10). This sequence

converges to a fixed point of such a map, i.e. to a solution of (3.10). Parameter values

were chosen as E = 10, r = 0.1, σ = 0.2, D = 0.05, T = 1. Figure 2 depicts the final tenth

iteration of the function Sf (t). The mesh contained 100 grid points.

0 0.2 0.4 0.6 0.8 1
time

20.5

21

21.5

22

22.5

Sf(t)

Figure 1. Five iterates of Sf (t) obtained from equation (3.10).
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Figure 2. The profile of the solution Sf (t).

In general, one can observe very rapid convergence of iterates to a fixed point. In

practice, no more than six iterates are sufficient to obtain the fixed point of (3.10). It is

worth noting that in all our numerical simulations the convergence was monotone, i.e.

the curve moves only up in the iteration process.

In Figure 3 we show the long time behaviour of the free boundary Sf (t), t ∈ [0, T ] for

large values of the expiration time T . For the parameter values T = 50, r = 0.1, D =

0.05, σ = 0.35 and E = 10 the theoretical value of Sf (+∞) is 36.8179 (see Dewynne et

al. [4]).

0 10 20 30 40 50
time

25

30

35

40

45

50

Sf(t)

Figure 3. Long-time behavior of Sf (t).

In Table 1 we show a comparison of results obtained by our method based on the

semi-explicit formula (3.17) and those obtained by known methods based on trinomial

trees (both with the depth of the tree equal to 100), finite difference approximation (with

200 spatial and time grids) and analytic approximation of Barone-Adesi & Whaley (cf.

[1], [8, Ch. 15, p. 384]), resp.



Analysis of the free boundary for the pricing of an American call option 35

Table 1. Comparison of the method based on formula (3.16) with other methods for the

parameter values E = 10, T = 1, σ = 0.2, r = 0.1, D = 0.05. The position Sf (0) = ̺(T )

of the free boundary at t = 0 (i.e. at τ = T ) was computed as Sf (0) = ̺(T ) = 22.3754

Method \ The asset value S 15 18 20 21 22.3754

Our method 5.15 8.09 10.03 11.01 12.37
Trinomial tree 5.15 8.09 10.03 11.01 12.37
Finite differences 5.49 8.48 10.48 11.48 12.48
Analytic approximation 5.23 8.10 10.04 11.02 12.38

It also turned out that the method based on solving the integral equation (3.10) is

5-10 times faster than other methods based on trees or finite differences. The reason is

that the computation of V (S, t) for a wide range of values of S based on the semi-explicit

pricing formula (3.17) is very fast provided that the free boundary function ̺ has already

been computed.

0 0.002 0.004 0.006 0.008 0.01
time

20.1

20.2

20.3

20.4

20.5

20.6

Sf(t)

Figure 4. The early exercise boundary Sf (t) for r = 0.1, D = 0.05.

In Figures 4–5 the early exercise boundary Sf(t) is computed for various values of the

parameter D. In these computations we chose E = 10, T = 0.01, σ = 0.45. Of particular

interest is the case where D is close to r (see Figure 5).

5 Discussion

In this paper, we have derived and analysed a nonlinear integral equation determining

the shape of the early exercise boundary for an American call option on stocks paying

continuous dividend. The integral equation can be effectively solved by means of succes-

sive iterations. The results of numerical simulations have been compared to other known

methods for solving the corresponding free boundary problem. It also turns out from

numerical simulations that our method is faster than methods based on trees or finite

differences, and allows for the sensitivity analysis of the dependence of the early exercise

boundary on various parameters.
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0 0.002 0.004 0.006 0.008 0.01
time
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Figure 5. The early exercise boundary Sf (t) for r = 0.1, D = 0.09.
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