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ANALYTICAL AND NUMERICAL METHODS
FOR STOCK INDEX DERIVATIVE PRICING

Sona Kilianova — Daniel Sevéovié

This paper deals with stock index derivative pricing. We recall the well-known Black-Scholes multi-asset derivative pricing
theory. It leads to the generalized Black-Scholes PDE in very high space dimension. Although there is an explicit analytical
solution to this problem, it should be noted that it is given in the form of a high-dimensional integral and as such is useless
from the practical point of view. To overcome this difficulty we propose a new method for solving the generalized Black-
Scholes PDE which is based on the so-called additive operator splitting (AOS) technique. The AOS method is applied to
find an approximate solution. The AOS technique leads to decomposition of the multi-dimensional problem into several
one-dimensional problems which can be solved very efficiently, even in parallel. The order of the approximative scheme is

also investigated.
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1 INTRODUCTION

In this paper we propose a new numerical method for
pricing multi-asset derivatives like, e.g., basket options
or stock indices. It is well-known that the price of such a
financial derivative is a solution to a high space dimen-
sional parabolic differential equation — the generalized
Black-Scholes equation. For derivation of the generalized
Black-Scholes equation we refer to a recent book by Kwok
[4]. This equation governs the price of an option with mul-
tiple underlying assets. All asset prices are assumed to
follow the lognormal distributions. The generalized B-S
equation can be fully integrated and its analytical solu-
tion has the form of an n-dimensional integral where n
is the number of underlying assets. In the case of stock
indices, n ranges from 10s to 100s (e.g., n = 500 for
Standard& Poor’s 500 Index). Therefore, the analytical
solution is useless for practical purposes. Several meth-
ods were applied to overcome this difficulty. Methods us-
ing Monte Carlo simulation [7], [5] are commonly used.
We also mention an algebraic approach developed in [6].

In this paper we apply the additive operator splitting
(AOS) method, known mainly from the image processing
theory. A key idea of this approach is to decompose the
multi-dimensional problem into several one-dimensional
problems which can be solved very efficiently. We apply
the AOS method to solve the Black-Scholes equation in-
stead of solving a high-dimensional integral which is the
analytical solution to this equation.

Finally, we deal with error estimates of the used
method. Under the assumption on the ratio of time dis-
cretization step k and spatial step A we show that our

numerical solution based on the AOS technique is of the
accuracy order O(h?) when h — 0.

2 MULTI-ASSET DERIVATIVES

We remind that the price of an index depends on n
underlying asset prices S;, i = 1,...,n. In general, the
index value I can be expressed as

I= iwzsz (1)
i=1

where w; are suitable weights corresponding to the index
definition. In general, index derivatives are contracts to
buy or sell the index at a future time (expiry, T'), with
the price, quantity and other specifications defined today.
Examples of derivatives include forwards, futures, Call
and Put options, and many others. They differ by various
types of the so-called pay-off diagrams corresponding to
the terminal condition of a derivative.

3 PRICING MODEL:
BLACK-SCHOLES EQUATION

The mathematical model describing the time evolution
of the derivative value is well known as the Black-Scholes
equation. The derivation process consists of two steps.
The first step is to apply multidimensional It6’s lemma
(see e.g., [4]) to find a stochastic equation governing the
evolution of the derivative value V' as a function of time ¢
and prices S;, i = 1,...,n, of assets building the index.
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Next we construct a self-financing portfolio comprising
assets, options on these assets and risk-free bonds. The
one-asset case is considered in many standard textbooks,
in particular [4] or [8]. It is easy to extend it to a multi-
asset case (cf [8]). In this derivation we always assume
that the asset prices follow a stochastic differential equa-
tion representing the geometric Brownian motion

dsS;
Si

=pdt+0;,dZ;, 1=1,2,...,n,

where u; and o; denote the expected rate of return and
the volatility of asset i, dZ; is the Wiener process’ differ-
ential for the ¢-th stock. Let p;; denote the correlation
coefficient of dZ; and dZ;, i.e.,

Then the equation describing the evolution of the price
V' of an index derivative in time has the form

Z Z pmaz(f]

Jas as +TZS
i=1 j=1

(2)
where 0 < S; < 00, 7 > 0 and 7 = T — t is time
to expiry. Equation (2) is referred to as the generalized
n -dimensional Black-Scholes partial differential equation.
Notice that the equation does not depend on the ex-
pected rates of return pu; of the assets. For different
types of derivatives different initial conditions at 7 = 0
(i.e., t = T) have to be added to equation (2). The
initial condition at 7 = 0 corresponds to a terminal
payoff condition V(S,T) = V,(S) at expiry t = T,
where S = (51, S55,...,5,) . It is necessary to add also
the boundary conditions to equation (2). Both initial as
well as boundary conditions depend on the type of the
derivative we deal with. For example, in the case of a
Call option on an index constructed as in (1) we have
Vo(S) = V(S,T) = max(}"; , w;S; — E,0) where E is
the so-called exercise price. For comprehensive overview
of initial and boundary conditions we refer to [4].

4 ANALYTICAL SOLUTION TO THE B-S PDE

In this section we focus on an analytical solution to
the Black-Scholes partial differential equation (2) with
an arbitrary initial condition. We seek a solution V' (S,t)
in the form of a convolution of the initial condition Vj
and the fundamental solution 9, i.e.,

VST —71)=e" [ Vo(§)¥(&S,7)dE

Rn

3)

where 1(&; S, 7) is a function of an n-dimensional vari-
able £ = (&1,&,...,&,) T . According to [4] V is a solution
to (2) iff a function 1) satisfies

Z ZPUUzU]

1131

O +rzn:Si % 4
=1

798; 08, 0S;

and the initial condition ¥(&;S,0) = §(£ — S). Here 6(z)
stands for the Dirac distribution.

In order to find an explicit form of the function ¥ we
apply a series of transformations of variables. By using
transformations

1 012 1 .
yi—a—i(r—7)r+a—iln5“ 7,—].,2,...,’!1, (5)
z=A732QTy (6)

and putting ®(z,7) = ®(y,7) = ¥(S,7) we obtain the
following n-dimensional diffusion equation % = %A@
where A is the so-called Laplace operator. A solution to
this equation is known (cf. [9]) and is given by ®(z,7) =
exp(—3-|z|?). By returning to original variables

1
(27r7')%
we finally obtain the solution V(S,T — 7) to (2) ana-
lytically given as in (3). Hence, if we want to calculate
the value of a derivative on an index, we have to solve
the high-dimensional integral (3). For example, if the in-
dex is comprised of n = 500 stocks, we should solve a
500-dimensional integral. This is a very difficult memory
space and time consuming problem. In practice, it can be
numerically solved in low space dimension n < 5 only.

5 ANOTHER APPROACH

Failure of practical usage of the analytical formula (3)
was a motivation for development of a new method for
finding a solution to the generalized Black-Scholes PDE
(2). Following the analytical approach from the previ-
ous section we will seek a solution to (2) in the form
V(S,T — 1) = e ""¢(x,7) where ¢ is a solution to
99 = 1A¢ satisfying the initial condition ®(z) = Vp(S)
where transformation of the variables S + x is exactly
the same as the one defined in (5), (6). Without loss of
generality, we will henceforth focus only on finding a so-
lution to

B—U—Au—() zeR", T€[0,T]
or (7)

u(z,0) =u’(z), ze€R".

5.1 Full space-time discretization numerical
scheme

First, we discretize (7) in time by dividing the time
interval [0,T] into m parts of equal length k and replace
the time derivative by the time difference whereby we
obtain the semidiscretization of the problem:

w (z) — w1 (2)

- — (A (z) =0
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where Au = Au = Y7, %, u(z, jk).

After some rearrangement we obtain Rothe’s scheme (cf.

[2])

and u/(z) ~

w =T —kA) WL, j=1,2,....m.

Next, we discretize also the spatial variable in each di-
rection by the same number d of internal dividing points
with the spatial step of size h. We cut-off the original
unbounded domain R™ into a bounded n-dimensional
cube Q@ = (—L,L)" where L is large enough. We use
the central differences for the approximation of the sec-
ond partial derivatives with respect to the space variables
z;, @ = 1,...,n. This way we obtain the full time-space
discretization scheme

w = (I —kA) il j=1,2,... (8)
where A represents the discretization of the Laplace op-
erator, I is an identity matrix. Because A is a very large
square matrix of type N x N = d" x d" application of
any classical numerical method for solving (8) would not
be very efficient.

,m

6 THE AOS TECHNIQUE

The additive operator splitting method (AOS) has
been developed in [1], [11], [12]. Recall that this method is
widely used in image processing, multidimensional signal
processing and filtering, etc. Our new application of the
additive operator splitting technique to index derivative
pricing resides in finding an approximate solution to (8).
By using backward transformations we subsequently find
the value of a solution to (2) — the price of the multi-
asset derivative.

The main idea of the additive operator splitting
method is the following: replace the arithmetical mean

of operators (or matrices) B;, ¢ = 1,...,n, by the har-
monic one, i.e.,
1 n _1
_ZBZ' — n(ZB;l) )
n
i=1 i=1

Let A =) " A; where A; denotes the second partial
derivative with respect to ;. Then I —kA= 135" B;
where B; = I — knA;. The matrix from Rothe’s scheme
is then approximated as follows:

(I-kA)™' <«

S|+

i([ — k’I’LAi)_l.
i=1

Hereby, Rothe’s scheme is approximated by another one:

1 IR :
@ = E;(I—knAi) =t @ =l j=1,...,m.
i=
(9)
Matrices A; are tridiagonal. From practical point of view,
we could finish at this stage because the right hand side

of (9) can be solved in a fast and efficient way. But, for
the theoretical completeness, it is worth to recognize that
each summand in (9) is nothing else but Rothe’s approx-
imation to an analytical solution to the one-dimensional
partial differential equation

Ox?

7

ov

o =0, z;€R,T€]0,T],

subject to the initial condition at k-th time level:

’U(fla‘- .. ai'i—lawiaj:i-i—la sy :Z‘na 0) =

= @ Y&,...,%i_1, T Fiy1,--.,%n), where z; € R.
Hence, our new numerical scheme based on the AOS tech-
nique can be rewritten in the following form:

i 1~
aﬂzﬁzqﬂ, i=1,2,....m (10)
=1

where 7)(z) = [ G(zi—&, k)@ (z1,. .., &, - .., Tn)dE;,
@G is the Green function.

7 THE ORDER OF THE
AOS APPROXIMATION

We will examine the error estimate between the nu-
merical Rothe scheme, the AOS scheme (9) based on tridi-
agonal systems, and the approximation (10) of the AOS
scheme based on solving one-dimensional integrals only.
We shall find the error estimate for the norm of the dif-
ference between solutions obtained by the first and the
second scheme in the usual form

|@ — || < const - k**

where vy is an exponent and k is the time discretization
step. It follows from [1] that for the difference between
the corresponding matrices of the schemes the following
statement holds.

Theorem ([1], Theorem 4.1). Let n € N, k > 0, and
let Ay,..., A, € RN*N be simultaneously diagonalizable
matrices with eigenvalues in the left half plane. Then
there exists a constant C' with

M - M|l < Ck

where M = (I — kA)™" and M = 37" (I —knd;)~".

The assumptions made in the previous theorem are
fulfilled for matrices A; representing the second partial
derivatives with respect to individual variables.

Under the additional assumption |a/|| < C,C € R,
we obtain the following error estimate:

It — @] < - COR (1)

where 6 = maxyc,(ar) |A| < 1. Long but straightforward

calculations show that constants C,CN' can be estimated
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as follows: C'=n?13 and C = |[u°||. For details we refer
to [3]. It yields the estimate
. . 1 ~ k
W — || < —CCk2 < O0(—~).

o —wll < —CCR < O(:7)
Furthermore, the estimate of the norm of the differ-
ence between the analytical solution to a one-dimensional
parabolic equation and its numerical counterpart based
on the implicit (in time) Euler scheme is known (see [10])
and reads as follows:

@@ — @’|| < O(k + h?),

which is also the error between our second and third
scheme. Hence, the error estimate of our method is

o o o k
& —u|| < [|#? — @[ + [|&7 —w?|| < O(k + h®) +0(;7)

k

50(k+h2+ﬁ).

By choosing an appropriate ratio of the time step k& and
the spatial step h we can control this error. Especially,
the choice k = h% implies [|@’ — u/|| < O(h?).

8 CONCLUSIONS

In this paper, we dealt with pricing of index options,
i.e., options whose underlying is a set of assets. Instead of
solving a high-dimensional integral representing the ana-
lytical solution to the Black-Scholes PDE we applied the
AOS technique in order to find an approximate solution
to the generalized Black-Scholes equation. By using this
method, the complex multi-dimensional problem was re-
placed by several simple one-dimensional problems based
on solving tridiagonal systems or one-dimensional inte-
grals. We have shown that by choosing an appropriate
relationship between the time-discretization step k& and
the spatial step h we can control the order of the er-
ror caused by the AOS method, and achieve the order
of O(h?) as h — 0. Another advantage of the proposed
method in comparison with other approaches resides in
possible sequential parallelization of the algorithm. Com-
puter implementation of the method and its application
to real data will be the subject of further study.
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