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Computational and qualitative aspects of
motion of plane curves with a curvature
adjusted tangential velocity
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In this paper, we investigate a time-dependent family of plane closed Jordan curves evolving in the normal direction with
a velocity that is assumed to be a function of the curvature, tangential angle, and position vector of a curve. We follow the
direct approach and analyze the system of governing PDEs for relevant geometric quantities. We focus on a class of the so-
called curvature adjusted tangential velocities for computation of the curvature driven flow of plane closed curves. Such a
curvature adjusted tangential velocity depends on the modulus of the curvature and its curve average. Using the theory of
abstract parabolic equations, we prove local existence, uniqueness, and continuation of classical solutions to the system
of governing equations. We furthermore analyze geometric flows for which normal velocity may depend on global curve
quantities such as the length, enclosed area, or total elastic energy of a curve. We also propose a stable numerical approx-
imation scheme on the basis of the flowing finite volume method. Several computational examples of various nonlocal
geometric flows are also presented in this paper. Copyright © 2012 John Wiley & Sons, Ltd.
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1. Introduction

In this paper, we investigate a time-dependent family of plane closed Jordan curves � t , t 2 Œ0, T/, evolving in the direction of the inner
normal with a speed v, which is assumed to be a function of the curvature k, tangential angle �, and position vector x 2 � t ,

v D ˇ.x, k, �/ . (1)

Recall that the evolving family of plane curves having the normal velocity speed of the form (1) can be often found in various applied
problems, for example, dynamics of phase boundaries in thermomechanics, material science (motion of bipolar loops [1, 2]), image,
and movie processing in computer vision theory (see, for example, [3]). For a comprehensive overview of industrial applications of the
geometric equation having the form of (1), we refer to a book by Sethian [4].

We analyze a system of governing PDEs for geometric quantities and propose a numerical method for computing the mean curvature
flow of plane closed curves with nontrivial tangential redistribution of points along evolving curves. We focus on a class of so-called
curvature adjusted tangential velocities for which the tangential velocity depends on the function of curvature and its average along
the curve. Following [5], the tangential speed is constructed as a linear combination of the asymptotic uniform tangential redistribu-
tion developed in [6] and the tangential velocity extracted from the crystalline curvature flow equations by the second author in [7].
Using the theory of abstract parabolic equations due to Angenent [8, 9] we show local existence and uniqueness of a classical smooth
solution to the system of governing equations. We furthermore propose a numerical approximation scheme on the basis of the flowing
finite volume method. We present several computational examples. In contrast to the simplified numerical algorithm proposed in [10]
(see also [5]), the curvature and tangent angle are not calculated from the position vector, but the parabolic equations for the curva-
ture and tangent angle are solved separately. Such an approach yields a stable and robust numerical approximation scheme derived by
Mikula and the first author in [6,11,12] for the case of the so-called (asymptotically) uniform tangential redistribution. Recently, a higher
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order discretization scheme involving asymptotically uniform tangential redistribution has been proposed and analyzed by Mikula and
Balažovjech in [13].

An embedded closed plane Jordan curve � can be parameterized by a smooth function x : R=Z � Œ0, 1� ! R2 such that
� D Image.x/ D fx.u/; u 2 Œ0, 1�g and j@uxj > 0. We denote @�F D @F=@� and jaj D

p
a.a, where a.b is the Euclidean inner

product between vectors a and b. The unit tangent vector is T D @ux=j@uxj D @sx, where s is the arc-length parameter ds D j@uxjdu,
and the unit inward normal vector is uniquely determined through the relation det.T , N/ D 1. A signed curvature in the direction N
is denoted by k. That is, k D det.@sx, @2

s x/. Let � be the angle of T , that is, T D .cos �, sin �/ and N D .� sin �, cos �/. The problem
of evolution of plane curves can be formulated as follows: given an initial curve �0 D Image.x0/, find a t-parameterized family of
plane curves f� tgt�0, � t D fx.u, t/; u 2 Œ0, 1�g starting from �0 and evolving according to the normal velocity v D ˇ.x, k, �/. We
follow the so-called direct approach in which we describe evolution of plane curves by an evolution equation for the position vector
x: @tx D ˇNC ˛T , x.., 0/ D x0../. Here, ˛ is the tangential component of the velocity vector. Note that ˛ has no effect on the shape
of evolving closed curves, and the shape is determined by the value of the normal velocity ˇ only. Hence, the simplest setting ˛ � 0
can be chosen. Dziuk [14] studied a numerical scheme for ˇ D k in this case. For general ˇ, however, such a choice of ˛ may lead to
numerical instabilities caused by undesirable concentration of grid points. To obtain stable numerical computation, several nontrivial
choices of ˛ have been proposed. In [15], Kimura proposed a redistribution scheme in the case ˇ D k by choosing tangential velocity ˛
such that j@ux.u, t/j D Lt , where Lt D

R
� t ds is the total length of � t . Hou, Lowengrub, and Shelley [16] derived the tangentail velocity

(10) with ' � 1 and! � 0 (see Section 2). They also mentioned (10) for general ' with! � 0. But they did not make explicit comments
on the importance of redistribution of grid points. Another choice of tangential velocity ˛ D �@u.j@uxj�1/ for the case ˇ D k has
been proposed by Deckelnick [17]. In [11], Mikula and the first author derived (10) with ' � 1 and ! � 0 in general frame work of the
so-called intrinsic heat equation for ˇ D ˇ.k, �/. Moreover, in [6] and [12], they proposed a method of asymptotically uniform redistri-
bution for ˇ D ˇ.x, k, �/. Besides the aforementioned uniform distribution methods, under the so-called crystalline curvature flow, grid
points are not uniformly distributed but their redistribution takes into account variations in the curvature. The second author extracted
the tangential velocity ˛ D �@sˇ=k, which is implicitly built in the crystalline curvature flow equation [7], or the crystalline algorithm
[18]. The asymptotically uniform redistribution is quite effective and valid for a wide range of applications. However, from a numeri-
cal point of view, there is no reason to take uniform redistribution automatically. Hence, a new way of curvature adjusted tangential
redistribution can be considered to take into account the shape of evolved curves and variations in the modulus of the curvature.

In this paper, we furthermore analyze qualitative and quantitative properties of nonlocal geometric flows in which the normal
velocity v D ˇ is given by

ˇ.x, k, �/� Q̌.x, k, �/CF� , (2)

where Q̌.x, k, �/ is a local part of the normal velocity of an evolving curve � at a point x locally depending on the curvature k and
tangent angle � at position x and F� 2 R is a nonlocal part of the normal velocity at x depending on the entire shape of the curve � .
Typically, F� is a function depending on the total length L, the enclosed area A, and the total elastic energy E D

R
� k2ds of a curve � ,

that is, F� D F.L, A, E/.
The paper is organized as follows. In Section 2, we investigate the system of governing partial differential equations for relevant geo-

metric quantities. We derive a tangential velocity taking into account variations in the modulus of the curvature along evolving curves.
In Section 3, we prove, locally in time, the existence and uniqueness of classical smooth solutions. In Section 4, we discuss the relation-
ship between crystalline curvature adjusted tangential velocity and affine scale space evolution of planar curves studied by Angenent,
Sapiro, and Tannenbaum in [19]. We show that the tangential velocity implicitly incorporated in the affine intrinsic heat equation is the
same as the one present in the crystalline curvature motion. In Section 5, we discuss several interesting examples of geometric flows in
which the normal velocity depends on the total length and the enclosed area. A special attention is put on analysis of the gradient flow
for the isoperimetric ratio. A numerical approximation scheme based on the flowing finite volume method is presented in Section 6
together with computational examples (Section 7).

2. System of governing equations and curvature adjusted tangential redistribution

In what follows, we shall assume ˇ0k.x, k, �/ > 0. Then, we can express the normal velocity ˇ in the following form:

ˇ D w.x, k, �/kC F.x, �/,

where w.x, k, �/ > 0 and F.x, �/ D ˇ.x, 0, �/. By ˇ0k , ˇ0� , and rxˇ, we denote partial derivatives of ˇ with respect to k and � and

rxˇ D .@x1ˇ, @x2ˇ/
T for x D .x1, x2/

T .
According to [6] (see also [11,12]), one can derive a system of PDEs governing evolution of plane curves satisfying @tx D ˇNC˛T . It is

easy to check the following facts. Indeed, it follows from the transformation @uFD g@sF (gD j@uxj is the so-called local length), Frenet’s
formulae @sT D kN, @sN D �kT , commutation relation @t@s � @s@t D .ˇk � @s˛/@s, expression for the curvature k D det.@sx, @2

s x/, tan-
gent angle .cos �, sin �/ D @sx that the curvature k, tangent angle �, local length g, and position vector x satisfy the following system
of PDEs:

@tkD @2
sˇC ˛@skC k2ˇ, (3)

@t� D ˇ
0
k@

2
s �C .˛C ˇ

0
�/@s�Crxˇ.T , (4)

@tgD .�kˇC @s˛/g, (5)

@tx D w@2
s xC ˛@sxC FN, (6)
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for u 2 Œ0, 1� and t > 0. A solution .k, �, g, x/ to (3)–(6) is subject to the initial condition k.., 0/ D k0../, �.., 0/ D �0../, g.., 0/ D
g0../, x.., 0/D x0../ corresponding to the initial curve�0 D Image.x0/ and periodic boundary conditions for g, k, x for u 2 Œ0, 1��R=Z
and �.1, t/D �.0, t/C 2� , that is, �.0, t/� �.1, t/mod 2� .

In what follows, we shall specify the tangential velocity function ˛ by taking into account the curvature variation with respect to the
averaged function of the curvature. First, for the total length Lt D

R
� t ds D

R 1
0 g.u, t/du of a curve � t evolving in the normal direction

with the speed ˇ, we have the following identity:

d

dt
Lt C

Z
� t

kˇ dsD 0 (7)

(see, for example, [11]). Recall that the so-called relative local length r.u, t/ D g.u, t/=Lt plays an important role in controlling redistri-
bution of grid points (cf. [11]). Let T > 0 be the maximal time of existence of a solution. If r.u, t/ ! 1 uniformly w.r. to u as t ! T ,
then redistribution of grid points becomes asymptotically uniform. In general, the uniform redistribution can stabilize numerical com-
putation, and it has no effect on the shape of evolved closed plane curves. Neither uniform nor asymptotically uniform redistribution
take into account variations in the curvature along evolved curves. Therefore, a natural question arises: how to redistribute grid points
densely (sparsely) on sub-arcs where the modulus of the curvature is large (small) with respect to its averaged value. To answer this
question, we shall define the so-called '-adjusted relative local length quantity

r'.u, t/D r.u, t/
'.k.u, t//

h'.k.., t//i
�

g.u, t/

Lt

'.k.u, t//

h'.k.., t//i
, (8)

where hF.., t/i D .1=Lt/
R
� t F.s, t/ds is the arc-length average of a quantity F. Throughout the paper, we will assume that the function

'.k/ is smooth and strictly positive, that is, '.k/ > 0. As for the computational experiments discussed in Section 7, we shall consider
'.k/D 1� "C "

p
1� "C "k2 for " 2 Œ0, 1/. Notice that '.k/! 1 if "! 0C, '.k/! jkj if "! 1�. Other choices of ' are also possible.

For example, '.k/ D
p
"2C jkj2m, m > 0. In [6, 11, 12], the constant function '.k/ � 1 has been utilized to construct (asymptotically)

uniform tangential redistribution. On the other hand, the function '.k/ D jkj is implicitly built in the crystalline curvature flow as it
was pointed out in [7]. The desired '-adjusted asymptotic uniform redistribution can be obtained by choosing ˛ in such a way that
�.u, t/ :D ln r'.u, t/! 0 as t! T . To this end, let us suppose that �.u, t/ satisfies the equation:

�.u, t/D ln..e�.u,0/ � 1/e�
R t

0 !.�/ d� C 1/. (9)

According to [6, 12], the shape function ! can be constructed in the form ! D �1C �2 hkˇi , where �1, �2 � 0 are given constants. With
regard to (7), we have ! D �1 � �2@t ln Lt . In the case when the time of existence T <1 is finite and evolved curves shrinks to a point,
that is, Lt ! 0 as t! T , we can take �1 D 0 and �2 > 0. On the other hand, if T D1, we can take �1 > 0 and �2 D 0. In both cases, we
have

R T
0 !.t/dt DC1 and the convergence limt!T �.u, t/D 0 is guaranteed. Setting �1 D �2 D 0, we conclude �.u, t/ is constant w.r.

to the time t yielding thus uniform tangential redistribution (cf. [6]).
Taking into account governing Eqs (3)–(6), definition of the '-adjusted relative local length (8), we obtain, after straightforward

calculations, that �.u, t/ :D ln r'.u, t/ satisfies Eq. (9) if the tangential velocity ˛ satisfies

@s.'˛/

'
D

f

'
�
hf i

h'i
C!.t/.r�1

' � 1/, f D 'kˇ � .@2
sˇC k2ˇ/'0k , (10)

where ' D '.k/ and '0k D @k'.k/. To construct a unique solution ˛, we assume the renormalization condition h'.k/˛i D 0, that is,R
� '.k/˛dsD 0.

3. Local existence and uniqueness of classical solutions

In this section, by following the ideas adopted from [12] (see also [6, 11]), we shall prove a local time existence, uniqueness, and con-
tinuation of a classical smooth solution to the governing system of Eqs (3)–(6). However, we have to rewrite the system (3)–(6) into its
equivalent form that does not explicitly contains the derivative @s˛ of the tangential velocity appearing in Eq. (5) for the local length g.
Its presence in (5) is a technical obstacle in a direct application of the general result [12, Theorem 5.1] on existence and uniqueness of
solutions to (3)–(6). To this end, we note that the auxiliary function � D �.u, t/ given by Eq. (9) is a solution to the ODE:

d�

dt
D .1� e�� /!.t/,

where ! D �1 C �2 hkˇi. Therefore, the function r' D e� satisfies the ODE @tr' D .r' � 1/!.t/. With this replacement, we obtain the
following system of PDEs:

@tkD @2
sˇC ˛@skC k2ˇ, (11)

@t� D ˇ
0
k@

2
s �C .˛C ˇ

0
�/@s�Crxˇ.T , (12)

@tr' D .r' � 1/.�1C �2 hkˇi/, (13)

@tx D w@2
s xC ˛@sxC FN, (14)
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which is equivalent to the system (3)–(6). Indeed, because

r' D r
'.k/

h'.k/i
D

g

L

'.k/

h'.k/i
, (15)

we can express differentials @s and ds in terms of @u and du as follows:

@

@s
D

1

g

@

@u
D

'.k/

L h'.k/i

1

r'

@

@u
and dsD

L h'.k/i

'.k/
r'du. (16)

A solutionˆD .k, �, r' , x/ to the system of PDEs (11)–(14) is subject to the initial conditionˆ.., 0/Dˆ0 corresponding to the initial
curve �0 D Image.x0/.

In what follows, we recall key ideas of the abstract theory of nonlinear analytic semigroups developed by Angenent [9, Theorem 2.7].
By means of this theory, we will be able to prove local existence and uniqueness of smooth solutions to the system of governing Eqs
(11)–(14) that can be rewritten as an abstract nonlinear equation of the form

@tˆD G.ˆ/, ˆ.0/Dˆ0 , (17)

where G.ˆ/D G.ˆ,˛.ˆ// and G.ˆ,˛/ is the right-hand side of (11)–(14) with ˛ D ˛.ˆ/ being the unique solution to Eq. (10) satisfying
the renormalization condition h'.k/˛i D 0.

Now, suppose that the Fréchet derivative G0. N̂ / 2 L.E1, E0/ belongs to the so-called maximal regularity class M1.E0, E1/ for
any N̂ 2 O1, where O1 is an open neighborhood of the initial condition ˆ0 (cf. [9]). Here, E0 and E1 are Banach spaces; E1 is
densely embedded in E0. Then, it follows from [9, Theorem 2.7] that the abstract initial value problem (17) has a unique solution
ˆ 2 Y.T/ � C.Œ0, T�, E1/ \ C1.Œ0, T�, E0/ on some small enough time interval Œ0, T�. A maximal regularity class M1.E0, E1/ � L.E1, E0/

consists of those generators of analytic semigroups A : D.A/D E1 � E0 ! E0 for which the linear equation @tˆD AˆC h.t/, t 2 .0, 1�,
ˆ.0/ D ˆ0 has a unique solution ˆ 2 Y.1/ for any h 2 C.Œ0, 1�, E0/ and ˆ0 2 E1. The pair .E0, E1/ is the so-called maximal regularity
pair. It was also pointed out by Angenent in [9] (see also [8]) that the pair .c%, c2C%/ of the so-called little Hölder spaces is the maximal
regularity pair for the second-order differential operator AD�@2

u subject to periodic boundary conditions at uD 0, 1. The ‘little’ Hölder
space c2�C% D c2�C%.S1/ with 0 < % < 1 and 	 D 0, 1=2, 1 is the closure of C1.S1/ in the topology of the Hölder space C2�C%.S1/

(see [8]). It means A 2M1.c%, c2C%/. To apply the abstract existence result [9, Theorem 2.7], we define the following scale of Banach
space

E� D c2�C% � c2�C%
� � c1C% � .c2�C%/2 for 	D 0, 1=2, 1.

By c2�C%
� .S1/, we denoted the Banach manifold c2�C%

� .S1/ D f� : R! R , T D .cos �, sin �/ 2 .c2�C%.S1//2g. In other words, it is the
space of all tangent angles � 2 c2�C% satisfying the periodic boundary condition �.0/� �.1/mod 2� .

Henceforth, we shall assume ' D '.k/ and ˇ D ˇ.x, k, �/ are at least C3 smooth functions such that '.k/ > 0 and ˇ is a 2�-periodic
function in the � variable. Furthermore, by O 1

2
� E 1

2
, we shall denote a bounded open subset such that r' > 0 for any .k, �, r' , x/ 2O 1

2
.

Lemma 1
Let˛ D ˛.ˆ/be the tangential velocity function given as a unique solution to (10) satisfying the renormalization condition h'.k/˛i D 0,
whereˆD .k, �, r' , x/ 2O 1

2
. Then, ˛ 2 C1.O 1

2
, c%.S1//.

Proof
The term f D 'kˇ � .@2

sˇC k2ˇ/'0k appearing in the definition (10) of ˛ can be decomposed as follows:

f D f0 � @sf1, where f0 D 'kˇ � k2ˇ'0k C .@sˇ/.@sk/'00kk , f1 D .@sˇ/'
0
k . (18)

Assuming '.k/ > 0 and ˇ D ˇ.x, k, �/ are C3 smooth functions, we conclude f0 D f0.ˆ/, f1 D f1.ˆ/ 2 C1.O 1
2

, c%.S1//. Because any

averaged quantity (e.g., h'.k/i, h'kˇi, hkˇi , hf i) is constant in the arc-length variable s, it belongs to the class C1.O 1
2

, c%.S1//. From

(10), we have

@s.'˛C f1/D f0 �
hf i

h'i
' C .r�1

' � 1/!'. (19)

Hence, '˛C f1 2 C1.O 1
2

, c1C%.S1//. Because '.k/ > 0 and f1 2 C1.O 1
2

, c%.S1//, we conclude ˛ 2 C1.O 1
2

, c%.S1//, as claimed. �

Remark 1
In [6, 11], the authors proved that for the (asymptotically) uniform tangential velocity, we have ˛ 2 C1.O 1

2
, c2C%.S1//, that is,

˛.ˆ/ 2 c2C%.S1/ for ' 2 O 1
2
� E 1

2
. Indeed, in this case, ' is constant and therefore f1 � 0, f0 � kˇ 2 C1.O 1

2
, c1C%.S1//. Such a

higher smoothness was needed because the authors applied the abstract result [9, Theorem 2.7] to the original system of Eqs (3)–(6).
Hence, to treat Eq. (5) for g 2 c1C%, the tangential velocity ˛ should belong to the class c2C%.S1/.
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Now, we are in a position to state the main result of this section regarding existence, uniqueness, and continuation of a smooth
solution to the initial value problem (11)–(14).

Theorem 1
Assume ˆ0 D .k0, �0, r'0, x0/ 2 E1, where k0 is the curvature, �0 is the tangential vector, and r'0 > 0 is the '-adjusted relative local

length of an initial regular curve �0 D Image.x0/. Assume '.k/ > 0 and ˇ � Q̌.x, k, �/CF� , where Q̌ : R2�R�R!R and ' : R!R
are C3 smooth functions of their arguments such that Q̌ is a 2�-periodic function in the � variable and min�0

Q̌0
k.x0, k0, �0/ > 0. The

nonlocal part of the normal velocity F� is assumed to be a C1 smooth function from a neighborhood O 1
2
� E 1

2
of ˆ0 into R, that is,

F� 2 C1.O 1
2

,R/.

Then, there exists a unique solution ˆ D .k, �, r' , x/ 2 C.Œ0, T�, E1/ \ C1.Œ0, T�, E0/ of the governing system of Eqs (11)–(14) defined
on some time interval Œ0, T� , T > 0.

Proof
Because F� is a real valued nonlocal functional, F� : O 1

2
! R, we have @sF� D 0. Thus, @sˇ D @s Q̌. Similarly, as in the proof of

[6, Theorem 5.1], we first rewrite Eq. (11) for the curvature in the form

@tkD @s. Q̌
0
k@sk/C @s. Q̌

0
�k/C @s.rx Q̌.T/C ˛@skC k2ˇ . (20)

Here, we have used the relations @s� D k and @s Q̌ D Q̌
0
k@skC Q̌0�kCrx Q̌.T , where T D .cos �, sin �/, N D .� sin �, cos �/. Furthermore,

using Frenet formulae kND @sT D @2
s x, we can rewrite the position vector equation as follows:

@tx D @2
s xC cNC ˛T ,

where c.x, k, �/ � ˇ.x, k, �/ � k. This ‘cheap trick’ enables us to utilize the parabolic smoothing effect of the parabolic equation for
x when we compared it with an argument based only on the analysis of solutions to the ODE @tx D ˇN C ˛T having not enough
smoothness such as ˛../ 2 c%.S1/.

There exists an open neighborhood O1 � E1 ofˆ0 such thatˆ0 2O1, and r' > 0, Q̌0k.x, k, �/ > 0 for any .k, �, r' , x/ 2O1. Then, the

mapping G is a C1 smooth mapping from O1 � E1 into E0. Its linearization G0 at N̂ D .Nk, N�, Nr' , Nx/ 2O1 has the form

AD G0. N̂ /D A1C A2, where A1 D ND @
2
u, A2 D NB @uC NC.

Here, ND is a diagonal matrix, ND D diag. ND11, ND22, ND33, ND44, ND55/. The coefficients of ND satisfy NDii 2 c1C%.S1/, ND11 D ND22 D Ng�2 Q̌0
k. Nx, Nk, N�/,

ND33 D 0, ND44 D ND55 D Ng�2 2 c1C%.S1/, where Ng is given by (15), that is, NgD Nr' NL
˝
'.Nk/

˛
='.Nk/. The coefficients NBij , NCij of 5�5 matrices NB, NC

correspond to the first and 0th order derivative terms in the second-order linear differential operator AD G0. N̂ /.
Let O 1

2
� E 1

2
be an open subset in E 1

2
such that O1 D O 1

2
\ E1 � E1. With regard to Lemma 1, we have ˛ 2 C1.O 1

2
, c%.S1//.

Furthermore, we assumed F� 2 C1.O 1
2

,R/. As a consequence, we obtain NBij , NCij 2 c%.S1/ for i, jD 1, � � � , 5.

For the second-order differential linear operator A1, we have A1 2 L.E1, E0/. Moreover, A1 is a generator of an analytic semigroup on
E0 with the domain D.A1/D E1 � E0. It belongs to the maximal regularity pair .E0, E1/, that is, A1 2M1.E0, E1/ (see [9]).

Because A2 contains differentials of the first-order only, it can be extended to a bounded operator from E 1
2
� E1 into E0. Because of

boundedness of A2 2 L.E 1
2

, E0/ and taking into account the interpolation inequality between c% and c2C% spaces, we conclude the

following inequality:

kA2ˆkE0 	 C0kˆkE 1
2
	 C0kˆk

1=2
E1
kˆk

1=2
E0

,

where C0 > 0 is a generic positive constant. Using Young’s inequality ab	 "a2Cb2=.4"/, " > 0, we can conclude that the linear operator
A2 (now considered as a linear operator from E1 into E0) has the relative zero norm, that is, for any " > 0, there exists a constant K" > 0
such that kA2ˆkE0 	 "kˆkE1 C K"kˆkE0 (cf. [20, Section 2.1] and also [9]). By virtue of [9, Lemma 2.5] (see also [20, Theorem 2.1]), the
class M1 is closed with respect to perturbations by linear operators with zero relative norm. Thus, G0. N̂ / 2M1.E0, E1/ for any N̂ 2O1.
The proof of the short time existence of a solutionˆ now follows from the aforementioned abstract result [9, Theorem 2.7]. �

Remark 2
The nonlocal quantities LD

R
� ds, AD 1

2

R
� det.x, @sx/ds, E D

R
� k2ds are C1 mappings from a neighborhood O 1

2
into R. Indeed, as

LD

Z 1

0
j@uxjdu, AD

1

2

Z 1

0
det.x, @ux/du, E D

Z 1

0
k2j@uxjdu,

we have L, A, E 2 C1.O 1
2

,R/. For the nonlocal term, we conclude F� 2 C1.O 1
2

,R/ provided that F� D F.L, A, E/, where F.L, A, E/ is a

C1 smooth function of its arguments L, A, E .

Let us introduce the C0 and C1 norms of a quantity F : �!R defined on a smooth curve � as follows

kFk0,� Dmax
�
jFj, kFk1,� Dmax

�
.jFj C j@sFj/. (21)1

7
8

8
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Theorem 2
Let � t , t � 0, be a family of planar curves evolving in the normal direction with the velocity ˇ for which short time existence of smooth
solutions is guaranteed by Theorem 1. Suppose that � t , 0 	 t < Tmax , is a maximal solution defined on the maximal time interval
Œ0, Tmax/. If Tmax < C1, then either kkk0,� t C kˇk0,� t ! 1 as t ! Tmax or sup0�t<Tmax

.kkk0,� t C kˇk0,� t / < 1 and, in this case,

lim inft!T�max min� t Q̌0k.x, k, �/D 0.

Proof
Similarly as in [8, Theorem 3.1], we can argue by a contradiction. Suppose, to the contrary, that the sum kkk0,� t C kˇk0,� t of C0 norms
is bounded on Œ0, Tmax/ for Tmax < C1 and lim inft!T�max min� t ˇ0k > 0. Following the continuation argument due to Gage [21] and

Angenent [8], we shall prove that there exists a limiting curve �Tmax D Image.x.., Tmax//, where the x.u, Tmax/ D limt!Tmax x.u, t/
uniformly w.r. to u 2 Œ0, 1�. Because the tangential velocity ˛ has no impact on the shape of � t and the existence of the limiting
curve �Tmax , we can assume ˛ D 0 in Eq. (20) for the curvature. With regard to the assumption on boundedness of the curvature k
and normal velocity ˇ, we conclude that the reaction term k2ˇ in the curvature equation remains uniformly bounded for u 2 Œ0, 1�
and 0 	 t < Tmax . The parabolic equation (20) has therefore a smooth solution k up to the limiting time t D Tmax . Now, it follows
from the position vector equation @tx D ˇ.x, k, �/N and the tangent angle equation (12) that the limiting curve �Tmax exists and is
smooth. Moreover, using Eq. (9) and expression � D ln r' for the '-adjusted local length r' , we also conclude the existence of the
limit limt!Tmax r'.u, t/ D r'.u, Tmax/ > 0 uniformly w.r. to u 2 Œ0, 1�. Starting from the limiting curve �Tmax and using local in time
existence result from Theorem 1, the family of curves � t can be prolonged to a larger time interval Œ0, T 0/ where T 0 > Tmax . This is a
contradiction. �

Remark 3
In general, an estimate for kkk0,� is not sufficient to control behavior of the norm kˇk0,� and vice versa. Indeed, let us consider, for
example, ˇ D k � jxj2. The self-similar family of circles parameterized by x.u, t/ D R.t/.cos 2�u, sin 2�u/T evolves with the normal
velocity ˇ provided that �PR.t/ D R.t/�1 � R.t/2. If R.0/ > 1, then Tmax <1 and kkk0,� t ! 0 holds but kˇk0,� t !1 as t! Tmax . On

the other hand, if ˇ D jxjık, 1 	 ı < 2, then kˇk0,� t stays bounded but kkk0,� t ! 1 holds as t ! Tmax . Finally, if ˇ D .jxj � 1/ık,

0 < ı < 1, then �PR.t/ D .R.t/� 1/ı=R.t/, R.0/ > 1, with R.t/! 1C as t! Tmax <1. Moreover, kkk0,� t C kˇk0,� t stays bounded for

t 2 Œ0, Tmax/ but lim inft!T�max min� t Q̌0k.x, k, �/D 0.

4. Affine scale space evolution and crystalline curvature tangential velocity

In the theory of image processing, the so-called morphological image and shape multiscale analysis is often used because of its contrast
and affine invariance properties. Affine scale space evolution of closed planar curves has been introduced and studied by Angenent,
Sapiro, and Tannenbaum [19, 22] and Alvarez et al. [23]. They derived a geometric equation of the form (1) with the normal velocity
given by

ˇ.k/D k
1
3 . (22)

In this section, we will show that the geometric equation (22) representing affine scale space evolution is closely related to the crys-
talline curvature adjusted tangential velocity. For a wide class of tangential velocities, local existence, uniqueness, and continuation of
smooth solutions to the geometric equation (22) has been shown by Mikula and Ševčovič in [11].

To investigate affine scale space evolution, we have to introduce a notion of the so-called affine arc-length parameterization (cf. [22]).
Consider a planar closed convex curve � parameterized by x with the arc-length parameterization s, that is, � D fx.s/, s 2 Œ0, L�g. Such
a curve can be re-parameterized by a new parameterization S such that � D fX.S/, S 2 Œ0,L�g, where X.S/D x.s/ and dSD # ds. Here,
# � 0 is a nonnegative function defined on the curve � . The parameterization S is called affine arc-length parameterization if

jKj � 1 on � , where K D det.@SX , @2
S X/,

(cf. [19]). In other words, S is a parameterization for which the modulus of the affine curvature K is constant along the curve � . It is well

known (see [22]) that the parameterization S is the affine arc-length if # D jkj
1
3 . Indeed, because dSD # ds, we have

K D det.@SX , @2
S X/D det.#�1@sx,#�2@2

s x � @s##
�3@sx/D #�3 det.@sx, @2

s x/D #�3k.

Hence, jKj � 1 on � if # D jkj
1
3 , that is, dSD jkj

1
3 ds on � , as claimed.

Having a new parameterization S of a family � t D Image.X.., t// of planar curves, we can study evolution of � t , t 2 Œ0, T�, for which
the affine intrinsic heat equation

@tX D @2
S X (23)

is fulfilled. Because dSD # ds, we have

@2
S X D #�1@s

�
#�1@sx

�
D #�2@2

s x �
@s#

#3
@sx D

k

#2
N�

@s#

#3
T .

Copyright © 2012 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2012, 35 1784–1798
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Substituting # D jkj
1
3 to the this equation, we obtain the fact that the affine intrinsic heat equation can be rewritten in the form of a

geometric equation @tX D ˇNC ˛T with the normal velocity ˇ and tangential velocity ˛ given by

ˇ D k
1
3 , ˛ D�

@s#

#3
D�

1

3

@sk

k
5
3

D�
@sˇ

k
.

But this is just the tangential velocity˛ intrinsically built in the crystalline curvature flow (cf. [7]). It corresponds to the curvature adjusted
tangential velocity with 
.k/� jkj. This way, we have shown the following proposition.

Proposition 1
Let S be the affine arc-length parameterization. Then, the solution X D X.S, t/ to the affine intrinsic heat equation @tX D @2

S X represents

a flow of planar curves with the normal velocity ˇ D k
1
3 and the crystalline curvature adjusted tangential velocity ˛ D� @sˇ

k .

Remark 4
Recall that the evolution equation (4) for the tangent angle � can be deduced from the fact @t� D @sˇ C ˛k (cf. [11]). Therefore, the
curvature adjusted tangential velocity ˛ given by ˛ D �@sˇ=k corresponds to @t� D 0 (see [7]). Hence, � D �.u/ is a function of u
variable only. In general, if a solution curve is strictly convex, then the function � D �.u/ is invertible because g�1@u� D @s� D k > 0.
Therefore, we can reparameterize a convex curve by using the tangent angle � as its new parameterization, that is, @s D k@� . Then,
˛ D�@sˇ=kD�@�ˇ and @2

sˇ D�k2@�˛ � ˛@sk. Now, it follows from Eq. (3) that

@tkD k2.@2
�ˇC ˇ/. (24)

This is very useful evolution equation for strictly convex curves expressed in the so-called Gauss-parameterization (see [24] in the case
ˇ D k).

5. Evolution of plane curves with a nonlocal normal velocity

In this section, we discuss the role and importance of geometric equation (2) with a nonlocal term F� depending on the entire curve
� . The normal velocity is given by ˇ.x, k, �/� Q̌.x, k, �/CF� , where Q̌.x, k, �/ : R2 �R�R! R is a local part of the normal velocity
and F� D F.L, A, E/ represents its nonlocal part depending on the global quantities L, A, E computed over the entire curve.

5.1. Enclosed area-preserving and total length-preserving nonlocal flows

Recall the area evolution equation for a flow of embedded closed plane curves driven in normal direction with a normal velocity ˇ:

d

dt
AC

Z
�
ˇ dsD 0, (25)

where AD At is the area enclosed by the curve � D � t (see, for example, [11]).
Our first example is the enclosed area-preserving flow having the form of (2). Inserting ˇ.x, k, �/ � Q̌.x, k, �/ C F� into (25), we

obtain

0D
d

dt
AC

Z
�
ˇ dsD

d

dt
AC

Z
�

Q̌ dsCF�
Z
�

dsD

Z
�

Q̌ dsC LF� .

Hence, setting F� D �
D
Q̌
E
D 1

L

R
�
Q̌ ds where L D

R
� ds, we conclude d

dt A D 0 for the normal velocity given by ˇ D Q̌ �
D
Q̌
E
. Hence,

evolution according to such a normal velocity represents the area-preserving flow. The particular case Q̌ � k has been intensively
studied, for example, by Gage [21]. In this case, we have

ˇ D k � hki D k �
1

L

Z
�

k dsD k �
2�

L
.

Notice that the flow ˇ D k � 2�
L is the area-preserving and length decreasing in a suitable metric. Indeed, by the Cauchy–Schwartz

inequality, we obtain

.2�/2 D

�Z
�

k ds

�2

	

Z
�

ds

Z
�

k2 dsD L

Z
�

k2 ds (26)

and so

d

dt
LD�

Z
�

kˇ dsD�

Z
�

k2 dsC
2�

L

Z
�

k dsD�

Z
�

k2 dsC
.2�/2

L
	 0.

Moreover, Gage proved that for the area-preserving flow, we have Tmax D1, and � t approaches a circle provided that the initial curve
�0 is convex (see [21, Theorem 4.1]).
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The total length-preserving flow represents a dual notion to the area-preserving flow. Our purpose is to construct a nonlocal term
F� in such a way that @tLD 0. Using the total length equation (7) with the normal velocity having the form ˇ D Q̌ CF� , we obtain

d

dt
LD�

Z
� t

kˇ dsD�

Z
�

k Q̌ ds�F�
Z
�

k dsD�

Z
�

k Q̌ ds� 2�F� .

Therefore, for the normal velocity ˇ given by ˇ D Q̌ �
L
D
k Q̌
E

2� , we have d
dt LD 0, that is, the total length-preserving flow. In particular, by

choosing the local part of the velocity Q̌ � k, we conclude

ˇ D k �
E

2�
,

where E D
R
� k2ds is the total elastic energy. To emphasize that the length-preserving flow is a dual notion to the area-preserving flow,

we note that the flow of curves evolved by the velocity ˇ D k � E
2� preserves the total length and enlarges the enclosed area. Indeed,

using the inequality (26), we obtain

d

dt
AD�

Z
�
ˇ dsD�

Z
�

�
k �

E
2�

�
dsD�2� C

L
R
� k2ds

2�
� 0.

The total length preserving flow of convex curves was investigated recently by Mu and Zhu in [25]. In their analysis, they employed
the Gauss parameterization (24) for evolution of convex curves in the plane. By using the arc-length parameterization, we were able to
extend the area increasing property for the case of Jordan curves in the plane.

5.2. Gradient flow for the isoperimetric ratio

Finally, we analyze a gradient flow for the isoperimetric ratio defined by

…D
L2

4�A
.

Such a flow was first investigated by Jiang and Pan in [26]. Similarly, as Mu and Zhu in [25], they employed the Gauss parameterization
(24) for evolution of convex curves and so results of [26] can be applied to convex curves. In what follows, we show that some of their
results (e.g., area increasing property) can be directly generalized to the case of evolution of Jordan curves by using the arc-length
parameterization. In our approach, we employ the curvature equation (3) to prove convexity preservation as well as area increasing
(for Jordan curves) and length decreasing property (for convex curves). Moreover, in Section 7, we present an example of evolution of
nonconvex curves with temporal increase of the total length (see Figure 6). Recall the well-known fact … � 1 for any smooth closed
embedded plane curve � and the strict inequality…> 1 holds unless � is a circle. Using relations (7) and (25), we obtain

d

dt
…D

L@tL

2�A
�

L2@tA

4�A2
D�

L

2�A

Z
�

�
k �

L

2A

�
ˇ ds.

Hence, the flow driven in the normal direction with the normal velocity

ˇ D k �
L

2A
(27)

represents a gradient flow for the isoperimetric ratio …, that is, @t… < 0 for ˇ 6� 0. Notice that ˇ is a normal velocity containing the
nonlocal term F� D�L=.2A/. Furthermore, using the area Eq. (25), we obtain

d

dt
AD�

Z
�
ˇ dsD�

Z
�

k dsC
L

2A

Z
�

dsD 2�.…� 1/� 0, (28)

because
R
� k ds D 2� , L D

R
� ds, and for the isoperimetric ratio, we have ….�/ � 1. From inequality (28), we conclude that the

enclosed area is nodecreasing with respect to time.
Next, by following the convexity argument due to Gage, we shall prove that evolution of plane Jordan curves with the normal veloc-

ity given by (27) preserves convexity, that is,� t is convex for t � t0 provided that� t0 is convex. A key point in the convexity preservation
argument (cf. Gage [21]) is an application of a parabolic comparison argument. Notice that a curve � is convex if its curvature k > 0. In
the case ˇ D kCF� , Eq. (3) for the curvature has the form

@tkD @2
s kC ˛@skC k2.kCF� /.

Let us denote by K.t/ D min� t k.., t/, that is, K.t/ is the minimal curvature over the curve � t . Denote by s�.t/ 2 Œ0, Lt� the argument of
minimum of k. It means that K.t/D k.s�.t/, t/. Then, @sk.s�.t/, t/D 0 and @2

s k.s�.t/, t/� 0. Hence,

K 0.t/� K2.t/.K.t/CF t
� /.

Copyright © 2012 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2012, 35 1784–1798
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Suppose that K is a solution to this ordinary differential inequality existing on some interval Œt0, T/ and such that K.t0/ > 0. Then, it
should be obvious that K.t/ > 0 for t 2 Œt0, T/ provided that

inf
t0�t<T

F t
� > �1. (29)

To prove convexity preservation for the isoperimetric ratio gradient flow, it is therefore sufficient to verify that the nonlocal part
F t
�
D�Lt=.2At/ remains bounded from below for t � t0. Indeed, as ˇ D k � L=.2A/, we obtain

d

dt

L

A
D
@tL

A
�

L@tA

A2
D�

1

A

Z
�

kˇ dsC
L

A2

Z
�
ˇ dsD�

1

A

Z
�
ˇ2 dsC

L

2A2

Z
�
ˇ ds	 0,

because
R
� ˇ dsD�@tA	 0 by (28). Therefore,

�
Lt0

2At0
< �

Lt

2At
	 0 for any t � t0, (30)

and so condition (29) is satisfied by the the isoperimetric ratio gradient flow (27).
Another important property of this flow can be deduced from the well-known isoperimetric inequality

�
L

A
	

Z
�

k2 ds (31)

derived by Gage [27] for any convex C2 smooth embedded closed curve in R2. Therefore, if � t0 is convex at some time t0 � 0, then with
regard to (7), we obtain

d

dt
Lt D�

Z
� t

kˇ dsD�

Z
� t

k2 dsC
Lt

2At

Z
� t

k dsD�

Z
� t

k2 dsC �
Lt

At
	 0 at tD t0.

It means that the isoperimetric ratio gradient flow is a curve-shortening flow of evolving convex curves.
Summarizing the result from this subsection, we can conclude the following proposition.

Proposition 2
A flow of planar embedded closed curves driven in the normal direction by the velocity ˇ D k � L

2A is a gradient flow minimizing the
isoperimetric ratio…D L2=.4�A/. It is a convexity-preserving flow. It is the enclosed area increasing flow. Finally, it represents the total
length decreasing flow for convex curves.

Note that the convexity preservation and length decreasing property have been already established by Jiang and Pan in [26] for
evolution of convex curves. Because we have adopted the arc-length parameterization, the area increasing property holds true for
evolution of Jordan curves evolved in the normal direction by the velocity (27).

6. Numerical scheme

The purpose of this section is to construct a numerical approximation scheme for solving the system of governing Eqs (3)–(6)
complemented by the curvature adjusted tangential velocity equation (10) satisfying the renormalization constraint h'˛i D 0.

Discretization setting. Given an initial N-sided polygonal curve P0 D
SN

iD1 S0
i , our purpose is to find a family of N-sided polygonal

curves fP jgjD1,2,���, P j D
SN

iD1 S
j
i , where S j

i D Œx j
i�1, x j

i � is the i-th edge with x j
0 D x j

N for j D 0, 1, 2, � � � . The initial polygon P0 is an
approximation of �0 satisfying fx0

i g
N
iD1 � P0 \ �0, and P j is an approximation of � t at the time tD tj , where tj D j� is the j-th discrete

time level, jD 0, 1, 2, � � � , if we use a fixed time increment � > 0 or tj D
Pj�1

lD0 �l if we use adaptive time increments �l > 0, lD 0, � � � , j�1.

The updated curve P jC1 is determined from the data for P j at the previous time step by using the following numerical discretization
in space and time.

Numerical algorithm. A flowchart of the numerical algorithm can be stated as follows. Hereafter, we will use ‘func’ for a given quan-
tity or function. Note that local quantities fxig, fkig, fpig, f˛ig should satisfy the periodic conditions: func0 D funcN, funcNC1 D func1.
As for the tangent angle vector f�ig, we have mod-2� boundary conditions �0 � �N (mod-2� ), �NC1 � �1 (mod-2� ).

Step 0. Put the initial step jD 0.
Step 1. Construct the data at the j-th time step as follows:

Step 1-1. Using fx j
i g, compute the local quantities fp j

i g, f�
j

i g, fk
j

i g, nonlocal quantities Lj, A j, E j , and fˇ j
iD
Q̌.x j

i , �
j

i , k j
i /CFP j g.

Step 1-2. Solve Eq. (10) for ˛ and compute f˛j
ig.

Step 2. Compute updated data fNpig, fN�ig, fNkig, NL, as follows:

Step 2-1. Solve Eq. (5) for g and compute fNpig D Ng j
i , NLD

PN
iD1 Npi .

Step 2-2. Solve Eq. (3) for k and compute fNkig,
˝
func.Nk/

˛
.

Step 2-3. Solve Eq. (4) for � and compute fN�ig.
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Step 3. Solve Eq. (6) for the position vector x and compute fx jC1
i g.

Final step. Put j :D jC 1, go to Step 1, and compute all updated quantities.

In what follows, we shall explain the aforementioned steps in more details. In the following explanation of Step 1-1 and Step 1-2, we
will omit the superscript j.

Step 1-1. From the j-th step data
n

x j
i

o
, we will define local quantities

n
p j

i

o
,
n
�

j
i

o
,
n

k j
i

o
, and nonlocal quantities Lj , A j ,

˝
func.kj/

˛
, : : : .

Construct
n

pj
i

o
and Lj . The length of Si is given by pi D jxi � xi�1j. Then, we have the total length of P such as LD

PN
iD1 pi .

Construct
n
�

j
i

o
and A j . The i-th unit tangent vector T i is defined by T i D

1
pi
.xi�xi�1/. Then, the i-th unit tangent angle �i is obtained

from T i D .cos �i , sin �i/
T in the following way: firstly, from T1 D .T11, T21/

T, we obtain �1 D 2��arccos.T11/ if T12 < 0; �1 D arccos.T11/

if T12 � 0. Secondly, for iD 1, 2, � � � , N, we successively compute �iC1 from �i as follows:

�iC1 D

8<
:
�i C arcsin.D/, if I > 0,
�i C arccos.I/, if D > 0,
�i � arccos.I/, otherwise,

where DD det.T i , T iC1/, ID T i � T iC1.

Finally, we obtain �0 D �1 � .�NC1 � �N/ and �NC2 D �NC1 C .�2 � �1/. If needed, we can also calculate the enclosed area by formula
AD� 1

2

PN
iD0 xi �N.�i/pi with the inward normal vector Ni D .� sin �i , cos �i/

T.

Construct
n

k j
i

o
and

˝
func.kj/

˛
. To derive a discrete numerical scheme, we follow the flowing finite volume method adopted for curve

evolutionary problems as it was proposed by Mikula and Ševčovič in [12]. Let us introduce the dual volume S�i D Œx�i , xi�[ Œxi , x�iC1� of

Si , where x�i D
1
2 .xi C xi�1/ for i D 1, 2, : : : , N. We define the i-th unit tangent angle of S�i by ��i D

1
2 .�i C �iC1/. The i-th curvature ki

is approximated by a constant value on Si , which is obtained from integration of kD @s� over Si with respect to s:Z
Si

k dsD ki

Z
Si

dsD kipi ,

Z
Si

k dsD

Z
Si

@s� dsD Œ��xi
xi�1 D �

�
i � �

�
i�1.

Hereafter,
R
Si

func ds means
R si

si�1
func ds for the arc-length si parameter satisfying xi D x.si , �/. Thus, we have ki D .@s�

�/i , where

.@sfunc/i D .funci � funci�1/=pi . The i-th curvature k�i at xi can be defined as k�i D
1
2 .ki C kiC1/. The curvature is assumed to be

constant k�i over the finite volume S�i . We also compute hfunc.k/i D 1
L

PN
iD1 func.ki/pi .

Step 1-2
�

construct
n
˛

j
i

o�
. We discretize Eq. (10) for the tangential velocity ˛:

@s.'˛/D
hf i

h'i
' � f C

�
L

g
h'i � '

�
!,

where f D .@2
sˇC k2ˇ/'0.k/� kˇ'.k/. Integrating the previous equation over Si yieldsZ

Si

@s.'˛/dsD Œ'.k/˛�xi
xi�1

D
hf i

h'i

Z
Si

'.k/ds�

Z
Si

f dsC

�
L h'i

Z
Si

1

g
ds�

Z
Si

'.k/ds

�
!.

Hence,

 i D '.k
�
i /˛i � '.k

�
i�1/˛i�1 D

hf i

h'i
'.ki/pi � fipi C

�
L h'i

1

N
� '.ki/pi

�
!,

fi D
�
.@s.@s�ˇ//i C k2

i ˇi

�
'0.ki/� kiˇi'.ki/,

where ˇi D Q̌.x�i , �i , ki/CFP is assumed to be constant on the finite volume Si ,

.@s.@s�ˇ//i D
.@s�ˇ/i � .@s�ˇ/i�1

pi
D

1

pi
Œ@sˇ�

xi
xi�1

, .@s�func/i D
funciC1 � funci

p�i
,

p�i D
1
2 .pi C piC1/ is the length of S�i . The curve averages hf i and h'.k/i are approximated as follows:

hf i D
1

L

NX
iD1

fipi , h'.k/i D
1

L

NX
iD1

'.ki/pi .

To uniquely determine f˛ig
N
iD1, we have to take into account the renormalization constraint h'.k/˛i D 0. The average h'.k/˛i can be

discretized as follows:

h'˛i 

1

L

NX
iD1

'.k�i /˛ip
�
i .
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Notice that LD
PN

iD1 pi D
PN

iD1 p�i . Let us define a partial sum of f ig by

‰i D

iX
lD2

 l , iD 2, 3, : : : , N, ‰1 D 0.

Using this notation, we obtain '.k�i /˛ip�i D '.k
�
1 /˛1p�i C‰ip�i . By summing these terms for iD 1, 2, : : : , N, we obtain

NX
iD1

'.k�i /˛ip
�
i D '.k

�
1 /˛1LC

NX
iD1

‰ip
�
i , LD

NX
iD1

p�i .

This way, we have computed the vector f˛ig of tangential velocities:

˛1 D�
1

L'.k�1 /

NX
iD2

‰ip
�
i , ˛i D

1

'.k�i /
.'.k�1 /˛1C‰i/, iD 2, 3, : : : , N.

In Step 2, the j-th step data fpj
ig, f�

j
i g, fk

j
i g, Lj ,

˝
func.kj/

˛
are updated to the new data vectors fNpig, fN�ig, fNkig, NL,

˝
func.Nk/

˛
. Notice that

these data vectors form intermediate step quantities between j and jC1-th time level. To update the position vector in Step 3, they are

updated to the .jC 1/-th step data by means of fx jC1
i g as in the final step. ‡

Step 2-1
�
compute fNpig and NL

�
. We semi-implicitly discretize Eq. (5) for g over S j

i to obtain

Npi � pj
i

�
D�k j

i ˇ
j
i Npi C ˛

j
i � ˛

j
i�1, iD 1, 2, : : : , N.

It can be solved as follows:

Npi D
1C .@s˛/

j
i�

1C k j
i ˇ

j
i�

pj
i D

pj
i C .˛

j
i � ˛

j
i�1/�

1C k j
i ˇ

j
i�

, iD 1, 2, : : : , N.

Note that gD j@uxj on S j
i is discretized as Npj

i D
jx

j
i�x

j
i�1j

1=N . Then, we obtain NLD
PN

iD1 Npi .

Step 2-2 .compute fNkig and
˝
func.Nk/

˛
/. We semi-implicitly discretize Eq. (3) for k on S j

i . For iD 1, 2, : : : , N, we obtain

Nki � k j
i

�
D @Ns.. Q̌

0
k/

j.@Ns� Nk/C . Q̌
0
�/

j Nk�C .rx Q̌/
j � T.��j//i C ˛

�j
i .@Ns
Nk�/i C .k

j
i /

2ˇ
Nj
i .

We end up with the tridiagonal system:

a� Nki�1C a0 Nki C aC NkiC1 D k j
i C .@Ns..rx Q̌/

j � T.��j//i C .k
j

i /
2ˇ
Nj
i/� , iD 1, 2, : : : , N,

subject to periodic boundary conditions Nk0 D NkN, NkNC1 D Nk1, where

a� D�
�

Npi

 
. Q̌0k/

j
i�1

Np�i�1
�
. Q̌0�/

j
i�1

2
�
˛
�j
i

2

!
, aC D�

�

Npi

 
. Q̌0k/

j
i

Np�i
C
. Q̌0�/

j
i

2
C
˛
�j
i

2

!
,

and a0 D 1 � .a� C aC/. Here, the values of . Q̌0k/
j
i , .
Q̌0
�/

j
i , .rx Q̌/

j
i � T.��j

i / are evaluated at .x�j
i , � j

i , k j
i / and ˇ

Nj
i D

Q̌.x�j
i , � j

i , k j
i / C

F.NL, A j ,
D
func.kNj/

E
, � � � /, where

D
func.kNj/

E
D 1
NL

PN
iD1 func.k j

i /Npi . We also obtain updated nonlocal data
˝
func.Nk/

˛
D 1
NL

PN
iD1 func.Nki/Npi .

Step 2-3 .compute fN�ig/. We semi-implicitly discretize Eq. (3) for � over S j
i . We obtain

N�i � �
j

i

�
D . Q̌0k/

Nj
i.@Ns.@Ns� N�//i C .˛

�j
i C .

Q̌0
�/
Nj
i/.@Ns N�

�/i C .rx Q̌/
Nj
i � T.�

j
i /, iD 1, 2, : : : , N,

where the boundary data are given by N�0 D N�2 � 2Nk1 Np1, N�NC1 D N�N�1 C 2NkN NpN , which are the same as Nki D .@Ns N�
�/i for i D 1, N,

respectively. It follows from the aforementioned discretized equation that � can be computed by solving the tridiagonal system:

a� N�i�1C a0 N�i C aC N�iC1 D bi , bi D �
j

i C .rx Q̌/
Nj
i � T.�

j
i /� , iD 1, 2, : : : , N,

‡If one wants to construct a simpler and faster (but less accurate) scheme, Step 2 can be skipped by following discretization scheme proposed by the authors in [10].
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because the first and the N-th rows are given by

a0 N�1C .a�C aC/ N�2 D b1C 2a� Nk1 Np1, .a�C aC/ N�N�1C a0 N�N D bN � 2aC NkN NpN,

respectively, where

a� D�
�

Npi

0
@ . Q̌0k/Nji
Np�i�1

�
˛
�j
i C .

Q̌0
�/
Nj
i

2

1
A , aC D�

�

Npi

0
@ . Q̌0k/Nji
Np�i
C
˛
�j
i C .

Q̌0
�/
Nj
i

2

1
A ,

and a0 D 1� .a� C aC/. Here, the values of . Q̌0k/
Nj
i , .
Q̌0
�/
Nj
i and .rx Q̌/

Nj
i are evaluated at .x�j

i , � j
i , Nki/, respectively. Having constructed the

new tangential angle vector fN�ig
N
iD1, we extend it for i D 0, 1, N, NC 1 as follows: N�0 D N�2 � 2Nk1 Np1, N�NC1 D N�1 C . N�N � N�0/, and also

N�NC2 D N�NC1C . N�2 � N�1/ if it is necessary.

Step 3
�

compute
n

x jC1
i

o�
. Now we are ready to obtain updated values of fx jC1

i g by solving semi-implicitly discretized equation (6)

for the position vector x over the finite volume S�j
i :

x jC1
i � x j

i

�
D w�

Nj
i .@Ns�.@Nsx//jC1

i C ˛
j

i .@Ns�x�/jC1
i C .F�

Nj
i CF Nji /N. N�

�
i /, iD 1, 2, : : : , N.

We obtain the tridiagonal system with the periodic boundary condition Nx0 D NxN, NxNC1 D Nx1:

a� Nxi�1C a0 Nxi C aC NxiC1 D x j
i C .F

�Nj
i CF Nji /N. N�

�
i /� , iD 1, 2, : : : , N,

where

a� D�
�

Np�i

0
@w�

Nj
i

Npi
�
˛

j
i

2

1
A , aC D�

�

Np�i

0
@ w�

Nj
i

NpiC1
C
˛

j
i

2

1
A ,

and a0 D 1� .a�C aC/. Here, we have used the following values: w�
Nj

i D w.x j
i , N��i , Nk�i /, F�

Nj
i D F.x j

i , N��i /, and F Nji D F .NL, A j , E j/
˛

, : : :/.

7. Computational results

In this section, we present several computational examples of applications of the numerical scheme proposed in the previous section.
In all our experiments, we chose N D 100 spatial grid points to discretize evolving curves. In all examples, the initial curve has large
variations in the curvature. Therefore, accurate resolution of the evolved curve near narrow tails and kinks was required. Especially, in
the case of thin dumbbell initial curve connecting two open circular bubbles by a thin and long tubular channel, a very fine resolution
of the curve and its curvature near the smooth connection of circles and tube was required. We turn on the tangential redistribution
by choosing the curvature adjusted tangential velocity ˛ with the shape function '.k/ of the form

'.k/D 1� "C "
p

1� "C "k2, where "D 0.1.

In our first three examples shown in Figure 1, we present the area-preserving curve evolution with the normal velocity

ˇ D k �
2�

L
.

We can observe stable computation of evolving curves approaching a circle with the area identical to the area of initial curve.
In the next example depicted in Figure 2, we show evolution of a thin dumbbell initial curve. Because of the application of the curva-

ture adjusted tangential velocity, we obtained fine and accurate resolution of parts of the evolved curve having large modulus of the
curvature, and we could compute its evolution preserving the enclosed area over sufficiently large time interval until it became convex.
The limiting curve is again a circle.

The second set of examples is shown in Figure 3. It is devoted to the total length-preserving flow with the normal velocity given by

ˇ D k �
E

2�
,

where E D
R
� k2ds is the total elastic energy. In Figure 4, evolution of the thin dumbbell initial curve is shown. In contrast to the

area-preserving flow of the thin dumbbell initial curve (see Figure 2), the length-preserving evolution is faster in the outward normal
direction, and the limiting curve is approaching a larger circle with the perimeter equal to the length of the initial curve. Again, because
of application of the curvature adjusted tangential velocity, we were able to accurately handle initial large variations in the curvature.

In our last set of examples, we present the isoperimetric ratio gradient flow. In this flow, the normal velocity is given by

ˇ D k �
L

2A
.
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Figure 1. Evolution of three initial curves by the area-preserving flow.

Figure 2. Evolution of a thin dumbbell initial curve by the area-preserving flow.

Figure 3. Evolution of three initial curves by the total length-preserving flow.

Figure 4. Evolution of a thin dumbbell initial curve by the total length-preserving flow.

In Figure 5, we show the evolution of the same thin dumbbell initial curve as in Figures 2–4. The limiting curve is again a circle. It is a
larger (smaller) circle when compared with the area-preserving (length-preserving) flow. The initial thin dumbbell initial curve is not
convex and it violates the Gage isoperimetric inequality (31). If we restate inequality (31) in the form

�

A
	

1

L

Z
�

k2 ds� hk2i,

we can observe initial temporal violation of this inequality as it is presented in Figure 6.
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Figure 5. Evolution of a thin dumbbell initial curve by the isoperimetric ratio gradient flow.

0

5

10

15

20

25
<k^2>, pi/A vs time

<k^2>
pi/A

0 0.002 0.004 0.006 0.008 0.01

Figure 6. Comparison of hk2i D 1
L

R
� k2ds (solid line) and �

A (dotted line). Evolution of the thin dumbbell initial curve by the isoperimetric ratio gradient flow.

Initial violation of the Gage inequality due to nonconvexity of � t .

Conclusions

In this paper, we proposed and analyzed the so-called curvature adjusted tangential velocity for a flow of plane curves. Evolution in
the inner normal direction is driven by the normal velocity that may depend on the curvature, position, tangential angle, and some
nonlocal quantities like the total length, enclosed area, and total elastic energy of a curve. We showed local existence, uniqueness, and
continuation of classical solutions to the system of governing geometric equations. A stable numerical approximation scheme based
on the flowing finite volume method with curvature adjusted tangential velocity was also proposed. Its capability has been tested on
several computational examples involving nonlocal geometric flows.
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5. Beneš M, Kimura M, Pauš P, Ševčovič D, Tsujikawa T, Yazaki S. Application of a curvature adjusted method in image segmentation. Bulletin of the
Institute of Mathematics. Academia Sinica. New Series 2008; 3(4):509–524.
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10. Ševčovič D, Yazaki S. Evolution of plane curves with a curvature adjusted tangential velocity. Japan Journal of Industrial and Applied Mathematics
2011; 28(3):413–442.
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