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METHOD OF LINES FOR THE LEVEL SET METHOD
FOR SOLVING WILLMORE FLOW GEOMETRIC

EQUATION

Michal Beneš, Karol Mikula, Daniel Ševčovič and Tomáš Oberhuber

Abstract

In this article we present an explicit in time numerical scheme for the level-set
formulation for the Willmore flow of planar curves. The Willmore flow of planar
curves can be described by a zero level set of a function which is a solution to a fourth
order in space system of two evolutionary partial differential equations. We use an
explicit method of lines for the discretization in time. We compare numerical results
with known explicit solution and compute the experimental order of convergence of
the method. We present a numerical experiment describing topological changes of
evolved curves.

1. Willmore flow of planar curves

For a planar Jordan curve Γ we assume the elastic energy functional defined as:

E (Γ) =

∫

Γ

k2ds (1)

where k is a curvature of Γ. In many applications like, e.g., physics of elasticity or
image processing, we want to minimize the elastic energy functional (1). It is known
[2] that evolution of the curve given by the normal velocity

β = −∂2

sk −
1

2
k3 (2)

is a gradient flow for (1). This law generates a family of time dependent curves
denoted in the sequel as Γ (t). There are two main streams dealing with numerical
solution of such a geometric problem. The direct Langrangean method parameterizes
the curve Γ (t) = {x (u) | u ∈ S1} by its position vector x(., t) which is a solution of
a position vector equation and equations for other relevant geometric quantities (see
[2, 1, 3] for details). Their discretization yields a very efficient numerical scheme
and it allows modeling of self-intersecting curves. However, this method cannot
handle situations in which a topological changes like splitting and even merging of
curves may occur. Such a change of topology is very difficult to handle with the
parametric approach and in this case one should rather turn to implicit methods
like the level-set method or the phase-field model. Both of them describe the curve
implicitly and can handle the changes of topology automatically. The level-set
method employs auxiliary function u : 2 → , describing the evolving curve
by Γ (t) = {x ∈ 2 | u (x, t) = 0} . Hence Γ (t) has a meaning of interface between
two regions where u is positive or negative. The drawback of the level-set method is
its necessity to restore the level-set function time to time. Moreover, in comparison
to the direct method, one needs to solve two dimensional PDEs.

2. Numerical scheme for the level-set method

We remind ourselves that the level set method treats an evolving family of planar
curves Γt, t ≥ 0, by their representation as zero level sets of the so-called shape
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function u : Ω × [0, T ] → where Ω ⊂ 2 is a connected domain containing the
whole family of evolving curves Γt, t ∈ [0, T ]. Then the unit inward normal vector

and signed curvature satisfy ~N = ∇u/|∇u| and k = −div (∇u/|∇u|). Let us denote
the following auxiliary functions:

H = div

(

∇u

|∇u|

)

, Q = |∇u|, w = QH .

According to [4] (see also [5]) the resulting system of two equations governing the
evolution of the shape function is:

∂tu = −Q div

(

∇w −
1

2

w2

Q3
∇u

)

, where w = Q div

(

∇u

|∇u|

)

(3)

and = 1

Q

(

− ∇u
Q

⊗ ∇u
Q

)

is the orthogonal projection into a tangential space of

the curve representing the zero level set of u. System of equations (3) is subject
to the initial condition u(x, 0) = u0(x) , x ∈ Ω and clamped boundary conditions
at ∂Ω, i.e. u(x, t) = 0, ∂νu(x, t) = 0, x ∈ ∂Ω. The initial function u0 is a signed
distance function, i.e. u0(x) = dist(x, Γ0), x ∈ Ω.

Next we present a discretization scheme for solving the system of PDEs (3).
For simplicity we consider the domain Ω ≡ 〈0, L1〉 × 〈0, L2〉, h1 = L1

N1

and h2 = L2

N2

and we define numerical mesh and approximation of a solution u:

ωh = {(ih1, jh2) | i = 1, · · · , N1 − 1, j = 1, · · · , N2 − 1} ,

ωh = {(ih1, jh2) | i = 0, · · · , N1, j = 0, · · · , N2} ,

∂ωh = ωh \ ωh.

uh
ij = u (ih1, jh2) ,

urs
ij =

1

4
(uh

ij + uh
i+r,j + uh

i,j+s + uh
i+r,j+s),

i = 0, · · · , N1 − 1; j = 0, · · · , N2 − 1; |r| = |s| = 1,

∇r,0uh
ij =

(

r
uh

i+r,j − uh
ij

h1

,
ur,1

ij − ur,−1

ij

h2

)

,

i + r = 0, · · · , N1; j = 1, · · · , N2 − 1; |r| = 1

∇0,suh
ij =

(

u1,s
ij − u−1,s

ij

h1

, s
uh

i,j+s − uh
ij

h2

)

,

i = 1, · · · , N1 − 1; j + s = 0, · · · , N2; |s| = 1,

Qrs
ij =

√

ǫ2 + |∇rsuh
ij|

2,

i + r = 0, · · · , N1; j + s = 0, · · · , N2; |r| = |s| = 1,

Qh
ij =

1

4

∑

|r|+|s|=1

Qrs
ij ,

i = 1, · · ·N1 − 1; j = 1, · · · , N2 − 1,
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wrs
ij =

1

4
(wh

ij + wh
i+r,j + wh

i,j+s + wh
i+r,j+s),

i = 0, · · · , N1 − 1; j = 0, · · · , N2 − 1; |r| = |s| = 1,

rs
ij =

1

Qrs
ij

(

−
∇rsuh

ij

Qrs
ij

⊗
∇rsuh

ij

Qrs
ij

)

,

i + r = 0, · · · , N1; j + s = 0, · · · , N2; |r| = |s| = 1 .

Now the semi-discrete numerical scheme reads as:

d

dt
uh

ij = −Qh
ij

∑

|r|+|s|=1

[

1

h|r+2s|

rs
ij ∇

rswh
ij · νrs −

1

2h2

|r+2s|

(

wrs
ij

)2

(

Qrs
ij

)

(

uh
i+r,j+s − uh

ij

)

]

,

wh
ij = Qh

ij

∑

|r|+|s|=1

1

Qrs
ij h

2

|r+2s|

(

uh
i+r,j+s − uh

ij

)

(4)

for i = 1, · · · , N1 − 1, j = 1, · · · , N2 − 1, νrs = (r, s) and uh (0)ij |ωh
= P (uini)ij . For

the discretization in time one can consider either explicit or semi-implicit in time
numerical methods. A semi-implicit method has been analyzed in details in [5]. In
this paper we present the explicit method of lines for solving (4) which has been
applied e.g. in numerical approximation of phase-field models (c.f. [9, 10]).

3. Explicit numerical scheme for the level-set formulation

Since the system of equations (4) is highly non-linear the choice of the explicit dis-
cretization in time is very natural. In many articles [6, 7, 8, 9, 10, 11] the method
of lines together with the Merson alternative of the Runge-Kutta solver were suc-
cessfully applied. Having a system of ordinary differential equations of the form

duh
ij

dt
= f

(

t, uh
)

ij
(5)

the solver mentioned above consists of the following steps:

k1

ij = τf
(

t, uh
)

, k2

ij = τf

(

t +
1

3
τ, uh +

1

3
k1

)

k3

ij = τf

(

t +
1

2
τ, uh +

1

6
k1 +

1

2
k2

)

, k4

ij = τf

(

t +
1

2
τ, uh +

1

8
k1 +

3

8
k3

)

,

k5

ij = τf

(

t + τ, uh +
1

2
k1 −

3

2
k3 + 2k4

)

for i = 0, · · ·N1, j = 0, · · · , N2.

The error of the approximation with the current τ is given by

e := max
i=0,··· ,N1

j=0,··· ,N2

τ

3

∣

∣

∣

∣

1

5
k1

ij −
9

10
k3

ij +
4

5
k3

ij −
1

10
k5

ij

∣

∣

∣

∣

. (6)

If this error is smaller than given tolerance ǫ we update uh

uh
ij := uh

ij +
τ

6

(

k1

ij + 4k4

ij + k5

ij

)

, (7)
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and we set t := t + τ . Independently on the previous condition we also update τ as

τ = min
{

τ · 4

5

(

ǫRK

e

)
1

5 , T − t
}

. We repeat whole process with the new τ .

4. Experimental order of convergence

For a circle with the initial radius r0 we can show that for the radius of its growth

r (t) = (2t + r4
0)

1

4 holds. With this analytical solution we can evaluate the exper-
imental order of convergence for the scheme (4). We choose r0 = 1, the problem
domain Ω = 〈−2, 2〉 × 〈−2, 2〉 and it is splitted subsequently into n × n meshes
for n = 10, 20, 40, 80 with h = 1/n. The final time was chosen as T = 0.5 and
again τ = h2. The regularization parameter ǫ was refined proportionally to the grid
refinement as ǫ2 = 2h and the redistancing period was τredist = 0.25h. Errors in
Lp, p = 2,∞, norms and their EOC are presented in Table 1.

Error, EOC \ h 0.4 0.2 0.1 0.05
L2 error 0.21497 0.06585 0.01699 0.00400
EOC 1.707 1.954 2.086

L∞ error 0.71190 0.12286 0.03780 0.00973
EOC 2.534 1.700 1.957

Table 1: EOC for the level set scheme in Lp, p = 2,∞ norms.

5. Numerical experiments

Finally, we present a numerical experiment showing the changes of topology (see
Fig. 1) . As an initial condition we set four circles with radius r0 = 0.45 on
the domain Ω = 〈−1, 1〉2 with 200 × 200 mesh points and the restoration of the
level set function τredist = 10−5. The parameter controlling the adaptivity in
the Runge-Kutta method is ǫRK = 0.001. The initial condition takes the form
u0 (x) = δ sgn (r) (1 − exp (− |r/δ|)) where r = dist (x, Γ) and δ = 0.05. We also set
the zero Neumann b.c.

Acknowledgment The authors were supported by the following projects: HPC-
EUROPA(RII3-CT-2003-506079), VEGA 1/3321/06 grant and MSM 6840770010.
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a)

b)

c)

d)

Figure 1: Example of the change of topology computed with the explicit scheme at
times: a) t = 0, b) t = 8 · 10−5, c) t = 0.0002 and d) t = 0.002.
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[1] Mikula, K., Ševčovič, D.: Tangentially stabilized Lagrangean algorithm for elas-
tic curve evolution driven by intrinsic Laplacian of curvature, In: Proceedings
of Algoritmy 2005, Conference on Scientific Computing, Eds. A.Handlovičová,
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