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NUMERICAL ASPECTS OF EVOLUTION OF PLANE
CURVES SATISFYING THE FOURTH ORDER

GEOMETRIC EQUATION

Karol Mikula, Daniel Ševčovič

Abstract

In this paper we present a stable Lagrangian numerical method for computing plane
curves evolution driven by the fourth order geometric equation. The numerical
scheme and computational examples are presented.

1. Introduction

The main purpose of this contribution is to suggest a method for computing
evolution of closed smooth plane curves driven by the normal velocity β depending
on the intrinsic Laplacian of the curvature k and curvature itself:

β = −∂2
sk + b(k) (1)

where b(k) is a C2 function of the curvature k, b(0) = 0. Numerical aspects of
evolution of plane curves satisfying (1) have been studied in [9] for the case of the
surface diffusion flow with no lower order terms, i.e. β = −∂2

sk, and in [2] for
the case of the so-called Willmore flow for which the normal velocity is given by
β = −∂2

sk − 1
2
k3.

Recall that the latter case corresponds to the motion of elastic curves, e.g.
the model of Euler-Bernoulli elastic rod, which is an important problem in structural
mechanics. The elastic curve evolution and surface diffusion can be found in many
practical applications as sintering (in brick production), formation of rock strata
from sandy sediments, metal thin film growth etc. (see e.g. [10]).

In [1] the authors investigated a simplified flowing finite-volume numerical
scheme for solving fourth order geometric flows. In contrast to the scheme proposed
in [1], in the present paper we additionally solve the equation for the curvature
separately from the equation for the position vector.

2. Governing equations

We follow the so-called direct (or Lagrangian) approach. We represent a
solution of (1) by the position vector x satisfying the geometric equation ∂tx =

β ~N+α~T where ~N, ~T are the unit inward normal and tangent vectors. An immersed
regular plane curve Γ can be parameterized by a smooth function x : S1 → R

2, i.e.
Γ = {x(u), u ∈ S1}, for which g = |∂ux| > 0. Taking into account the periodic
boundary conditions at u = 0, 1 we shall hereafter identify S1 with the interval
[0, 1]. The unit arc-length parameterization will be denoted by s, so ds = g du. The

tangent vector ~T and the signed curvature k of Γ satisfy ~T = ∂sx, k = det(∂sx, ∂
2
sx).

Moreover, we choose the unit inward normal vector ~N such that det(~T , ~N) = 1. Let
a regular smooth initial curve Γ0 = Image(x0) be given. It turns out that a family
of plane curves Γt = Image(x(., t)), t ∈ [0, T ), satisfying (1) can be represented by a
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solution to the following system of PDEs:

∂tk = −∂4
sk + ∂2

s b(k) + ∂s(αk) + k(kβ − ∂sα), (2)

∂tη = −kβ + ∂sα, g = exp(η), (3)

∂tx = −∂4
sx−

k3 − b(k)

k
∂2
sx+ (α−

3

2
∂s(k

2))∂sx , (4)

subject to initial conditions k(., 0) = k0 , g(., 0) = g0 , x(., 0) = x0(.) and periodic
boundary conditions at u = 0, 1 (cf. [7, 8]).

3. Approximation scheme and numerical experiments

The presence of a tangential velocity α in the position vector equation has
no impact on the shape of evolving curves. As it was shown e.g. in [3, 4, 5, 6, 7, 8]
for general curvature driven motions (nonlinear, anisotropic, with external forces)
incorporation of a suitable tangential velocity into governing equations stabilizes
numerical computations significantly. It prevents the direct Lagrangian algorithm
from its main drawbacks – the merging of numerical grid points and their order
exchange. It also allows for larger time steps without loosing stability. In our
numerical solution we consider tangential velocity given by a nonlocal tangential
redistributions discussed in a detail in [5, 6, 7, 8]. It follows from [7, 8] that the
redistribution functional α satisfying

∂sα = kβ − 〈kβ〉Γ + ω (L/g − 1) , (5)

with a constant ω > 0, is capable of asymptotic uniform redistribution of grid points
along the evolved curve. In our computational method a numerically evolved curve
is represented by discrete plane points xj

i where the index i = 1, ..., n, denotes space
discretization and the index j = 0, ..., m, denotes a discrete time stepping. The linear
approximation of an evolving curve in the j-th discrete time step is thus given by a
polygon with vertices xj

i , i = 1, ..., n. Due to periodicity conditions we shall also use
additional values xj

−1 = xj
n−1, x

j
0 = xj

n, x
j
n+1 = xj

1, x
j
n+2 = xj

2. If we take a uniform
division of the time interval [0, T ] with a time step τ = T

m
and a uniform division of

the fixed parameterization interval [0, 1] with a step h = 1
n
, a point xj

i corresponds
to x(ih, jτ). The systems of difference equations corresponding to (2)–(4) and (5)
will be given for discrete quantities αj

i , ηji , r
j
i , kj

i , x
j
i , i = 1, ..., n, j = 1, ..., m,

representing approximations of the unknowns α, η, gh, k, and x, respectively. Here
αj
i represents tangential velocity of a flowing node xj

i , and ηji , r
j
i ≈ |xj

i −xj
i−1|, k

j
i , ν

j
i

represent piecewise constant approximations of the corresponding quantities in the
so-called flowing finite volume

[

xj
i−1, x

j
i

]

. We shall use the corresponding flowing dual

volumes
[

x̃j
i−1, x̃

j
i

]

, where x̃j
i =

x
j

i−1
+x

j

i

2
, with approximate lengths qji ≈ |x̃j

i − x̃j
i−1|.

At the j-th discrete time step, we first find discrete values of the tangential velocity
αj
i by discretizing equation (5). Then the values of redistribution parameter ηji

are computed and utilized for updating discrete local lengths rji by discretizing
equations (3). Using already computed local lengths, the intrinsic derivatives are
approximated in (2), and (4), and pentadiagonal systems with periodic boundary
conditions are constructed and solved for discrete curvatures kj

i and position vectors
xj
i . In the sequel, we present in a more detail our discretization. Using rj−1

i as an
approximation of the length of the flowing finite volume

[

xj−1
i−1 , x

j−1
i

]

at the previous
jth time step we construct difference approximation of the intrinsic derivative ∂sα ≈
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α
j
i
−α

j
i−1

r
j−1

i

and by taking all further quantities in (5) from the previous time step. We

obtain the following expression for discrete values of the tangential velocity:

αj
i = αj

i−1 + rj−1
i kj−1

i βj−1
i − rj−1

i Bj−1 + ω(M j−1 − rj−1
i ),

where

βj−1
i = −

1

rj−1
i

(

kj−1
i+1 − kj−1

i

qj−1
i

−
kj−1
i − kj−1

i−1

qj−1
i−1

)

+ b(kj−1
i ),

qj−1
i =

rj−1
i + rj−1

i+1

2
, M j−1 =

1

n
Lj−1,

Lj−1 =

n
∑

l=1

rj−1
l , Bj−1 =

1

Lj−1

n
∑

l=1

rj−1
l kj−1

l βj−1
l , αj

0 = 0,

i.e. the point xj
0 is moved in the normal direction only. Inserting (5) in (3) and

using a similar strategy give us: rj−1
i

η
j
i
−η

j−1

i

τ
= −rj−1

i Bj−1 + ω(M j−1 − rj−1
i ), for

i = 1, ..., n, ηj0 = ηjn, ηjn+1 = ηj1.

Next we update local lengths by the rule: rji = exp(ηji ), r
j
−1 = rjn−1, rj0 =

rjn, rjn+1 = rj1, rjn+2 = rj2. Subsequently, new local lengths are used for approx-
imation of intrinsic derivatives in (2) and (4). First, we derive a discrete analogy
of the curvature equation (2). We have to approximate the 4-th order derivative of
curvature inside the flowing finite volume [xi−1, xi], i = 1, ..., n. For that goal we
take the following finite difference approximation:

∂4
sk(x̃i) ≈

1

riqiri+1qi+1
ki+2 −

( 1

riqiri+1qi+1
+

1

riq2i ri+1
+

1

r2i q
2
i

+
1

r2i qiqi−1

)

ki+1

+
( 1

riq2i ri+1
+

1

r2i q
2
i

+
2

r2i qiqi−1
+

1

r2i q
2
i−1

+
1

riq2i−1ri−1

)

ki

+
( 1

r2i qiqi−1

+
1

r2i q
2
i−1

+
1

riq
2
i−1ri−1

+
1

riqi−1ri−1qi−2

)

ki−1 +
1

riqi−1ri−1qi−2

ki−2.

Approximating first and second order terms in (2) by central differences and taking
semi-implicit time stepping we obtain following pentadiagonal system with periodic
boundary conditions for new discrete values of curvature:

ajik
j
i−2 + bjik

j
i−1 + cjik

j
i + djik

j
i+1 + ejik

j
i+2 = f j

i
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subject to periodic b.c. kj
−1 = kj

n−1, k
j
0 = kj

n, k
j
n+1 = kj

1, k
j
n+2 = kj

2, where

aji =
1

qji−1r
j
i−1q

j
i−2

, eji =
1

qji r
j
i+1q

j
i+1

,

f j
i =

rji
τ
kj−1
i +

b(kj−1
i+1 )− b(kj−1

i )

qji
−

b(kj−1
i )− b(kj−1

i−1 )

qji−1

,

bji = −

(

1

rji q
j
i q

j
i−1

+
1

rji (q
j
i−1)

2
+

1

(qji−1)
2rji−1

+
1

qji−1r
j
i−1q

j
i−2

)

+
αj
i−1

2

dji = −

(

1

qji r
j
i+1q

j
i+1

+
1

(qji )
2rji+1

+
1

rji (q
j
i )

2
+

1

rji q
j
i q

j
i−1

)

−
αj
i

2

cji =
1

(qji )
2rji+1

+
1

rji (q
j
i )

2
+

2

rji q
j
i q

j
i−1

+
1

rji (q
j
i−1)

2
+

1

(qji−1)
2rji−1

+

rji
τ

− rj−1
i kj−1

i βj−1
i +

αj
i

2
−

αj
i−1

2
.

In order to construct discretization of equation (4) we approximate the intrinsic
derivatives in a dual volume [x̃i−1, x̃i]. For approximation of the fourth order intrinsic
derivative of the position vector we take similar approach as above for curvature, but
in the middle point xi of the dual volume. In such a way and using the semi-implicit
approach, we end up with two tridiagonal systems for updating the discrete position

vector:

Aj
ix

j
i−2 + Bj

ix
j
i−1 + Cj

i x
j
i +Dj

ix
j
i+1 + E j

i x
j
i+2 = F j

i

for i = 1, ..., n subject to periodic b.c. xj
−1 = xj

n−1, xj
0 = xj

n, xj
n+1 = xj

1, xj
n+2 = xj

2

where

Aj
i =

1

rji q
j
i−1r

j
i−1

, E j
i =

1

rji+1q
j
i+1r

j
i+2

,

Bj
i = −

(

1

rji q
j
i−1r

j
i−1

+
1

(rji )
2qji−1

+
1

(rji )
2qji

+
1

rji q
j
i r

j
i+1

)

+

+
φ(kj

i ) + φ(kj
i−1)

2rji
+

αj
i

2
−

3

4

(kj
i+1)

2 − (kj
i )

2

qji

Dj
i = −

(

1

rji q
j
i r

j
i+1

+
1

(rji+1)
2qji

+
1

(rji+1)
2qji+1

+
1

rji+1q
j
i+1r

j
i+2

)

+

+
φ(kj

i+1) + φ(kj
i )

2rji+1

−
αj
i

2
+

3

4

(kj
i+1)

2 − (kj
i )

2

qji
,

Cj
i =

qji
τ

− (Aj
i + Bj

i +Dj
i + E j

i ), F j
i =

qji
τ
xj−1
i ,

where φ(k) = k2 − b(k)
k
. The initial quantities for the algorithm are computed from

a discrete representation of the initial curve x0, for details see [8]. Every pentadi-
agonal system is solved by mean of Gauss-Seidel iterations. Next we present results
of numerical simulations for the curve evolution driven by (1). In our experiments
evolving curves are represented by n = 100 grid points and we use discrete time step
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a) b) c)

Figure 1: Surface diffusion of an initial ellipse and its circular asymptotic shapes
without a) and with b) tangential redistribution. Evolution of the highly nonconvex
initial curve and its asymptotic circular shape at time t = 0.170 c).

Figure 2: An asteroid as an initial condition and its evolution by the Willmore flow
at times t = 0, 0.0005, 0.005.

τ = 0.001. First we numerically compute time evolution of the initial ellipse with
the halfaxes ratio 2:1 for the case b(k) = 0 (surface diffusion flow). We consider the
time interval [0, 2]. The evolution of curves without considering tangential redis-
tribution indicates accumulation of some curve representing grid points and a poor
resolution in other parts of the asymptotic shape, see also Figure 1, a). In the case
of asymptotically uniform tangential redistribution, we can see a uniform discrete
resolution of the asymptotic shape, see Figure 1, b). Next we present evolution of an
nontrivial initial curve driven by (1) with b(k) = 0. We show evolution of a highly
nonconvex initial curve (see Figure 1, c) with asymptotically uniform redistribution
(ω = 1). Since elastic curve dynamics is very fast in case of highly varying curvature
along the curve we have chosen smaller time step τ = 10−6. In Figure 2 we present
evolution of an initial asteroid driven by (1) with b(k) = −1

2
k3 (the Willmore flow).

A solution computed by the direct Lagrangian method is depicted by cross marks
whereas solid curves correspond to the solution computed by the level set method
approach. For details we refer the reader to [2].
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References
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