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Abstract

We present qualitative and quantitative comparisons of various analytical and numerical
approximation methods for calculating a position of the early exercise boundary of
American put options paying zero dividends. We analyse the asymptotic behaviour of
these methods close to expiration, and introduce a new numerical scheme for computing
the early exercise boundary. Our local iterative numerical scheme is based on a solution
to a nonlinear integral equation. We compare numerical results obtained by the new
method to those of the projected successive over-relaxation method and the analytical
approximation formula recently derived by Zhu [‘A new analytical approximation
formula for the optimal exercise boundary of American put options’, Int. J. Theor. Appl.
Finance 9 (2006) 1141–1177].
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1. Introduction

The analysis of the early exercise boundary and the optimal stopping time for
American put options on assets paying zero dividends has attracted a lot of attention
from both theoretical as well as practical points of view. An American put option is a
financial contract between the writer and the holder of the option. It gives the holder
the right, but not the obligation, to sell the underlying asset at the prescribed strike price
at any time before expiration. Under the standard assumptions made on the underlying
stock process and completeness of the financial market [17, 21], American put options
can be priced using the Black–Scholes equation [4] on a time-dependent domain of
the underlying asset price. More precisely, the early exercise boundary problem for
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American put options can be formulated as follows: find a solution V = V (S, t) and
the early exercise boundary position S f = S f (t) satisfying

∂V

∂t
+ r S

∂V

∂S
+
σ 2

2
S2 ∂

2V

∂S2 − r V = 0, 0< t < T, S f (t) < S <∞,

V (+∞, t)= 0, V (S f (t), t)= E − S f (t),
∂V

∂S
(S f (t), t)=−1, (1.1)

V (S, T )= (E − S)+.

The solution V (S, t) is defined on a time-dependent domain S ∈ (S f (t),∞), where
t ∈ (0, T ) (see Kwok [21]). Here S > 0 stands for the underlying stock price, E > 0
is the exercise (strike) price, r > 0 is the risk-free rate, σ > 0 is the volatility of
the underlying stock process and T denotes the time of maturity. In what follows,
we denote by τ = T − t the time to maturity. The function [0, T ] 3 t 7→ S f (t) ∈ R
represents the early exercise boundary position. The free boundary problem (1.1) is
a basis for development of various integral equations for describing the early exercise
boundary position S f (t). The analytical approximation formulae for S f are often
based on approximation of a solution to such an integral equation. Notice that there
are also other numerical methods for approaching the free boundary problem (1.1), for
example front-fixing and transformation methods. We refer the reader to Kwok and
Wu [22], Ševčovič [26, 27], Ankudinova and Ehrhardt [2], Ehrhardt and Mickens [10]
and references therein. Following Kwok [21], a solution V = V (S, t) to the problem
of pricing American put options fulfils the following variational inequality:

∂V

∂t
+ r S
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+
σ 2

2
S2 ∂
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∂S2 − r V ≤ 0, V (S, t)≥ V (S, T ),(
∂V

∂t
+ r S

∂V

∂S
+
σ 2

2
S2 ∂

2V

∂S2 − r V

)
(V (S, t)− V (S, T ))= 0,

for all 0< t < T, 0< S <∞, (1.2)

V (0, t)= E, V (+∞, t)= 0 for 0< t < T,

V (S, T )= (E − S)+ for 0< S <∞.

The formulation (1.2) of the problem of pricing the American put option is often
used when we need to compute not only the free boundary position S f (t) but also
the solution V (S, t). The above variational inequality can be effectively solved by
means of the so-called projected successive over-relaxation (PSOR) method of Elliot
and Ockendon [13].

In the last two decades, many different, but equivalent, integral equations for pricing
American put options have been derived by Barone-Adesi and Whaley [3], Bunch and
Johnson [5], Carr et al. [6], MacMillan [23] and others. Asymptotic analysis often leads
to an approximate expression for the free boundary close to expiry. Since a closed-form
analytical formula for the early exercise boundary position is not known, many authors
have investigated various approximation models and derived different approximate
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expressions for valuing American call and put options (see, for example, Geske and
Johnson [15], Geske and Roll [16], Johnson [18], Karatzas [19], Kuske and Keller [20],
Evans et al. [14], Mynemi [25] and recent papers by Alobaidi et al. [1], Mallier and
Alobaidi [24], Stamicar et al. [28], the survey paper by Chadam [7] and references
therein). We also refer to the books by Kwok [21] and Wilmott et al. [29] for a survey
of classical theoretical and computational results on pricing of American put options.

In this paper, we focus on comparison of the valuation formulae due to Evans,
Kuske and Keller [14, 20], Stamicar et al. [28] and the recent analytical
approximation formula by Zhu [30] (see also [31, 32]). Our main goal is to
present qualitative and quantitative comparisons of the aforementioned analytical
and numerical approximation methods for calculating the early exercise boundary
position. First, we analyse and compare the asymptotic behaviour of the early
exercise boundary close to expiry for analytical approximations developed by the
aforementioned authors. We show that the approximations due to Evans, Kuske and
Keller and Stamicar et al. have the same asymptotic behaviour of S f (t) as t→ T , and
that the approximation due to Zhu has asymptotic behaviour differing from these by a
logarithmic factor. Although Zhu [30] pointed out that his formula did not behave
correctly near expiry, a quantitative analysis of the asymptotic behaviour was not
given. We present a quantitative order analysis of Zhu’s approximation near the expiry
in the first part of this paper.

In the second part of the paper, we propose a new local iterative numerical scheme
for computation of S f (t), t ∈ [0, T ], based on a solution to the nonlinear integral
equation from [28]. We compare numerical results obtained by the new method to
those of the projected successive over-relaxation method of Elliot and Ockendon [13]
for solving the variational inequality (1.2), and the approximation recently developed
by Zhu [30] (see also [31, 32]).

2. Analytical approximate valuation formulae

In this section we present a survey of analytical, implicit integral and numerical
approximation schemes for computing the early exercise boundary for American
put options. First we focus on the recent result due to Zhu [30] who derived a
closed-form analytical approximation formula for the early exercise boundary position
S f (t)= %(T − t). We also derive the asymptotic behaviour of S f (t) for t→ T . Next
we concentrate on implicit representation formulae for %(τ) expressed in the form of
a single nonlinear integral equation for the function %. We recall the implicit integral
equation derived by Stamicar et al. [28]. We again derive the asymptotic behaviour
of the early exercise boundary position as t→ T . In the last subsection we present
another approximation derived by Evans, Kuske and Keller [14, 20].

2.1. Approximation due to Zhu Zhu [30] applied Laplace transforms to a
dimensionless partial differential equation and obtained a closed-form analytical
approximation formula for the early exercise boundary position as a sum of a
perpetual option and an integral that evaluates the early exercise boundary position.
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The resulting formula for the early exercise boundary S f (t)= %(T − t) reads as
follows:

%Zhu(τ )=
γE

1+ γ
+

2E

π

∫
∞

0

ζe−τσ
2(a2
+ζ 2)/2

a2 + ζ 2 e− f ∗1 (ζ ) sin( f ∗2 (ζ )) dζ, (2.1)

where γ = 2r/σ 2, a = (1+ γ )/2, b = (1− γ )/2, and

f ∗1 (ζ )=
1

b2 + ζ 2

[
b ln

(
1
γ

√
a2 + ζ 2

)
+ ζ arctan(ζ/a)

]
,

f ∗2 (ζ )=
1

b2 + ζ 2

[
ζ ln

(
1
γ

√
a2 + ζ 2

)
− b arctan(ζ/a)

]
. (2.2)

Notice that the first summand in (2.1) represents the constant value of a perpetual put
option, that is, the limit limτ→∞ %(τ)= γE/(1+ γ ).

Early exercise boundary asymptotics close to expiry Next we examine the
asymptotic behaviour of the function %Zhu(τ ) for τ → 0. Notice that we have %(0)=
S f (T )= E (see Kwok [21]). We shall prove that

lim
τ→0+

E − %Zhu(τ )
√
τ(−ln τ)

=
1
√

2π
Eσ.

Indeed, if we introduce the change of variable s = τσ 2(a2
+ ζ 2)/2 we obtain

E − %Zhu(τ )
√
τ(−ln τ)

=
2E

π

∫
∞

τσ 2a2/2

1− e−s

2s
e− f ∗1

sin( f ∗2 )
√
τ(−ln τ)

ds for any τ ∈ (0, T ],

where f ∗i = f ∗i ((2s/(τσ 2)− a2)1/2), i = 1, 2. It is easy to verify that

lim
τ→0+

f ∗1 = 0, lim
τ→0

f ∗2 = 0,

lim
τ→0+

sin( f ∗2 )
√
τ(−ln τ)

= lim
τ→0

f ∗2
√
τ(−ln τ)

=
σ

2
√

2s
,

for any s > 0. Using the Lebesgue dominated convergence theorem, we finally obtain

lim
τ→0+

E − %Zhu(τ )
√
τ(−ln τ)

=
Eσ

π

∫
∞

0

1− e−s

(2s)3/2
ds =

1
√

2π
Eσ,

as claimed. As a consequence we obtain the following asymptotic approximation to
the formula of Zhu:

%Zhu(τ )≈ E

(
1−

σ
√

2π

√
τ(−ln τ)

)
for 0< τ � 1, (2.3)

that is,

%Zhu(τ )= E

(
1−

σ
√

2π

√
τ(−ln τ)

)
+ o(
√
τ(−ln τ)) as τ → 0+.

In Figure 1 we present a comparison of the analytical solution %Zhu(τ ) and its asymp-
totic approximation (2.3) for τ ∈ [0, T ] and E = 100, σ = 0.3, r = 0.1, T = 10−4.
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FIGURE 1. Comparison of the analytical solution %Zhu (solid curve) and its asymptotic
approximation (2.3) (dashed curve).

Convexity of the early exercise boundary One of the important features of the
early exercise boundary for American put options is the convexity of the function
%(τ)= S f (T − τ) for τ ∈ (0, T ]. An analytical proof of the convexity of % was
recently presented by Chen et al. [9]. We also recall that the early exercise boundary
is log-concave as a function of the logarithm of the underlying asset price (see
Ekström [11] and Ekström and Tysk [12]).

A relatively simple proof of the convexity of % = %Zhu follows directly from the
analytical valuation formula (2.1). Indeed, for any 0< τ ≤ T , we have the following
expression for the second derivative of the function %Zhu(τ ):

d2

dτ 2%
Zhu(τ )=

2Eσ 4

4π

∫
∞

0
(a2
+ ζ 2)ζe−τσ

2(a2
+ζ 2)/2e− f ∗1 (ζ ) sin( f ∗2 (ζ )) dζ.

In what follows, we shall prove that f ∗2 (ζ )≡ f ∗2 (ζ ; γ ) ∈ [0, π ] provided that γ ≥ γ0,
where γ0 > 0 is a constant given by

γ0 =min
{
γ > 0 |max

ζ>0
f ∗2 (ζ, γ )≤ π

}
. (2.4)

The numerical value of γ0 can be estimated as γ0 ≈ 0.016 782 1.

COROLLARY 2.1. If 2r/σ 2
= γ ≥ γ0, where γ0 ≈ 0.016 782 1, then f ∗2 = f ∗2 (ζ, γ ) ∈

[0, π ] for any ζ > 0. As a consequence, the second derivative of %Zhu is positive, that
is, the function %Zhu(τ ) as well as the early exercise boundary S f (t) for the American
put option are convex functions.

REMARK 2.2. Notice that the condition 2r/σ 2
= γ ≥ γ0 is fulfilled for typical

market-based choices of the model parameters r and σ . For example, if r = 0.01
(that is, r = 1% per annum) then 2r/σ 2

≥ γ0 provided that the condition σ 2 < 1.19
(that is, σ 2

≤ 119% p.a.) is satisfied. In Figure 2 we present graphs of the function
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FIGURE 2. The function f ∗2 = f ∗2 (ζ ; γ ) for various values of the parameter γ (left) and the function
G(γ )=maxζ>0 f ∗2 (ζ ; γ ) (right).

ζ 7→ f ∗2 (ζ ; γ ) for various values of the parameter γ , including the critical value
γ = γ0 ≈ 0.016 782 1 for which the function G(γ )=maxζ>0 f ∗2 (ζ ; γ ) attains the
critical value G(γ0)= π .

2.2. Approximation due to Stamicar et al. In [28] Stamicar et al. derived a single
nonlinear integral equation for the early exercise boundary position. Based on this
equation they derived an improved analytical approximation for the free boundary
near the expiry. The asymptotic behaviour and justification of the early exercise
behaviour close to expiry have recently been analysed by Chen et al. [9] and Chen
and Chadam [8]. They proved that the correct asymptotic expansion can be obtained
from the nonlinear integral equation developed by Stamicar et al. [28]. We briefly
recall the key steps of the derivation of the nonlinear integral equation for the early
exercise boundary position %(τ)= S f (T − τ) for the free boundary problem (1.1).
Let us introduce the change of variables x = ln(S/%(τ)) where τ = T − t, %(τ )=
S f (T − τ). Similarly to the case of a call option (see [26]), we define a synthesized
portfolio 5 for the put option by

5(x, τ )= V (S, t)− S
∂V

∂S
(S, t).

It is easy to verify that 5 is a solution to the following parabolic equation:

∂5

∂τ
− a(τ )

∂5

∂x
−
σ 2

2
∂25

∂x2 + r5= 0, x > 0, τ ∈ (0, T ),

5(0, τ )= E, 5(∞, τ )= 0, 5(x, 0)= 0, x > 0, τ ∈ (0, T ),

σ 2

2
∂5

∂x
(0, τ )=−r E for τ ∈ (0, T ),

where a(τ )= %̇(τ )/%(τ)+ r − σ 2/2 (see Stamicar et al. [28], or Ševčovič [26, 27]).
Applying the Fourier transform, one can find the Fourier image of 5 in terms of the
free boundary position %. The resulting equation for % reads

σ 2

2
∂5

∂x
(0, τ )=−r E,
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from which the weakly singular integral equation for % can be found by using the
inverse Fourier transform (see [28] for details). More precisely, the function %(τ)
satisfies the equation

%(τ)= Ee−(r−σ
2/2)τ+σ

√
2τη(τ), (2.5)

where the auxiliary function η(τ) is a solution to the nonlinear integral equation

η(τ)=−

√
−ln

[
r
√

2πτ
σ

erτ

(
1−

Fη(τ )
√
π

)]
for τ ∈ [0, T ]. (2.6)

Here the function Fη depends on η via the expression

Fη(τ )= 2
∫ π/2

0
e−rτ cos2 θ−g2

η(τ,θ)

(
σ
√
τ

√
2

sin θ + gη(τ, θ) tan θ
)

dθ, (2.7)

gη(τ, θ)=
1

cos θ
[η(τ)− η(τ sin2 θ) sin θ ], (2.8)

for τ ∈ [0, T ], θ ∈ [0, π/2]. According to [28], the asymptotic analysis of the above
integral equation for the unknown function η(τ) enables us to deduce the asymptotic
approximation formula for η(τ) as τ → 0. The early exercise behaviour of %(τ) for
τ → 0 can be then deduced from second-order iteration of the system (2.6) and (2.7)
starting with the initial guess η0(τ )= (r − σ 2/2)

√
τ/(σ
√

2) corresponding to the
constant early exercise boundary S f 0(t)≡ E . One can iteratively compute Fη0 , η1
and Fη1 , η2. It turns out (see [28]) that the second consecutive iterate η2 is the lowest
order (in τ ) approximation of η. Namely,

η(τ)∼−

√
−ln

[
2r

σ

√
2πτerτ

]
as τ → 0+. (2.9)

Interestingly enough, it has recently been shown by Chen et al. [9] that the early
exercise boundary function % is convex (see also [7, 8]). Moreover, the approximation
formula (2.9) derived by Stamicar et al. [28] provides the correct asymptotic behaviour
for τ → 0+. Furthermore, Chen and Chadam [8] derived the sixth-order expansion of
the function,

α(τ)=−ξ −
1

2ξ
+

1

8ξ2 +
17

24ξ3 −
51

64ξ4 −
287

120ξ5 +
199

32ξ6 + O(ξ−7), (2.10)

for ξ = ln
√

8πr2τ/σ 2→−∞ as τ → 0+ where

%(τ)= Ee−σ
√

2τα(τ). (2.11)

Early exercise boundary asymptotics close to expiry As in the case of the
analytical approximation formula of Zhu, we examine the asymptotic behaviour of
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the function %(τ) for τ → 0, where %(τ)≡ %SSCh-A(τ ) is given by the equation

%(τ)= Ee−(r−σ
2/2)τ+σ

√
2τ η̃(τ ) with η̃(τ )=−

√
−ln

[
2r

σ

√
2πτerτ

]
. (2.12)

Employing expression (2.12), it is straightforward to verify that

lim
τ→0+

E − %SSCh-A(τ )
√
τ
√
−ln τ

= Eσ.

Again, as a consequence of the above limit, we deduce the following asymptotic
approximation to the analytical valuation formula due to Stamicar et al.:

%SSCh-A(τ )≈ E(1− σ
√
τ
√
−ln τ) for 0< τ � 1, (2.13)

that is,

%SSCh-A(τ )= E(1− σ
√
τ
√
−ln τ)+ o(

√
τ
√
−ln τ) as τ → 0+.

Notice that the asymptotic formula (2.13) differs from the one obtained from Zhu’s
formula (2.3) by a logarithmic factor

√
−ln τ . This could be a direct consequence

of the “pseudo-steady-state” approximation made in obtaining the two boundary
conditions in [30, Equation (2.11)]. The order analysis presented here quantifies the
order of errors that could potentially arise from Zhu’s approximation near expiry.

2.3. Approximation due to Evans, Kuske and Keller Kuske and Keller [20]
proposed another analytical approximation to the early exercise boundary for times
close to expiration. Then, in their paper with Evans [14], they improved and extended
the formula for the case of a dividend-paying asset.

We begin with the approximation formula of Kuske and Keller [20] for the position
of the early exercise boundary close to expiry t→ T , which reads as follows:

%KK(τ )≈ E

(
1− σ

√
2τ

√
−ln

[
2r

σ

√
9πτ

2

])
as τ → 0+. (2.14)

Evans et al. [14] derived an improved asymptotic formula:

%EKK(τ )≈ E

(
1− σ

√
2τ

√
−ln

[
2r

σ

√
2πτ

])
as τ → 0+. (2.15)

Although (2.14), (2.15) and the formula (2.12) of Stamicar et al. differ in higher-order
terms of τ ,

lim
τ→0+

E − %SSCh-A(τ )
√
τ
√
−ln τ

= lim
τ→0+

E − %KK(τ )
√
τ
√
−ln τ

= lim
τ→0+

E − %EKK(τ )
√
τ
√
−ln τ

= Eσ. (2.16)

This means that the approximation formulae due to Evans, Kuske and Keller [14, 20]
and Stamicar et al. [28] have the same asymptotic behaviour close to expiry t ≈ T ,
that is, for 0< τ � 1.
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3. Numerical methods

The early exercise boundary function %(τ) for the time interval τ ∈ [0, T ] can
also be approximated by using numerical methods. In this section we present two
approaches: a new local iterative algorithm based on the integral equation due to
Stamicar et al. [28], and the well-known PSOR method (see Kwok [21]).

3.1. A new numerical algorithm We introduce a new numerical algorithm for
computation of the early exercise boundary of American put options. This is based on a
solution to the system of implicit equations (2.6)–(2.8) derived by Stamicar et al. [28].
The idea of the proposed algorithm is to sequentially compute values of the auxiliary
function η = η(τ) at nodal points τi ∈ [0, T ]. In our new local iterative algorithm we
only have to find a root of a real-valued function at each nodal point τi . This is due to
the form of the functions Fη, gη (see (2.7) and (2.8)) whose values at τ ∈ (0, T ] depend
only on the value η(τ) and the history path {η(ξ), 0≤ ξ < τ }. Our new algorithm for
approximating the early exercise boundary %(τ)= S f (T − τ) is as follows.

(1) Construct a division 0= τ0 < τ1 < · · ·< τm = T of the interval [0, T ]. To
this end we can employ either an equidistant partition τi = (i/m)T , or we
can use τi = (i/m)2T in order to adjust the discretization mesh to the desired
behaviour (2.13) of %(τ) close to expiry τ ≈ 0. We take m� 1 sufficiently large
such that (2r/σ)

√
2πτ1erτ1 < 1.

(2) Compute the value of η1 ≈ η(τ1) from the analytical approximation
formula (2.9), that is,

η1 =−

√
−ln

[
2r

σ

√
2πτ1erτ1

]
.

(3) For i = 2, . . . , m, compute the value ηi ≈ η(τi ) as follows.

(3-1) Construct the mapping Gηi (τi , θ)= [ηi − η̃(τi sin2θ) sin θ ]/cos θ, where
η̃(τi sin2θ) is a linear interpolation function between the points (τ j , η j )

and (τ j+1, η j+1) if τ j ≤ τi sin2θ < τ j+1 for some 1≤ j < i , and if
0< τi sin2 θ < τ1 then η̃(τi sin2θ) is given by (2.9).

(3-2) Construct the mapping

Fηi (τi )= 2
∫ π/2

0
e−rτi cos2 θ−G 2

ηi
(τi ,θ)

(
σ
√
τi
√

2
sin θ + Gηi (τi , θ) tan θ

)
dθ.

For numerical quadrature of the above integral we can employ the
composed Newton–Cotes method of fourth order with at least 1000
subintervals.

(3-3) Find the root ηi of the equation

ηi =−

√
−ln

[
r
√

2πτi

σ
erτi

(
1−

Fηi (τi )
√
π

)]
.
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The above equation can be solved using either the bisection method,
Newton’s method, or any other numerical iterative method for finding roots
of real-valued functions. In order to speed up convergence we can use the
already constructed value ηi−1 as a starting point for iterations at time τi .

(4) Go to step (3) and repeat the calculation of ηi for the next value of i such that
i ≤ m.

(5) From the discrete values ηi , i = 1, 2, . . . , m, compute the approximation %i of
the early exercise boundary position %(τi ) as follows:

%i = Ee−(r−σ
2/2)τi+σ

√
2τiηi .

Set %0 = E . The whole profile %(τ)= S f (T − τ), τ ∈ [0, T ], is then computed
as a linear interpolation function between the discrete values (τi , %i ), i =
0, . . . , m.

3.2. Approximate solution using the PSOR method We present a brief overview
of how the early exercise boundary can be found using a finite-difference numerical
approximation method applied to the variational inequality (1.2). The method
computes the option price V (S, t) using the PSOR method introduced by Ockendon
and Elliot [13]. Having computed a solution V (S, t) to the variational inequality (1.2),
we can calculate the early exercise boundary position. Indeed, given a time t , the
critical stock price S f (t) is equal to the maximal stock price S = S f (t) for which the
option price is equal to the payoff, that is,

S f (t)=max{S > 0 | V (S, t)= (E − S)+}.

Following Kwok [21], the idea of the PSOR method is to transform (1.2) by intro-
ducing new variables x = ln(S/E), τ = T − t, u(x, τ )= eαx+βτV (Eex , T − τ),
where α, β are constants defined by

α =
r

σ 2 −
1
2
, β =

r

2
+
σ 2

8
+

r2

2σ 2 . (3.1)

We denote by u j
i ≈ u(ih, jk) the finite-difference approximation to a solution of the

transformed variational inequality for i =−n, . . . ,−1, 0, 1, . . . , n, j = 1, . . . , m.
The spatial and time discretization steps h, k > 0 are chosen such that h = L/n,
k = T/m, respectively. Here T represents the expiration time and L is a sufficiently
large bound for the interval x ∈ (−L , L). For practical purposes we can take L ≈ 1.
In each time step j = 1, 2, . . . , m, a linear complementarity problem for the finite-
difference approximation vector u j

∈ R2n+1 is solved by using the iterative successive
over-relaxation (SOR) method where iterates are projected to the transformed pay-off
diagram. This is done by taking the maximum of the transformed pay-off and the SOR
iteration. For details we refer the reader to [21, pp. 212–224].
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FIGURE 3. Comparison of analytical approximation formulae for various maturities T on a yearly basis.

4. Numerical comparison of the early exercise boundary approximations

4.1. Comparison of approximations close to expiry This section focuses on
numerical comparison of the analytical approximations due to Stamicar et al. (2.5),
Kuske and Keller (2.14), Evans et al. (2.15), Zhu (2.1) and our new local iterative al-
gorithm from Section 3.1 for the early exercise boundary for times 0< τ = T − t � 1
close to expiry. For computational purposes we chose the volatility σ = 30%, risk-free
interest rate r = 10% p.a., and strike price E = $100.

In Figure 3 we present a quantitative comparison of the analytical approximation
formulae by Kuske and Keller (KK), Evans et al. (EKK), Stamicar et al. (SSCh-A) and
Zhu. As a numerical benchmark solution we chose the PSOR method with n = 1000
spatial grid points and m = 1000 time steps (see Section 3.2). It should be obvious
that the approximation formulae KK, EKK and SSCh-A exhibit similar behaviour with
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TABLE 1. Comparison of the early exercise boundary obtained by analytical approximation formulae and
the iterative algorithm to the benchmark PSOR method.

Early exercise boundary Relative error
%(τ)= S f (T − τ) with respect to the PSOR method

τ EKK Zhu SSCh-A SSCh PSOR EKK Zhu SSCh-A SSCh
0.000 01 99.69 99.51 99.69 99.69 99.70 0.01% 0.19% 0.01% 0.01%
0.000 05 99.37 99.03 99.37 99.36 99.40 0.03% 0.37% 0.03% 0.04%
0.000 1 99.14 98.72 99.15 99.11 99.20 0.06% 0.49% 0.06% 0.09%
0.000 5 98.28 97.57 98.29 98.27 98.31 0.03% 0.76% 0.02% 0.04%
0.001 97.70 96.83 97.72 97.66 97.73 0.03% 0.92% 0.01% 0.07%
0.01 95.62 94.27 95.69 95.50 95.60 0.02% 1.39% 0.09% 0.10%
0.01 94.33 92.73 94.43 94.07 94.18 0.16% 1.54% 0.27% 0.11%
0.04 91.12 88.66 91.31 90.21 90.30 0.90% 1.82% 1.12% 0.11%
0.1 89.29 85.25 89.42 86.76 86.94 2.70% 1.93% 2.86% 0.20%

Legend: EKK—Evans et al. [14], SSCh-A—Stamicar et al. [28], SSCh—our new local iterative algorithm from Section 3.1,
Zhu—Zhu [30], PSOR—Projected SOR method [21].

respect to PSOR for time close to expiry (see Figure 3(a), (b)). On the other hand, on a
larger time horizon KK, EKK and SSCh-A become nondecreasing and Zhu’s formula
better approximates the PSOR solution (see Figure 3(c), (d)). It is also worth noting
that Zhu’s formula undershoots the early exercise boundary for small values of τ when
compared to KK, EKK, SSCh-A and PSOR. This phenomenon can be easily justified
by calculating the limit

lim
τ→0+

E − %SSCh-A(τ )

E − %Zhu(τ )

√
−ln τ = 1. (4.1)

Recall that the notation SSCh-A stands for the analytical approximation
formula (2.13) which is valid for time t = T − τ close to the expiration T . In what
follows, we denote by SSCh the early exercise boundary postion obtained by our local
iterative algorithm from Section 3.1.

In Table 1 we calculated the early exercise boundary position for EKK, Zhu,
SSCh-A, PSOR and our new local iterative algorithm SSCh. We also calculated the
relative error 1method(τ ), defined as

1method(τ )=
|Smethod

f (T − τ)− SPSOR
f (T − τ)|

SPSOR
f (T − τ)

for τ ∈ [0, T ],

where SPSOR
f is the early exercise boundary computed by the PSOR method. For

τ ≈ 1 minute, the EKK, SSCh-A and PSOR methods have almost identical values
(close to $99.40) whereas Zhu’s boundary position has been calculated as $99.03.
On the other hand, other approximations (EKK and SSCh-A) differ significantly
from the early exercise boundary obtained by the PSOR method as we increase time
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TABLE 2. Comparison of the early exercise boundary on a long time horizon.

Early exercise boundary Rel. error with respect to
S f (T − τ) PSOR method

τ PSOR Zhu SSCh Zhu SSCh

0.00 100.00 100.00 100.00 0% 0%
0.02 92.87 90.86 92.35 2.16% 0.56%
0.04 90.77 88.66 90.21 2.33% 0.62%
0.06 89.33 87.22 88.78 2.37% 0.62%
0.08 88.24 86.13 87.67 2.39% 0.64%
0.10 87.33 85.25 86.76 2.38% 0.65%
0.20 84.30 82.38 83.75 2.28% 0.65%
0.40 81.02 79.36 80.48 2.05% 0.66%
0.60 79.06 77.60 78.54 1.85% 0.66%
0.80 77.70 76.38 77.19 1.70% 0.66%
1.00 76.67 75.46 76.16 1.58% 0.66%
1.50 74.91 73.89 74.41 1.37% 0.67%
2.00 73.81 72.87 73.27 1.27% 0.73%
3.00 72.58 71.62 71.87 1.32% 0.97%
4.00 72.01 70.88 71.05 1.58% 1.34%
5.00 71.80 70.39 70.51 1.96% 1.79%

Legend: SSCh—our new local iterative algorithm from Section 3.1, Zhu—Zhu [30], PSOR—[21].

to expiration τ > 0.02. The relative error in the early exercise boundary position
calculated by Zhu’s formula with respect to the PSOR method is less than 2%. The best
approximation of the early exercise boundary has been achieved by our local iterative
algorithm SSCh.

In summary, SSCh-A, KK and EKK are suitable for approximation of the early
exercise boundary close to expiration, whereas, for a longer time horizon, it is
recommended to use Zhu’s approximation. The new local iterative approximation
derived in Section 3.1 can be used for both small and large time.

4.2. The long-time horizon In the long-time horizon, that is, τ = T − t ≈ 1 year
or more, we can no longer use the analytical approximations SSCh-A, KK, EKK
designed for 0< τ � 1. These solutions lose monotonicity for τ ≈ 0.1 and even
become undefined for large values of τ because of the sign change in the logarithm.
This is why only Zhu’s formula for the early exercise boundary (2.1) can be used in
the long term. We compared Zhu’s approximation with the two numerical methods
described in Section 3. The first method is our new numerical method (labelled SSCh)
based on the integral equation (2.6) which was described in Section 3.1. The second
method is the classical PSOR method described in Section 3.2.

As a time horizon, we chose the large expiration time T = 5 years. Other model
parameters are the same as in the previous section: E = $100, σ = 30%, r = 10% p.a.
The computational results are shown in Figure 4 (left) and Table 2. We observe that
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FIGURE 4. Comparison of the early exercise boundary position in the long time horizon. Early exercise
boundary position (left) and the relative error with respect to the PSOR method (right).

the shape of all solutions is very similar. In Figure 4 (right) we plotted the relative
error with respect to the PSOR method, which was used as a benchmark. Zhu’s
analytical approximation formula has relative error between 1% and 2.5% and attains
a local minimum at around τ ≈ 2 years. This is due to the fact that Zhu’s method
is slightly undershooting the solution close to expiry, that is, for τ ≈ 0. The solution
computed by our new SSCh scheme shows a nearly constant error term until τ ≈ 2.5
years, when the relative error starts to grow. For τ ≈ 5 years, the numerical solution
SSCh is approaching Zhu’s approximation. This is due to loss of precision in the
PSOR method itself when the exact early exercise boundary could be closer to SSCh
and Zhu’s approximation than to the PSOR solution.

5. Comparison of option prices

In this section we address the difference between the American put option price
and the approximate option price computed with an approximation of the early
exercise boundary. More precisely, let V am(S, t) be the solution to the free boundary
problem (1.1) with the early exercise boundary profile S f . Let us consider a given
function Sapp

f representing an approximation of the early exercise boundary profile S f .
We denote by V app the unique solution to the parabolic equation

∂V app

∂t
+ r S

∂V app

∂S
+
σ 2

2
S2 ∂

2V app

∂S2 − r V app
= 0, t ∈ (0, T ), Sapp

f (t) < S,

V app(+∞, t)= 0, V app(Sapp
f (t), t)= E − Sapp

f (t), (5.1)

V app(S, T )= (E − S)+.

Notice that we do not require the solution V app to satisfy the C1 smooth pasting
contact condition ∂SV app(Sapp

f (t), t)=−1. In fact, V app is a solution to the put barrier
option (see Kwok [21]) with a given down-and-out barrier t 7→ Sapp(t). For asset
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FIGURE 5. A profile S 7→ V am(S, t) of the American option price and comparison to the option price
V app computed with respect to the approximate early exercise boundary Sapp

f (t)= %app(T − t). The
corresponding European option is labelled by V eu.

prices 0< S < Sapp
f (t) we set

V app(S, t)= E − S.

A comparison of the profile S 7→ V am(S, t) of the American option price and the
approximate option price V app is shown in Figure 5. We also plot the common lower
bound for both put option prices represented by the European put option labelled
by V eu.

Knowing the functions t 7→ S f (t) and t 7→ Sapp
f (t), it is not difficult to calculate the

difference V am(S, t)− V app(S, t) between option prices. Indeed, using the standard
transformation (see Kwok [21])

V am(S, t)= Ee−αx−βτuam(x, τ ), V app(S, t)= Ee−αx−βτuapp(x, τ ),

where x = ln(S/E), τ = T − t (constants α, β are given in (3.1)) and taking into
account the fact that V am(S, t)= E − S for 0< S < S f (t) and V app(S, t)= E − S
for 0< S < Sapp

f (t), we conclude that uam, uapp are solutions to the following Cauchy
problems:

∂uam

∂τ
−
σ 2

2
∂2uam

∂x2 =

{
0 for x > ln(%(τ )/E),
reαx+βτ for x ≤ ln(%(τ )/E),

∂uapp

∂τ
−
σ 2

2
∂2uapp

∂x2 =

{
0 for x > ln(%app(τ )/E),
reαx+βτ for x ≤ ln(%app(τ )/E),

defined for −∞< x <∞, 0< τ < T, where

%(τ)= S f (T − τ), %
app(τ )= Sapp

f (T − τ).

Notice that the difference v(x, τ )= uam(x, τ )− uapp(x, τ ) satisfies v(x, 0)= 0 for
each x ∈ R. Using Green’s representation formula for a solution to a linear parabolic
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equation, we obtain, after some calculations, an explicit expression for the difference
of option prices:

V am(S, t)− V app(S, t)

= r E
∫ τ

0

∣∣∣∣∫ ln(%(ξ)/E)

ln(%app(ξ)/E)
G(x − s, τ − ξ)e−α(x−s)−β(τ−ξ) ds

∣∣∣∣ dξ, (5.2)

where G(x, τ )= e−x2/(2σ 2τ)/
√

2πσ 2τ is the Green function. The above difference
in option prices is always nonnegative because the American option price is greater
than or equal to the price of a down-and-out barrier option with the prescribed barrier
Sapp

f (t)= %app(T − t) (see Kwok [21]).
If we evaluate this difference at the American option early exercise boundary

position S f (t) then we obtain a slightly simplified expression:

V am(S f (t), t)− V app(S f (t), t)= r E
∫ τ

0
e−r(τ−ξ)

|N (γ̃ (τ, ξ))− N (γ (τ, ξ))| dξ,

(5.3)
where τ = T − t and

γ̃ (τ, ξ)=
ln(%(τ )/%app(ξ))+ (r − σ 2/2)(τ − ξ)

σ
√
τ − ξ

,

γ (τ, ξ)=
ln(%(τ )/%(ξ))+ (r − σ 2/2)(τ − ξ)

σ
√
τ − ξ

.

Notice that the difference V am(S, t)− V eu(S, t) of the American and European put
options is rather small. Similarly, the difference V am(S, t)− V app(S, t) is small.
Therefore it is reasonable to calculate the mispricing error V am(S, t)− V app(S, t)
with respect to the benchmark mispricing difference V am(S, t)− V eu(S, t) evaluated
at S = S f (t). To this end, let us introduce the following relative mispricing error
function:

err(T − t)=
V am(S f (t), t)− V app(S f (t), t)

V am(S f (t), t)− V eu(S f (t), t)
. (5.4)

The denominator of (5.4) can be easily calculated by recalling that

V am(S f (t), t)= E − S f (t) and V eu(S, t)= Ee−r(T−t)N (−d2)− SN (−d1),

where

d1 =
ln(S/E)+ (r + σ 2/2)(T − t)

σ
√

T − t
, d2 =

ln(S/E)+ (r − σ 2/2)(T − t)

σ
√

T − t

(see Kwok [21]).
In our practical experiment, we evaluated the relative mispricing error function

err(τ ) for the approximation of the early exercise boundary obtained by Zhu, that
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FIGURE 6. The relative error ε(τ ) in the early exercise boundary %app
≡ %Zhu obtained from Zhu’s formula

(left). The relative mispricing error err(τ ) in the option price (right). The model parameters were chosen
as E = 1, r = 0.1, σ = 0.3 for the time τ = T − t ∈ (0, 0.006) close to expiration.

is, we set %app
≡ %Zhu. In Figure 6 (left) we plot the relative error ε(τ ) in the early

exercise boundary position

ε(T − t)=
S f (t)− SZhu

f (t)

S f (t)

between the true early exercise position S f (t)= %(T − t) and Zhu’s approximation
SZhu

f (t)= %Zhu(T − t). We see that the maximal relative error in the early exercise
boundary position is only 0.32% and it is attained 6 hours prior to expiration.

The relative error function err(τ ) for times τ = T − t close to expiry (less than
2 days) is depicted in Figure 6 (right). We see that the error rapidly increases
when the time t approaches expiration T . For 1 day to expiration (τ = 4× 10−3)
the error is 15%. It increases beyond 70% as t→ T . This is due to the fact that
Zhu’s approximation underestimates the free boundary position as τ = T − t→ 0+

(see (4.1)).
Based on our numerical experiments, we can draw the conclusion that the

calculation of the free boundary position SZhu
f (t) using [30, Equation (2.24)] is still

quite a reasonable approximation to S f (t) even when the time is very close to expiry.
However, the errors in the calculation for the option price V using [30, Equation (2.37)]
can be quite large when τ = T − t→ 0+.

6. Conclusions

We have presented qualitative and quantitative comparisons of analytical
approximations and numerical methods for computing the early exercise boundary
position of the American put option paying zero dividends. We have also proposed a
new local iterative numerical scheme for construction of the early exercise boundary
which is based on a solution to a nonlinear integral equation. We have derived
the asymptotic behaviour of approximation formulae for time close to expiry. We
have proved that the formulae of Evans, Kuske and Keller [14, 20] and Stamicar
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et al. [28] have the same asymptotic behaviour close to expiry. We have also shown
that the analytical approximation formula of Zhu [30] has a different asymptotic
behaviour. On the other hand, for a long time horizon, Zhu’s formula yields
quantitatively the same results as those of our new local iterative numerical scheme
and the numerical benchmark PSOR method. Our study has also revealed that
the early exercise boundary analytical approximation from [14, 20, 28] and Zhu’s
approximation from [30] can be considered as complementary to each other in terms of
providing good approximate solutions for small and large time to expiry, respectively.
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